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THE SOLVABILITY OF NON [? SOLVABLE OPERATORS

NILS DENCKER

1. INTRODUCTION

Lerner proved in [4] that there are first order pseudodifferential operators of principal
type satisfying condition (¥), that are not solvable in L? in any neighborhood of the
origin. This was quite unexpected, since for first order differential operators of principal
type, condition (¥) is equivalent to local L? solvability.

In this paper, we shall show that the counterexamples in [4] are locally solvable in C*°,
and that we lose at most one derivative in the estimate for the adjoint operators. In some
cases we only lose € derivatives in the estimate, for any € > 0.

By local solvability in L? we mean that the equation Pu = f has a local solution
u € L*(R") for any f € L*(R™) satisfying a finite number of compatibility conditions.
We say that P is locally solvable in C'* if the equation has a solution u € D' for any
f € C* satisfying a finite number of compatibility conditions. Recall that an operator
is of principal type if the Hamilton field H, of the principal symbol p is independent of
the Liouville vector field.

Condition (¥) means that the imaginary part of the principal symbol does not change
sign from — to + along the oriented bicharacteristics of the real part, see Definition
26.4.6 in [2]. This condition is invariant under multiplication of the principal symbol by
non-vanishing factors.

It was conjectured by Nirenberg and Treves [5] that condition (¥) was equivalent to
local solvability for operators of principal type, and they proved this in several cases.
The necessity of (V) for local solvability in the C* category was proved by Moyers in
two dimensions and by Hérmander in general, see Corollary 26.4.8 in [2]. In the analytic
category, the sufficiency of condition (¥) for solvability of microdifferential operators
acting on microfunctions was proved by Trépreau [6]. The sufficiency of (¥) for local L?
solvability for first order pseudodifferential operators in two dimensions, was proved by
Lerner [3].

For differential operators, condition (¥) is equivalent to condition (P), which rules out
any sign changes of the imaginary part of the principal symbol along the bicharacteristics
of the real part. The sufficiency of (P) for local L? solvability for first order pseudodiffer-
ential operators was proved by Nirenberg and Treves [5] in the case when the principal
symbol is real analytic, and by Beals and Fefferman [1] in the general case.

2. STATEMENT OF RESULTS

We shall consider the following type of operators, which includes the operators Lerner
used in his counter-examples. First, let (¢,z) € R x R*, n > 2, and

(2.1) P=Di+i Y Qu(t,z1,D,)+ R(t,z,D,)

I/EZ+

where R(t,z,D;) € C®(R, ¥} (T*R")) and ¥, Q. (¢, 21, D;) € C¥(R, ¥} ) is on the

form
(2.2) Q. (t,z1,D;) = o, (t)(Dy, + H(t)V"W (v 21))¥, (D), veZ,.
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2 NILS DENCKER

Here 0 < a,(t) € C*(R) uniformly, such that 0 ¢ suppe, and a,(t)H(t) is non-
decreasing with H(t) the Heaviside function, 0 < W(z;) € C*(R) and & > 0. We
also have 0 < ¥,(€) € SY(T*R™) uniformly, having non-overlapping interiors of the
supports and 0 < ¢ < [£[27 < C in supp¥,. Since 0 ¢ suppco, we may write
(1) H(t) = e (t)B,(t), where B,(t) € C* (but not uniformly) such that 0 < 8,(t) < 1
and 0 < 0,8,. We find that ¥, v*W(v*2,)¥,(D,) € C*(R, Ui,), for any e > 0. Since
0 < ay(t) and W(vFzy)W,(€) > 0, it is clear that P satisfies condition (U*), i. e., the
adjoint P* satisfies condition (¥). In what follows, we shall suppress the ¢ dependence
and write S™ instead of C°(R,S™) for example. We shall use the classical calculus
of pseudo-differential operators, but with the general metrics and weights of the Weyl
calculus. For notation and calculus results, see chapter 18 in
We define the norms

(2.3) lullfoig = [ 1a(€)P(€)* (og(e) + )P de s, ke R,

where (£)? = 1+ |¢|®. Then |jul|(s0) = ||ull(s), the usual Sobolev norm, and Vs, k € R
we have

(2.4) kellulls-e) < Nullsry < Crellllste) Ve >0.

We find that ||ul|(s k) is equivalent to ¥, (€,)**(log(€,) + 1)**||9h, (D )ul|® if {¥.(€)}, is a
partition of unity: ¥, |#,|*> = 1 such that (£) =~ (£,) only varies with a fixed factor in

supp ¥y .

THEOREM 2.1. Let P be given by (2.1). Then, for any s € R there exists positive T}
and C such that

(2.5) Jlulltye)de < CT* [ Pull?, g0 (2)
if u € § has support where |t| < T < Ts.

Thus, we obtain for any s € R that
(2.6 [y (@ dt < CouT? [ [1Pulfyds Ve 0

if u € § has support where |t| < T < Ty. This shows that P* is locally solvable in C'*°,
with loss of € derivatives, Ve > 0.

We shall also consider the following operators, which includes the operators Lerner
used in his counter-example with homogeneous symbols. Let

(2.7) P=D;+i» Q.(t,z,D,)+ R(t,z,D,)

vedJ

where J is a subset of Z, and Y, Q.(t,z,D;) € \If%,o is given by

(28) Qu(t,@, Dx) = au(t)C(Da)xy(22)(Day + H(t)W/ W (v 21)27 D) v €.

Here we have the same conditions on «,, W and R as before. Also, 0 < C(£) is homo-
geneous, supported where |¢;] < Cé; and 0 < x,(22) € S(1,dz3) uniformly with non-
overlapping supports. In fact, there exists a function p(r) on Z, such that p(v) < CnvV,
for some N > 0, and there exists X, € S(1, u?(v)dz?) uniformly, with disjoint supports
such that 0 < X,(z2) < 1 and X, = 1 on supp x,. As before, we find that P satisfies
condition (U*).
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THEOREM 2.2. Let P be given in (2.7). Then, for every s € R we find T, > 0 and C, > 0
such that

(2.9) [llullty@ dt < €7 [1Pulfpyyde Vs
if u € S has support where |t| < T < T;.

Thus P* is locally solvable in C*, with loss of one derivative. The theorems are going
to be proved in the next sections.

3. PROOF OF THEOREM 2.1

Clearly, by conjugating with (D,)* we may assume that s = 0, which only changes
R(t,z,D;) € ¥], (dependingly on s). Next, we shall eliminate R(¢,z, D,). We choose
E4(t,z,D;) € ¥Y , with principal symbols

(3.1) ex(t,,€) = exp( | “iR(t, 2, €) dt),

such that E_E, = F{E_ = Id modulo ¥~*°. Then by conjugating with E. we obtain
R € V73 0, but this changes @), into

(32)  Qu(t,z,Dy) = ay(t) ((Dey + HE)W* W (v421))0,(D2) + 0,(t, 2, Ds))

where { 0,(t,z,£)}, € 57, Since we may skip terms in ¥~! in P in the estimate (2.5),
we may assume that supp o, C supp V,.
We shall localize in 57/, ; in order to separate the different @, terms. Let { $;(¢)}, €

S%/20 be a partition of unity such that ¢; is supported where |£ — {;] < c(&)1?, and
supp ¢; is connected, Vj. Let J C Z; be the set of those j for which supp ¢; intersects
N, Csupp ¥,. Since the principal symbol of ¥, Q, € U1, vanishes of infinite order
somewhere in supp ¢; when j € J, and ¢;(¢) € 51/2 o0, We find that

(3.3) ¢i(Dz) Pu = ¢;(Dz) Diu + R;(t, @, Do)u
with {R; },c; € U9, (with values in £%). We have

(3.4) [ Ngs(Dayull(@)dt < CT* [ ||Dgi(Do)ull*(2) de
< CT* [ 16;(D2) Pull*(t) + || Byull*(t) dt

for j € J. Since ey ||Rjull* < C|lul|?, we get the result for small enough T', providing
that we also have an estimate for the other terms.

Thus we only have to consider the case when supp #; does not intersect ), Csupp ¥,,
i.e.j & J. Since supp ¢; is connected, we find that supp ¢; is contained in the interior of
supp ¥, for some unique v = v; when j ¢ J. Observe that this gives |{;| ~ 2" in supp ¢;.
Clearly, since supp @, C supp ¥, we have P¢;(D;)u = P, ¢;(D.)u where we define

(35) Pu = Dt+iQu(t,$1,Dz)~
Now we use the following

Lemma 3.1. Let P, be given by (3.5). Then we find

(3.6) /uun (v%a,(t) + 1) dt < CT?w 4’°/||Pu|| () (e, (1) + 1)1 dt

uniformly in v, if u € S has support in |t| < T, for T small enough.
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4 NILS DENCKER

By substituting ¢;(D.)u, taking v = v; in (3.6), and replacing P,, by P, we obtain for
J ¢ J that

37 [lsiDa)ull*(t)dt < €T [11Pg;(D2)ull*t)de
< CT%* [ 116,(Da) Pull*(t) + I[P, 65 (D2)ull*(t)

Now {I/]?k[P, $;(Dz)] }quJ € \Ili;;{f with values in ¢2, Ve > 0. In fact, we find that

>, VW (v*2,) ¥, (D,) € C*(R, \Il’;"o ) and {V?kqu(é') }jeJ e 515/2‘0, Ve > 0, since ¢;(§)
is supported where €| ~ 2% when j ¢ J. Thus by summing up (3.4) and (3.7) we
obtain (2.5) for s = 0 and small enough T'. This completes the proof of Theorem 2.1.

Proof. [Proof of Lemma 3.1] We may assume v is fixed in what follows. In the proof, we
are going to localize in |¢;] 2 v**. For that purpose we use the metric

(3.8) gv = v¥|de + ¢/ (v + &) v ey
which is uniformly slowly varying, o temperate and
(3.9) g./9; = hi = v*/(v** + &)

which makes h;? = |&|2v~%% + % > 2]§|. We find that Q, € OpS(h;2,g,) but
VAW (vFzy) € S(h3Y, g,) uniformly.

Now we localize with xo(&1) = x(é&1v7%) € S(1,9,) where x € C° is equal to 1 near
0, and with x+(&) = H(£&)(1 — xo(&1)) € S(1,9,) which has support where ££; > cv?*
so that xo + x+ + x— = 1. We also choose non-negative x+(&1) and Xo(&1) € S(1,9,)
such Y+y+ = x+ and Xoxo = Xxo- This can be done so that Y1 have support where
+£, > cov?*, ¢g > 0, and Xo has support where |&;| < Cv?*,

First we estimate the x4(D,, )u terms by Lemma 5.1 with the operator

(3.10) Py = Dy + QuX£(Ds, ),

where

(3.11) +ReQuX+(Dyy) > FC onué€S,

by the Fefferman-Phong inequality, where Re F' = (F' + F*)/2. In fact, the symbol of
(3.12) +a,(t) Re (Dq, + H(t)/* W (vF21)) U, (D2) X (Da,)

is bounded from below, modulo terms in S(1,g,). Thus Lemma 5.1 gives (after changing
t to —t for P_)

(3.13) /||u||2(t)dt < CT2/ | Pal2(2) dt

if u € S issupported where |t| < T and T is small enough. Now, by substituting X+(Dgp )u
into (3.13) and using that Pyx+(Dy,) = P,x+(D,) and that [Pl,, x+(Ds, )] € Op S(1, g,,)
is uniformly L? bounded, we find

(3.14) J s (D )ullP (@) de < CoT? [Pl (8) + (1) e

if u € S is supported where [t| < T and T is small enough.
Next, we shall estimate ||xo( Dz, )ul|?. Let

(3.15) |
Bl/ = Dz‘l\I;u(Dx)XO(Dm) + ﬂl/(t) <I/kW(ka1)\IjV(DI) (Dl‘l) + Q) € Op 9( v ?gu)
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where ¢ > 0. Here 8, € C* such that 0 < g,(t) < 1, 0 < 9,6, and «,(¢t)H(t) =

a,(t)B,(t). Since v*W (v*z,)¥,(D,)Xo(Dz,) € Op S(h; ,g,,) has positive principal sym-
bol, we find

(3.16) 0:B, = 0,8,(t) (VW (21T, (D2)%0(Dzy) + ) 2 0

for large enough o. We also find B, € Op S(v?,g,) uniformly, thus ||B,|| < Cv?. Ap-
plying Lemma 5.2 on Xo(Dq, Ju, with Py = Dy+a, (t)(B,+7.), 70 = 0u(t, &, D) Xo( Dy ) —
B,(t)e and M = Cv*, we find

(3.17)
[ oDl ) (00 (8) + 1) dt < Cowt T [ [ Poxal Dy Jull*(0)(0 a0 (2) + 1) dt

ifu € S is supported where |t| < T and T is small enough. As before, we find Pyxo(D,) =
P,xo(D.,) and we have [P,, xo(Dy, )] = a,(t)f,, where f, € Op S(1,g¢,) is uniformly L*
bounded. Since

(3.18) v*a2(t)/(v*a, (t) + 1) < v¥a,(t) + 1,

we obtain

(3.19) [ Ixo(Da)ulP () au(t) + 1) dt
< T [V PP () + 1) de+ [ el (t) + 1) dt

if u is supported where |¢| < T and T is small enough. Combining (3.14) and (3.19), we
obtain (3.6) for small enough 7. W

4. PROOF OF THEOREM 2.2

First, we conjugate with (D,)**'/2 to reduce to the case s = —1/2 (this only changes
R(t,z, D,) dependingly on s). We choose E.(t,z,D,) € ¥}, with principal symbols

(4.1) e+(t,z, &) = exp(+ /Ot iR(t,z,£)dt),

such that E_E, = E.E_ = Id modulo ¥=*°. As before, the calculus gives R € W for
the new operator, but changes @), into

(4.2)
Qult, 7, Dy) = oy () (C(De)xo(w2)(Day + HEWFW (v*21)27" Dsy) + 0u(t, 7, Da))

where p,(t,z,€) € S?,o uniformly, with supp o, C supp x,. Thus, we may assume R =0
since the term CT'|| Ru|(1/2) can be estimated by the left hand side of (2.9) for s = —1/2
and small enough T

Next, we localize in z, to separate the different @), terms. By assumption there exists
v(z2) € S(1,p*(v)dez3) uniformly when v € J, with disjoint supports, such that 0 <
Xo(22) < 1and Yux, = xu. We also localize in &: let {4;(£) }, and { ¢;(£) }, € 57 (with
values in (2) such that 3, 4;(£)* =1, ¢;(£) and t;(£) are non-negative, ¢;1; = ¢; and
Y;, ¢; are supported where 0 < ¢ < [£|27% < C. We may also assume that for some fixed
N > 0 we have 32, _x<n $E(¢) =1 on supp e, V.

X-5



6 NILS DENCKER

Since X, € S(1, u*(v)dz3) we find that {;(£)X.(z2) },,; is not in a good symbol class.
Therefore, we put

0<u%j2
ve

Since v; is supported where |¢| &~ 2/ and u(v) < CNI/N for some N > 0, it is easy to see
that { X (€2)9;(£) Yoaucie and {Xoi(z2)1i(€) }; € U3, Ve > 0. Let
J

(4.4) a,i(t) = \a,(t)+2-7 Vied, Vv,
in what follows. Now, we are going to use the following

Lemma 4.1. We find that
(4.5) / > Now;(D)Xu(@2) i (Da)ull* () + 3 IXo0s(x2)15(Daul*(2) dt

J3u§j2
J

<CT [ 3 llog} R ulaa)t(D2) Pull(t)
Jav<;?

+ 2 1%oi(22)9i (D) Pul|*(2) + llullf_/2)(2) dt.

if u € § has support in |t| < T for T small enough.

Since 279/? < a,;, |€| ~ 27 in supp ¥, the supports of ¥, are disjoint and S Jsv<z Xv T
Xoj =1,V j, it is easy to see that the left hand side of (4.5) is greater that ¢ [ ||[u(|?_, /)(t) dt
for some ¢ > 0, and the right hand side is less that CT [||Pullf, () + [[ullf_;/2)(t) dt.

Thus (4.5) implies (2.9) for the case s = —1/2 for small 7', and completes the proof of
Theorem 2.2.

Proof. [Proof of Lemma 4.1] Since ¢;(1 — ¢;) = 0 V7, the calculus gives that we may
replace P by P; = Dy + i) ,c5Q.¢;(D;) for the terms containing the factor v;(D,)
n (4.5).

For the terms ||Xo;(z2)%;(Dz)ul|? we use the fact that v*W (v¥z,)27" D,, ¢;(D,) € ¥=>°
uniformly when (log|¢|)? &~ j? < v. Thus we use Nirenberg-Treves estimate in (2,
Theorem 26.8.1] with B = D, ¢;(D,) bounded, and 0 < A € ¥ ; such that
)C

(4.6) A= > a0, (t)C(D:)xu(z2) mod U7,
Jav>j5?

By perturbing this estimate with L? bounded operators, and substituting the term
Xoj(22)¥;( Dz )u, we find for small enough T that

(47 [IRes(eabi(Do)ull(t)dt < CT* [ |1 Pios(@als(Dul(®)dt V3
when [t| < T in supp u. Here
(4.8) P;=Di+i Y. a(t)(C(Ds)xu(2)Dey + 0u(t, 2, Ds)) ¢5(Ds)

Jov>j?
=D+ Z Q,,qﬁj(Dx) modulo ¥~

Jov>j5?

Thus ﬁj satisfies condition (P), i. e., the imaginary part of the principal symbol has no
sign changes for fixed (z,€).
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Since o, < Cavy; and supp g, C supp x,, the calculus gives that

(4.9) {[E,yw(um(m)]}e{Zauj(t)fuj(x,m} mod U7}/?

j et

where { f,; }Vj € ‘I’(l),o with values in 2, and supp f,; C supp x,%;. In order to estimate
these terms we need the following

Lemma 4.2. If { f,;(2,D:)},; € WY, with values in £2, and supp f,; C supp x,%;, Vv j,
then

(4.10) D7 llw(t) fui(z, Do)ull? < C( > llewi ()X s(2); (DsJul|?

veJ v<s?
J

+ 3 sl Dl + Il |
J
foru € S.

Since Xo; = 0 on supp x, when J 3> v < 52, we find that {S{Oj(azg)l/)j(Dx)(ﬁj - P;) } €
j
U=, where as before P; = Dy +13.,¢; Q,9;(Dz) € V1. Thus we find

(411) [ 2 Roi(@a)thi(D2) Pl (t) dt
< OT [ 3 foi(z)(Da) Prell2(t) + 1l oy (8) .

This gives the estimate (4.5) for the terms ||Xo;(22)¥;(Dz)ul|? for small T, providing we
can estimate the other terms.
As before, we are going to use Lemma 5.2 with a(t) = a,(t) and

(4.12) B, = Re C(Da)xu(x2) Dz, $5(Dz) + Bu(t) (V¥ W (v*21)27" Dary 6(D2) + 0) ),
where ¢ > 0. Here §, € C* such that 0 < G,(t) < 1, 0 < 8,8, and o, ()H(t) =

a,(t)B,(t). We have |B|| < C27, 8;B; > 0 for large ¢ and R, € ¥°. By substituting
Xv(22)¥;(D;)u in this Lemma, we find for small T' that

(413) [ I1%ul@2)s(D2)ull*(E) @ (t) +1) dt
< OT*2% [ (D +iQus (Da))Rula)bs (Da ull ()P e (1) + 1)
when J 3 v < 32, providing |t| < T in suppu. This is equivalent to
(4.14) [ Nlow; ()R (22)hs(D2)ull*(2) dt
< CT* [ Yoz} (4)(D1 +iQues(D2)) ulwahs(D2)ul(2) dt.
Now, it follows from the asymptotic expansion that

(4.15) {1Qu$i(Dz), %o (22)5(De)) brevesr = { () fui(t, 2, Da) Jaeneso

X-7



8 NILS DENCKER

modulo 11;1":/2, where {ﬁj(t,l’,D;r) }Vj € U9, with values in (2, supp fui C supp x,;,
Vt. Thus, we may estimate the commutator terms by Lemma 4.2:

(.4'16) Z ”auj(t)fvj(t’x’Dz)uW

Jaus_jz
J

<C (Z llew; Xitpiull + Z IXoj3ull® + [lulli- 1/2)) vi.
v<j2

Since the supports of X, are disjoint, and 3 ;5 ,.2, @, 9;(D-) € \Il{’o uniformly, we obtain
that

(4.17) {XU 2)1h; (D JZ Qug;(D }J9u<j2 sV
Sp#v I

with values in ¢2. Thus we may replace D; + iQ,$;(D,) by P; in the estimate, which
proves (4.5). W

Proof. [Proof of Lemma 4.2] Since ¥);_x<n ¥i(§) = 1 on supp fj and { f,; },; € ST, we
may use the calculus to write

(4.18) leaw () fui(z, Do)ul® < Z [l (t)evik(@, Da)or(Da)ul|* + Cllullf_y),
[k~ JI<N

where { e,k }ij S le(l),O with values in ¢2, and suppe,;x C supp f,;¥k. Since Xor +
<k Xu =1, we find

(4.19)
> Mewi(ewin(a, Do)pe(Do)ul* <2 37 low;(t)ewjn(w, Do) Xok(w2)1he (D Jul|?
lb—il<N k—Fl<N

2

+2 Z Ho‘w(t )evjk(z, Dy) Z Nu(@2)Pr( Dy )u

u<k?

Ik—J|<N
By summing up in j and v we find
(4200 3 llow;()evk(w, Do) Xor(w2)r(Ds)ull”
h=iI<N

< On( IXok(@2) (D )ull* + lull{_y /2)),
k

since ay; < ¢ and { e,k }V]. € UY, with values in £%, uniformly in k. Now a,; < Coyy
when |7 — k| < N which similarly gives by the calculus

2
(4.21) Y aw(ewr(z, Do) Y Xule2)e(Deo)u
l/vj M<k2
lk—l<N

<C Y e ()X ul@2)r( Do )ull* + Cllullt_y o)

u<k?

since supp e jx S suppx, vy, k. W
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5. SOME ESTIMATE LEMMAS
We assume that

where Q¢ is a closed, densely defined operator on L?*(R™) such that S C D(Q¢) N D(Q?)
Vt, t — (Qu,u) is continous for u € S, and

(5.2) Re@: > —C onS Vi,

where 2Re Q; = Q; + Q7. We also assume that ||R;|| < Cp on L*(R™). Let ||u|| be the
L? norm of u € L*(R™) and (u,v) the corresponding sesquilinear form.

Lemma 5.1. There exists Ty > 0 and C' > 0 such that

(53) [l < o7 [ |1Pul(e)
if u € S has support where |¢t| < T < Ty. Here Ty and C only depend on Cy and C.

Proof. We only need to prove the estimate (5.1) for R; = 0, since we may perturb it with
L? bounded terms for small T'. We find
(5.4) (Qu, u) > —Cylul? Vi

when u € S. Since 1P = 0; — @4, this gives
T
(5.5) [lull®(t) = —/ 9 Re(dru, u)(t) dt
t
T T
= —/ 2Re(tPu,u)(t) ——/ 2Re(Qeu,u)(t)dt
t t

< — /tT2Re(iPu,u)(t) dt +2C4 /tT llull*(t) dt

when v € §, and u =0 when t > T.
By integrating in ¢ we find

(5.6) /_i Il 2() dt < 4T/_TT Im(Pu, u)(t) dt + 401T/_TT Il 2(2) dt
By using the Cauchy-Schwarz inequality we obtain
(5.7) 2(Pu,u) < A[ul>/T + | PulPT/X YA > 0.
This gives
(5.8) (1=40T =22 [ Jlull* < 27/ [ |[Pull*dt,
which gives (5.3) when Tp < 1/16C and A < 1/4. W
The next case we shall consider is
(5.9) P = D, +ia(t)(B. + R:)
where 0 < a(t) < Co, By and 0;B; are self-adjoint and bounded, 0;B; > 0 and | R¢|| < C}

on L*(R™). We also assume that there exists a constant M > 0 such that

(5.10) 1Bl <M Vi
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Lemma 5.2. There exists Ty > 0 and C > 0 such that
(5.12) J i@ a) + M) de < OT* [ |PulP(t)(at) + M) ds

if u € § has support where |t| < T < Ty. Here Cy and Tj are independent of M, and
only depend on Cy and C;.

Proof. First we consider the case a(t) > M~' > 0. Then (5.12) is equivalent to the
estimate:

(5.13) [Pty dt < CT? [ |Pul(t) di/a(t)

if u € § has support where |t| < T is small enough. Introducing s = f; a(t) dt as a new
time variable and Py = D, + 1B, we find that it suffices to prove

(5.14) / l[ul[*(s) ds < CT? / | Poul|*(s) ds
if u € S has support where |t| < T, which implies |s| < CT. In fact, we may then perturb
the estimate with the L? bounded term ¢ R,u for small 7.
Now [P}, Po) = 20,B; > 0, which implies
(5.15) | Poull® = || Full® = ([Fs, PoJu,u) > 0.

Since || Dsul|? < 2(||Poul||® + || P3u||?), we find
(5.16) JIul(s)ds < CoT® [ | Dsull¥(s)ds < 4CT® [ || Poull*(s) ds
if u € S has support where |s| < CT. This proves (5.13) in the case a(t) > M.

Next we consider the case a(t) > 0. In order to reduce to the case a > M~ we
conjugate with F; solving

(5.17)

atEt = —EtBt/M
Ey,=1d.

This gives bounds on ||E;|| and || E;"|| when ¢ is bounded (independently of M), and the

conjugation transforms P into
(5.18) P =Dy +i(a(t)+ M~Y)B; + a(t)R, = D, + i(a(t) + M™)(B; + S)

where R, = 1E; ![B;+ Ry, E]+ iR, and S, = a(t)R,/(a(t) + M) are uniformly bounded
on L?(R™) for bounded ¢t. In fact, if F, = [B;, E,], Vr, then

(5.19) 8,F, = E,[B,, B])/JM — F,B,/M

and Fy = 0, thus F; = (B, Ey] is bounded on L?(R") for bounded ¢ (independently of
M). By using (5.13) with P and a(t) + M~!, we obtain (5.12). W
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