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The famous Atiyah-Singer theorem expresses the index of elliptic pseudod-
ifferential operators in the terms of some topological objects connected with
the symbol of the operator. However this theoren requires the symbol to be
continuous. The case of discontinuous symbols may be sometimes treated as
a pseudodifferential boundary value problem however usually some additional
conditions appear, in particular, the transmission property (cf.[1]). In this paper
we present an approach for obtaining index formulas for zero order pseudodif-
ferential operators with discontinuous symbols without transmission property
being imposed. The approach is based on the study of C*-algebra generated by
such operators and uses some ideas and methods in operator algebra K-theory.
It was originated in the paper [2] by B.A.Plamenevsky and the author. The
details and proofs may be found in [3].

Let X be a compact n-dimensional manifold without boundary, Y be an m-
dimensional smooth submanifold, 0 < m < n. The symbol a(z, £) is supposed
to be a smooth zero order positively homogeneous function on the cotangent
bundle T°(X \Y') (with zero section removed) over X\Y. At Y the symbol may
have discontinuities: in local coordinates =z = (y, 2),y € Y the function a(z, §)
has limits when z — 0 but these limits may depend on the direction from which
z approaches 0:

®(y, 6,€) = lim aly, 19, ), (v, 9) € SN(Y), (1)

where SN(Y') is the spheric normal bundle to Y. We suppose that the limits in
(1) and in what follows are uniform with respect to all variables. To symbols
satisfying (1) one associates zero order pseudodifferential operators in the usual
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way, by means of partitions of unity on X and the Fourier transform; as in the
smooth case, the resulting operator does not depend, modulo compact operators,
on the choice of partitions of unity and local charts. We denote such operator
by OPSxa(z,€). In an obvious way definition of our class of symbols and of
operators is carried over to matrix symbols and to operators acting on vector-
functions on X and also to the case of bundles over X.

Operators with such symbols do not behave themselves in an usual way
under multiplication or under taking the adjoint operator; for example,

OPSxaOPSxb — OPSx/(ab) ()

is not a compact operator. This is, in particular, the reason why invertibility
of the symbol a is not sufficient for the operator to be Fredholm in Ly(X).
As usual, the natural way to deal with this difficulty is to consider the C*-
algebra generated with such operators; then factoring this algebla by the ideal
K of compact operators in Ly we get an algebra which is natural to regard
as the algebra of symbols, and these symbols describe properties of operators.
Roughly speaking, to do this, one must add various operators of the form (2).The
corersponding study, from the point of view of representation theory, was made
in [4].

As a result of this operation, one obtains the algebra S of symbols consisting
of pairs (a,.A) where a is a continuous function on S*(X\Y) (this means having
limits of the form (1)) and A is a function on T*Y with values being bounded
operators in Lo(R?),d = n — m. We describe here some dense subalgebra of
symbols; the whole algebra is obtained by closing in the norm of C(S*(X\Y)) x
C(T*Y,BLy(R?)). The operator part of the symbol must be skew-homogeneous:

where U, is the unitary group of dilations in R¢. When n — 0 the operator has
a limit A(y, 0) = lim .A(y,n) in a rather weak sense:

Il(A(y, n) — Ay, 0))xll = 0,7 — 0, x € C5°. (4)

The limiting operator .A(y,0) must be invariant with respect to dilations and
(A(y,m) — Aly,m))x € K, x € C§°,n; # 0.

We shall call the function a the scalar symbol and A the operator symbol
and the pair £ = (a,.A) is the complete symbol. The same terms will be
used while considering matrix situation. Scalar and operator symbols must be
consistent. The consistency condition can be written explicitly only for some
subalgebra of 'smooth’ symbols. This condition arises from the requirement
that the operator on X glued together by means of a partition of unity from
the usual pseudodifferential operator on X \ Y with symbol a and from the
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pseudodifferential operator in Lo(N(Y')) with operator-valued symbol A does
not depend (modulo compacts) on the choice of the partition of unity. In the
explicit form the consistency condition requires that

(A(y,0) — OPS,®(y, 2/|2],0,7))¢ € K, € C(R*\0),y €Y, (5)
and in addition

(Ay,m) — OPS,®(y, z/|z|,n,7))¢" € K, (y,n) € T*Y, (6)

with any function ¢’ which equals zero near the origin and is unity outside some
compact (here OPS, denotes pseudodifferential operator in Ly(R%) with respect
to z variable).

Remarks.1. In the special case of zero-dimensional discontinuity manifold
Y the operator symbol is just a single dilation-invariant operator for each dis-
continuity point.

2. To be more precise, some conditions concerning behavior of the operator
symbol under differentiation with respect to 77 and y must be added, guarantee-
ing independence, up to a compact operator, of the resulting pseudodifferential
operator on X on the choice of the partition of unity along Y, in other words,
guaranteeing some sort of operator pseudo-locality. The main difficulty here lies
in the fact that the operator symbols are not smooth at n = 0 and, generally, the
usual for scalar case operation of smoothing the symbol at this point by multi-
plying by of some cut-off function does not fit here since such a cut-off leads to
a non-compact perturbation of the resulting pseudodifferential operator on X.
Exact conditions, implying a special sort of calculus of operator-valued pseu-
dodifferential operators, are given in [ 3,5]. These conditions are not preserved
under closure of the above dense subulgebra.

Denote by S the algebra of complete symbols. Algebraic operations in S
are component-wise and the metrics is C(S*(X \ Y)) x C(T*Y, BLy(R%)).

Theorem 1[4]. For the operator with complete (matrix) symbol E =
(a,.A) € M(S) to be Fredholm it is necessary and sufficient that Z be invertible
in S, in other words, that both ’scalar symbol’ a and operator symbol A be
invertible (this is usually denoted by E € GL(S) where the latter is the linear
group over S).

The previous remark about subtlery in calculus of operator symbols is re-
flected in particular in this theorem: invertibility of the operator symbol is
required not only for n large enough, as the analogy with the scalar pseudodif-
ferential calculus would invite, but for.all n, including n = 0.

The general method for finding the index for operators with symbols in a
given algebra consists in performing a (stable) homotopy of the symbol to some
symbol having a canonical (more simple form). This, actually, was the way of
treating pseudodifferential boundary balue problems in [1]. In our case such
a form will consist of several components. Two of them will correspond to a
special ideal in the algebra S.
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Consider the commutator ideal in the algebra S: J = [S,S]. Since scalar
parts of the symbol form a commutative algebra , elements in J have zero
scalar symbol and the operator symbol A must be consistent with the zero
scalar symbol. Explicit description of symbols (0, R) € J may be given only on
a dense set: the operator-valued function R must be skew-homogeneous in the
sense of (3),

R(t,m¢" € K,n#1, (7

with ¢’ as in (5), there is convergence as in (4), the operator R is dilation-
invariant, the operator R(t,/)¢ is compact for ¢ € C§°(R® \ 0) and, finally,

IR, mCl — 1,0 — oo,

with ¢’,(z) = {'(z/t) and ¢’ as in (7).

The properties given above are simple consequencies of usual formulas of
commutation of pseudodifferential operators (even with discontinuous symbols)
and multiplication by smooth functions. They imply, im particular, that the
difference R(t, 70o) — R(t,n¢) is a compact operator for any 1,72 # 0. In what
follows we omit the first (zero) component of the symbol (0, R) € J and write
simply R € J. As an example of symbols in J may serve the pseudodifferential
operator

(R(t,mME)H) = FL5 V(L m, m) Fy—-E(F)

with symbol r(y,z,1,7) = |2|"¥2(|n|* + |7|2)~/4 in R'. This example shows
that the elements in J are natural to be considered as symbols of lower order. In
fact, being generated by symbols of the form (2), they have negative differential
order. Nevertheless, pseudodifferential operators on X defined by such symbols
are not compact (the singularity at z = 0 prevents it) and being added to some
Fredholm operator, these operators may change the index. Therefore it’s natural
to understand symbols in J as a generalization of singular Green operators in
Boutet-de-Monvel calculus.

As it is usually made in the case of algebras without unit, by GL(J) we
denote the set of invertible matrices of the form I + R where I is a unit matrix
and R is a matrix with elements in J.

The index of pseudodifferential operators on X with symbols in GL(J) is
found in the following way. Let ¢ be a function in C§°(R¢) which equals 1 near
the origin. For I + R € GL(J) we consider the operator-valued symbol

(I +B(t,m) = (T+R(1,))"=(T + R(t,m)¢ + (00 = C).

According to the properties of the ideal J, the operator-function B assumes
compact operators as its values and the operator I + B(y,n) is invertible for
n large enough. In this way this function defines an element in the group
Ki(C(S*Y) ® K) (in the sense of operator algebra K-theory); this group is
isomorphic to K,(C(S*Y)) = K1(S*Y) (where the latter group is the ordinary
K-group in topology). We denote corresponding element in K!(S*Y) by d(I +
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R). Let 8 : K1(S*Y) — K°(B*Y, S*Y) be the connecting homomorphism in the
exact K-theoretical sequence of the pair K1(S*Y) and isg : K°(B*Y,S*Y) —
Z be the classical Atiyah-Singer index homomorphism.

Theorem 2. The index of the pseudodifferential operator 1 + R on X
corresponding to the operator symbol I + R equals

ind(1+ R) = ias0d(I + R).

This formula calculates the index for a class of operator-valued pseudodiffer-
ential operators. It may be explained in the following way. Having a compact-
valued function B(y,7n) on S*Y with invertible I + B, one approximates it by
a finite-rank operator function B.(y, n) in such a way that the range of B¢(y,n)
is contained for all (y,n) € S*Y in a fixed finite-dimensional subspace and the
norm of B¢(y, n) — B(y, n) is small enough. Then the index of the operator 1+ R
equals the index of usual pseudodifferential operator on Y with symbol B¢(y, n).

The formula must be changed in the case of isolated singularity =, i.e.
m = 0,d = n. In this case (where only the operator R(z° 0) in R™ exists and
I+7R isinvertible) the operator I+ R defines, by means of the Mellin transform, a
Toeplitz operator with operator-valued symbol. For such operators the formula
for the index was found in [2] by B.Plamenevsky and the author.

The second component in our special form will be some smooth symbol on
X, for which the index may be found by Atiyah-Singer formula immediately.
Denote by I'x the set of symbols (a,.A) where a is a continuous function on S* X
which vanish on Y, with zero operator symbols (the consistency conditions are
fulfilled in an obvious way). This set forms an ideal in S and elements in
GL(Ix) describe invertible matrix symbols on X which are unit matrices on Y.
There’s no problem in finding the index for corresponding operators.

The last of our terms will be a special discontinuous matrix symbol on X \Y
with an operator symbol canonically corresponding to it . This construction is
by far performed in three cases: m =0,m =n—1and m = 1.

We shall study what are the forms to which limit values of ”scalar parts”
of symbols in GL(S) may be transformed by means of a stable homotopy in
GL(S). To do this, we consider the ideal I = J & I'x in S. To this ideal there
corresponds the exact sequense of K-groups of C*-algebras :

- Ky(I) 25 Ky (S) 25 Ky (B) - - (8)

The sense of the homomorphisms j,,p, here is the following. The homomor-
phism j, consists in considering an invertible symbol in the ideal I as a symbol
in the whole algebra S. The homomorphism p, assoiciates to the symbol in
GL(S) the limit values of the scalar part of the symbol at the manifold Y. The
algebra B is the factor-algebra B = S/I and it coincides with the algebra of
continuous functions on the manifold M = S*X|y +SNY which is the Whitney
sum of the cospheric bundle over X restricted to Y and of the spheric normal
bundle to Y.
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Suppose we are so lucky that the range @ of p. in K;(B) is zero. This
would imply, due to exactness of the sequence (8), that j, is a surjection, which
means that any symbol in GL(S) is stable homotopic to a symbol in GL(I),
in other words, to the direct sum of invertible symbols in J and Ix. For both
terms here the index is already known which gives us the index for original
symbol.Otherwise, if Q is not zero, we may find some ’good’ representatives for
elements in @ and corresponding ’good’ representatives in preimages of these
elements in K;(S). 'Good’ here means that for such discontinuous symbols one
can still calculate the index.

So the question arises, on description of elements in @ which is a subgroup
in, possibly rather large, group K;(B).

Case m = 0.

Theorem 3. The subgroup Q is trivial for n odd. If n is even, @ has no more
than two generators for each of points of discontinuity. Any element in @ has
a representative, a matrix-function on M which has near each of discontinuity
points the block-diagonal form

®(¢,€) = diag(®1(), P2(4))- (9)

In other words, in the odd-dimensional case any discontinuity is homotopi-
cally trivial, it may be removed by means of a stable homotopy in GL(S). In the
even-dimensional case there may exist homotopically nontrivial discontinuities,
but they can be transformed near Y to the block-diagonal form (9), where one
block, @4, is a continuous symbol and the other one, ®,, is discontinuous, but
it corresponds to the matrix multiplication, containing ”no differentiation”.

We denote by LD the set of invertible matrix functions a(z,£) on S*(X \
Y) having near Y the form (9). It’s clear that the operator symbol A =
OPS,®(¢,£) is an invertible operator in Ly(R™), so the pair (a,.A) represents
an element in GL(S). Denote by Spp the subset in GL(S) obtained by this
way from elements in LD. Theorem 3 , together with exactness of the sequence
(8), implies that any elliptic matrix symbol Z € GL(S) can be transformed by
a stable homotopy to the direct sum = ® Z; where E9 € GL(I) and Z, € Sp
(and this homotopy may be found explicitly).

So, in order to find the index for = we have to find the index for 2, = (a, A) €
Srp. Thisis achieved by the following surgery. Let € be the (trivial) vector bun-
dle over X where the symbol a acts and diag(®;(£), P2(¢)) be the block-diagonal
form of the symbol a near a point z° € Y. Cut a small hole D out of X around z°
and glue together along D the bundles £|p and £|xy\p by means of the transi-
tion map diag(1, ®3(¢)) . We obtain some other, in general, nontrivial bundle &’
over X. Define the new symbol a’(z, &) = diag(®,(£),1) € Hom(x*E'|p, 7*E|p)
(where 7 is the natural projection 7 : T*X — X) and d/(z,€) = a(z, ) over
X \ D. Then o’ becomes a continuous symbol in Hom(7*&’, 7*E).

Theorem 4. The index of the operator with symbol (a,.A) € Spp equals
the index of usual pseudodifferential operator on X with symbol o’.
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Thus the task of finding the index for the operator with a discontinuous
symbol is reduced to finding the index for a certain continuous symbol (however
acting in different bundles) and the latter question is again answered by the
Atiyah-Singer formulas.

Case m = n — 1. Here the algebra B of limit values of the scalar symbol
consists of pairs ®(y, ¢,£) = (P(y, +1,&), P(y, —1,&)) corresponding to ¢ = £1
i.e. to two sides of the manifold Y.

Theorem 5. Suppose that the Euler characteristic of the manifold Y equals
0. Then Q = p, K1(S) C K,(B) contains stable homotopy classes only of those
matrices ®(y, ¢, £) which have block-diagonal form

q)(yv ¢> é) = dlag((}l(:’ﬁ E)) (I>2 (y’ ¢))

We have here the situation similar to Theorem 3. Elliptic symbols are stable
homotopic near Y to direct sum of two symbols, of which one is continuous
onY , ®(y,+1,€) = P4(y,—1,€) and the other one may be discontinuous
but it does not depend on &, i.e. the corresponding pseudodifferential operator
becames simply multiplication by a matrix.

We make here some additional explanations. For the pair of invertible ma-
trices (®(y, +1,£), P(y,—1,£€)) to represent an element in Q it is necessary
and sufficient that they are limit values of some invertible symbol in GL(S).
This leads to two types of conditions. The first one, connected with the global
topology of X and Y, requires that & can be continuously prolongated from
S*X|y + SN(Y) to S*(X \ Y) as an invertible matrix. We do not discuss
this purely topological condition here. The second condition requires that there
must exist an inverible operator symbol on T*Y, consistent with &. It is this
condition which implies Theorem 5.

Now, similar to the case m = 0, we define classes LD and S;p and come
to the problem of finding the index for symbols in S p. This is achieved by an
analogous surgery.

Cut the manifold X (and the bundle &) along Y and glue together along Y
the new boundary of £| x\y by means of the transition matrix diag(1, ®2(y, +1)
®4(y, —1)"1). This produces a new bundle £ over X such that the symbol
a(z, £), considered now as a symbol a/(z,£) € Hom(n*E’, 7*€) becomes contin-
uous and the index of the corresponding operator may be found by means of
the Atiyah-Singer formula.

Theorem 6. Under the conditions of Theorem 5 the index of the pseudod-
ifferential operator with symbol (a,.A) € S p equals the index of the operator
with the continuous symbol a’.

The vanishing condition for the Euler characteristic of Y plays a technical
part in the proof of Theorem 5 and is not actually restricting. It is always
satisfied, in particular, if the dimension of the manifold X is even (so that
m = dimY is odd). If dimX is odd we can apply the usual procedure of
tensor multiplication with a certain pseudodifferential operator on the circle,
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thus obtaining a new operator on X x S! , with symbol having discontinuity
along Y x S!.

Remark. In the cases considered here the decomposition of the symbol into
three parts and corresponding decomposition of the index into three terms is
not canonical. However it is possible to associate to the symbol E € GL(S) an
invariant (with respect to the arbitrariness in construction) object, a class in the
K-homological group Ko(X) which is a natural generalization of the topological
index of the symbol. On the other hand, Fredholm pseudodifferential operators
with symbols in GL(S) are abstract elliptic operators on X, i.e. their commu-
tants with multiplications with continuous functions are compact operators. An
equivalence class of such operators defines a class in Ky(X) which is called the
analytical index of the operator (cf.[6]). It is proved that for both cases above
the analytical index of the operator coincides with the topological index of the
symbol. This fact generalizes the K-theoretical form of the Atiyah-Singer index
theorem.

Case m = 1.

In this case, proving to be more complicated than the previous ones, it turns
out to be impossible to reduce the index problem completely to the repeated
use of the Atiyah-Singer theorem and we have to apply less general results. The
dimension of Y equals 1 so Y is a circle.

Theorem 7. Let n be even. Then Q = p,(K((S)) C K;(B) contains
stable homotopy classes only of such matrices which have block-diagonal form
® = dla'g(q)l (y, g), <I>2(y, ¢), ¢3(¢> &))

Thus, in addition to two terms we already encountered, there may appear
a term of the form ®3(¢,£), i.e. a matrix not depending on the coordinate y
along Y. One can have more information on the matrix ®3(¢,£): there exists
a special matrix ®q(¢, £) such that any matrix ®3 is the direct sum of several
copies of ®g or of &g 1 In other words, "bad” subgroup in Q not admitting
splitting in the sense of Theorems 3 and 5 is one-dimensional.

The same sort of surgery, as before, disposes of the discontinuity caused by
®,. The index formula for the discontinuity only of the form ®3 is obtained in
the form, similar to one found by Fedosov [7] for the case of continuous symbols.

After suitable homotopy, we can assume that the symbol a(z, ) having a
discontinuity of the form @3 is zero order positively homogeneous near Y in the
variable z normal to Y. We suppose also that a is smooth for z € X \ Y, £ # 0.

Recalling Fedosov’s formula, we must consider here not only homogeneous
symbols but formal A -symbols:

(@, &, A) ~ Y ax(z, E)AF
k=0

where ag(z, £) is homogeneous in £ with order k for £ large; the symbols must be
smooth for all (z,£) € T*(X \Y) (including the zero section). Such a A-symbol
may be obtained from a given symbol a € C*(S*(X \ Y)) by smoothing it
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near £ = 0 and by augmenting by some terms ax(z,£)A\*, k < 0. These lower-
order terms will not be invariant objects on T*(X \ Y) but being defined in
coordinate neighbouhoods, they may be chosen in such way that the A—symbols
are consistent with respect to the passage from one neighbourhood to the other.
The formulas for change of variables and for compositions for A-symbols have
the same form as in the usual theory of pseudodifferential operators, only with
differentiation with respect to £ replaced by )\‘165.

In our case of discontinuous symbols it is important to note that while aug-
menting the symbol a smoothed near the zero section by lower order symbols
we get lower order terms having singularities near Y since their construction
involves differentiation with respect to z.

Fedosov’s expression for the index for pseudodifferential operators (7] has
the form

indA = (27)™" /T . e dade (10)

where h(z,€) = (tr(@o7 — 1)—y, —tr(Foa — 1)_p)|r=1, 7 is the parametrix for
the A-symbol a in the calculus of A-symbols, the subscript —n means that one
has to take the term with A~ in the formal compositions of symbols and ¢r
denotes the matrix trace. .

In our discontinuous case the formula (10) cannot be applied directly since,
due to the singularity in lower-order terms, the integral would have a logarithmic
divergence. However, let us fix a global coordinate system in X near the circle
Y and define the integral

J(e) = (27r)_"/ h(z, &)dzdE.
T*X\{|z|<e}

This integral has an expansion J(e) = J_yloge + Jo + Jie+ --- as € — 0.
Theorem 9. Suppose that (a,.4) € Syp and its discontinuous part is zero
order homogeneous in z near Y. Then the term Jy does not depend on the
choice of coordinates and indA = Jp.
Remark. For the case dimY = 0 a similar result, with the integral of the
type (10) being understood in the sense of principal value, was obtained in [8].
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