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1 Introduction

The motivation for our work comes mainly from the one-electron theory of
quantum solids, more exactly from the spectral theory of ”perturbed” peri-
odic Schrodinger operators. We shall give below two examples; a more detal-
ied description of other ”models of disorder” can be found in [BNN]. Consider
a periodic lattice, T, = {a = Y0, mia; | ms € Z, {&;)} — basis in R3},
and

Hy=-A+ Vpe,-(x) (11)
where Vier(x) € L2,.(R?) and

Vper (X + @) = Vper(x), all a€Ty.

The hamiltonian Hj is the basic object of the theory of periodic crystals
and its spectral properties are well understood [RS]. Let now I' be a set in
R3 with the property that

inf |a—b|>1>0 (1.2)
a,ber; a#b

and V' (x) a rapidly decreasing potentiffxl. The ”impurity” model of quantum
solids is described by the hamiltonian
H=Hy+ )Y V(x—b) (1.3)
ber
(we assume that the decrease of V(x) is sufficiently fast as to assure that

Sber V (x — b) is uniformly locally L? ). If T consists of a single point, (1.3)
becomes the usual ”one-impurity model” hamiltonian:

*Permanent address: Dept. Theor. Phys., Univ. of Bucharest and Inst. of Math. of
the Romanian Academv. Bucharest. Romania.
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Himp = Hy + V(X) (14)
whose spectral and scatering theory is again well developed. Consider now
for A > 0:

Hy= Ho+ Y_ V(x—Ab). (1.5)

ber

For A — o0, (1.5) describes the physical situation in which the impurities
are far one from each other. At the heuristic level it is known” that the
spectral properties of H;m, and H) are related; in particular, if E € p(Hy) is
an eigenvalue of Hj,,, then in the limit A\ — oo, H) has a ”miniband” arround
E with a width which shrinks exponentially as A — oo. The situation is
similar to the one encountered in the usual tight-binding limit in which Hy
is replaced by —A. Since the main technical ingredient in the study of
the tight binding (as well as semiclassical) limit [D],[C],[HS1-3],[BCD] is the
exponential decay of the eigenfunctions of —A + V(x) , the first step in
the study of the impurity tight binding limit must be a good control of
exponential decay of the eigenfunctions of H;n,, corresponding to energies in
p(Ho)-

Another, interesting from the physical point of view, particular case of
(1.3) is the one in which I' is contained in a plane, say z3 = 0, (x =
(z1,22,23)). In this case the physical heuristics indicates that the (gen-
eralised) eigenfunctions of (1.3) corresponding to energies in p(Hp) decay
exponentially as | z3 |— oo.

One can consider also the same problems when a magnetic field is added
i.e. Hp is replaced by (P — a)? or at a higher level of complexity by (P — a)2+
Vper(x). The simplest question in this context, is to prove the exponential
decay of the eigenfunctions of

(—27 + ——)2 + - — —‘—)2 + V(X), X e R2

for energies outside the set of the Landau levels.

Following the seminal work of Combes and Thomas [CT] and of Ag-
mon [A] there is an enormous literature on exponential decay of eigenfunc-
tions in the N-body problem and precise results have been obtained (see e.g.
[A],[H1],[H2], and references therein; for extensions of Agmon type results
to the magnetic field case see [HN],[HS3]). Since we are interested in ener-
gies which may belong to the essential spectrum of H and more important
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are not below the essential spectrum of the ”asymptotic” hamiltonians, a
direct application of the Combes-Thomas-Agmon analysis is not possible.
(The results in [BG],[W],[MP] concerning Dirac operator are for energies in
(=m,m) and potentials vanishing at infinity, when one can still apply the
Agmon theory to the square of the Dirac operator; see the remark at the
end of Section 3.) Moreover due to the fact that the potential does not van-
ish at infinity, one cannot apply the techniques based on Mourre estimates.
In [BNN] an elementary method ( covering many cases of physical interest,
but not the magnetic field case) to prove exponential decay has been used.
The result below is that a Combes-Thomas-Agmon type analysis provides
exponential upper bounds under very general conditions. It turns out that
one can carry the Agmon analysis to the case at hand by replacing his A-
positivity condition with the strict injectivity of the Combes-Thomas rotated
operator (see (2.4),(2.8) below and also [H1]). Exponential decay of eigen-
functions, in some cases when A-positivity condition is not fulfilled, has been
also obtained by Helffer and Sjostrand [HS2] in their deep study of tunelling
through nonresonant wells in the semi-classical limit. We obtain only ( very
likely non optimal) upper bounds. The problem of the lower bounds (see e.g.
[FH30.), [H2] and references therein for the N-body case) or of the actual
behaviour at infinity of the eigenfunctions seems to be harder and remains
open. Detailed proofs and applications will be given elsewhere.

2 The results.

In what follows 2 C R™ is a domain with (smooth) boundary 02, and
WeP(Q) are the standard Sobolev spaces [GT].

2.1 The Schrodinger case.
Consider in L?(Q) the Schrodinger operator

H=(P -a®x))?+q(x), P=-iV (2.1)
where

a € (L5, (Q)™ Vae L}, (Q); p=max{n,4}; q€ S5.(Q) (2.2)
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(see [CFKS] for the definition of S,; we recall that for n < 3,q € S,(Q) if
and only if

SUPzeq f{|x—y|51}nn | q(y) ? dy < oo.
As a consequence of (2.2), H is well defined and symmetric ( but, in
general, not essentially self-adjoint) on C§°(€2).

Definition 1 (S) Let E € R. 9(x) € W,22(Q), is said to be a slowly in-
creasing solution of (H — E)y = 0 in Q if it is a weak solution, i.e. for all
o(x) € C(Q) ( (-,-) denotes the scalar product in L3(Q2) )

(H-E)p,9) =0 (2.3)
and for all § > 0 , exp(=6(1+ | x [?)?)y(x) € L%(R)
For h(x) : @ — R, h € C%(f2), we consider the "rotated” operator
H(h) = H — iB(h)— | Vh |*= exp(—h)H exp(h) (2.4)

with
B(h)=(P —-a)-Vh+Vh- (P —a) (2.5)
defined on C3°(2).
For d > 0 we set

Qa = {x € Q| dist(x,00) > d} (2.6)
and for h(x) as before and €,5 > 0
hse(x) = —6(1+ | x [2)/% + h(x)(1 + eh?(x))~". (2.7)

Theorem 1 (S) Suppose:
i. P(x) 1s a slowly increasing solution of (H — E)Y=01inQ, | E |< Eyp.
i1. There exist &y, €9, ¢ > 0 such that for 0 < 6 < dp, 0 < e < € and all
p € C3°()
| (H(=hee) = E)e lIZcll el (2.8)
Then there exists K < oo depending upon a, q, d, ¢ and Ey such that for
all0 <6 < o

Sl 1) [P dx <
2

K [ (1] Vhag() ) | €009 (x) [* dx (29)
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2.2 The Dirac case.

Consider now, in (L?(2))*, the Dirac operator

D=a-P+pm+Qx), Qx)=Q:1(x) + Q2(x) (2.10)

where Q;(x) are 4 x 4 hermitean matrices satisfying:

Joeyren o 1100 P x =y 72 dy < o0, all x€ 9, p<2

Q0 < 0 2REX=2D 6oy

ael |x—a|
where I is a set in Q such that infazp, aper |2 —b [> 0

Definition 2 (D) Let E € R. ¥(x) € (L%.(Q))* is said to be a slowly
increasing solution of (D — E)¥ = 0 in 2 if it is a weak solution, i.e. for all
P(x) € (CL(N))* (< -, > denotes the scalar product in (L2(2))* )

<(D-E)®,¥>=0 (2.11)

and for all 6 >0
exp(—6(1+ | x [)/2)¥(x) € (L*(Q))*

As in the Schrédinger case, for h : @ — R, h € C}(2) we consider the
rotated operator

D(h) = exp(—h)Dexp(h) = D — ia - Vh. (2.12)

Theorem 2 (D) Suppose:
i. U(x) is a slowly increasing solution of (D — E)¥ =0 in Q

it. There exist 8p,e0 > 0,¢ > 0 such that for 0 < 6 < 6,0 <€ < € and
all ® € (CL(N))*

I (D(=hse) = E)® |2 c || @ | (2.13)

Then there ezists K < oo depending upon Q,d, c such that for all 0 < § < &

4

/de Z | exp(hso(x))¥;(x) |* dx < K/Q\Q 1 | exp(hsp(x))¥;(x) > dx

(2.14)

2d j=
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2.3 An example.

Let
mr={x€R®|n-x>R, |n|=1, R>0} CR? (2.15)
H = Hy |eso(p p) (2.16)
(see Section 1 for Hy)

Suppose E € p(Hy), | F |< Eo, a = dist(E,o(Hp)) and let ¥ be a slowly
increasing solution of (H — E)¢ = 0 in Qp g. Take in Theorem 1S, h(x) of
the form

h(x) = u(n-x— R); p>0. (2.17)

It turns out that for sufficiently small x4 the condition (2.8) is fulfilled.
For example, by standard perturbation arguments, (2.8) is fulfilled for all
1 < po where pyp is given by

o +2u0 | P-n(Hy— E)! = 1. (2.18)
Then from (2.9) one obtains for all u < po:

/ 6—6(1+|x|2)1/2+u(n-x—R)¢(x) |2 dx <
n-x>R+2d

- 2\1/2
const. oo R | e~ 0+ (x) |2 dx. (2.19)

If in addition one supposes that

sup / | (x) 2 dy < oo (2.20)
x€Qn g J{Ix-yI<1}( On,r
then one obtains (y =zn+y,, y.1ln)
sup / | e¥*p(zn +yy) |* dy < oo. (2.21)
x, €R2 Jz>R+2d; |y —x,|<1

The value of po given by (2.18) is far from being optimal even at the
qualitative level. In particular in the limit @ — 0 it gives pp ~ o while, as
well known, for E < info(Ho) one has po ~ a/?. A more carefull analysis
shows that the same is true for E in the gaps of Ho:

Theorem 3 There exists k > 0 such that (2.8) is fulfilled for p < ka*/2.
The best value of k (very likely it depends upon n ) is still to be found.
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3 Outline of the proof.

We shall outline the proof in the Schrédinger case; the proof in the Dirac
case is similar and much simpler, due to the fact that D is first order. We
start with the following ”localisation energy lemma”, going back implicitely
at least to Agmon [A] (I was kindly informed by T. Hoffmann-Ostenhof that
it is actually much older) and having a clear physical meaning: it gives the
amount of kinetic energy due to localisation by f of the ”eigenfunction” 2.
Let for ¢1, ¢ € W2(9)

higr, 4o = [ P=a)iGI(P - a)ga(x)dx + [ BX)a(x)a(x)dx

Lemma 1 Let v be a solution of (H—E)Y =0 Qand f: Q> R, fe€
Ce(QY). Then
h[f, f) = E(f, f) = (&, | VS 2 4)

Let h: Q> R, heC>®(Q), g€ CL(N). Since for all ¢ € C§*(N):
0= ((H - E)¢,9) = (H(h) — E)e™"p, "),

((H(h) - E)p,e"g9) = (lg, H(W)]p, ") = (¢, F) (3.1)
with
F = {-2i(P —a)-Vg— Ag+2Vh-Vg}e"y. (3.2)

The next lemma gives (via Lemma 1) the control of (F, F'):

Lemma 2 Suppose supp g C Q4. Then there exist a < 1, b < 0o, depending
upon a, q, d such that

(F, F) < 2(e"y, me"y)

with A n
m(x) = -_"Z S mi(x) + (~Ag + 2Vh - Vg)?
|

where

mit) = L2 wh + V) 1 | 405y

1
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The next and the last ingredient is a regularity lemma:

Lemma 3 Suppose
sup(| VR |)+ | AR |) < M < o0 (3.3)
Q

and g : Q — R, g€ C(Q). Then H(%h) |ceo(q,,) is closable in L2(Qay0)
and e*g1) belongs to the domain of its closure.

;From (3.1), due to Lemma 3,for h satisfying (3.3) and g € C§°(Q%)
(H(=h) — E)e"gtp = F.
Suppose now hs satisfies (2.8). Then using again Lemma 3:
("= g, e™eg)'/? < CTH(F, F)'* (3.4)
Let now g4(x) : @ > R, g4 €C*®(Q), 0<gq(x) < 1;

) 1 forx €y
gd(x)*{O for x ¢ Qq

sup(| Vaae) |+ 1 222 ) = Gi(ga) < oo

Take g, € C§° () satisfying gn(x) — ga(x) together with the derivatives up
to second order and sup,, G(g,) < Gg < oo. Then from (3.4), Lemma 2 and
Lebesgue dominated convergence theorem:

S 1) [ dx <

K (14 | Vhse(x) |?) | e"o=®h(x) |2 dx. (3.5)
Q\Q24

and the result in Theorem 1 follows taking the limit € — 0.

Remarks :
i. If for some E, H satisfies the Agmon’s A condition then, as well known,
the exponential bound follows directly from Lemma 1: one takes f = ge*
and a removing cut-off procedure as above gives the result.

ii. In the Dirac case (supposing ¥ € (W?(Q))*) one has instead of
Lemma 1:

<DfY,Df¥>—-E*< fU, fU>=<V |Vf]?TU >

so for energies for which D? — E? > ) the exponential bound comes again
directly, la Agmon, without using (2.13) [W],[MP] (see also [BG]).
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