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FOCUSTNG AND ABSORBTION OF NONLINEAR OSCILLATIONST

J.L. Jolys Univ. de Bordeaur
G. Metivier, Univ. de Rennes
J. Rauch, -Univ. of Michigan

The subject of this talk is the propagation of nonlinesi
oscillations wcross focal points. When rays converge wear &
focus, amplitudes grow. These large amplitudes can lead to more
strongly nonlinear phenomena than in other ivegions.

We consider focusing waves in the regime of nonlinear
geoemtric optics which is characterized by the fact that the
prinicpal profile satisfies a nonlinear equation. For the

semilinear wave equation
. ] d
Mu + F(Du) = 0O, (t,x) = RxR

this means that the amplitude and waQelength are of order =£ as
#— 0, For piecewise smooth conormal solutions the snalogous
atrength of waves occurs for solutions whose gradient is
discontinuous. For smaller amplitudes or smoother conormal
sglutions, the principal profile (resp. prinicipal symbol)
satisfies a linear equation.

The nonlinear effects can lead to catastrophic breakdown of
splutions [IJMR21. We consider problems for which solutions ave
guaranteed to exist for all t20, in particular, long enough fm
oscillations to cross focal points.

Consider the dissipative wave equation

1) O = M + F(ut), F(s) := as|51p~8 ’ pZe, ax0.,

For Cauchy data aJu(Os')eH1

t “J(md> j=0,:1, there is a unigue

solution

' ; - 1
u = C([O,m{;Hl(md)) m Cl([O,a{;La<mb))
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and the evolution is contractive in the sense that for two

solutions u and v

a

. 2 2 _
2) J(ut v !Vx(u v)|© dx = f(ut Ve (Flu)-F(v ) dx < 0.

a

We study spherical wavefronts which focus at the origin. The
goal 1s to describe what is observed after the focus. The
analogous problem for general caustics is opens but formal
calculations suggest that the phenomenon we describe extends to
that case.

We first present computations which motivate the results aund
a part of the proof. They also suggest some, as yet unproved,
results concerning the smoothing of focusing conormal wavefronts

for strongly dissipative eqgquations.

Linear spherical wavefronts.
For incoming linecr geometric optics solutions of Qu=0,

dttersef

{

the outgoing wave 1is given by

~d-v/e

I

flt+ryx/ | x|)r

el(t—r)/g{(_l)(d—l)/Ef(t_r’mx/lx!)r-(d—l)/a ... }‘
The formula 1s interpreted as follows. Conservation of energy
. . (d-1)/2 . . -
inplies that r xamplitude is constant on rays. The raete of

change per unit length of the phase is equal to one. Crossing the

(d—-1)/2
’

focus there is an additional phase factor (-1) &

Feller—-Maslov index.

Transpurt eguations for jumps.

Consider a vradial solution u(t,r) of the semilinear wave eguatiocn

= = - - (d-1) /
3) o) u + F(Ut) Up e Y (d 1,ur,r + F(Ut)
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supposed to be plecewise smooth with discontivwities in its ficst
derivatives on the incoming light cone t+r=0, t<0.
Derivatives in |%|>0 of such piecewise smooth functions

are given by

g 1 = 2[F15(t+r) + Ift]h(t+r) + e

7
‘h
]

where [+] denotes the jump measured fyom t+r>0 to t+v<0, h is the

Heaviside function and the terms +++ are smoother. Then,

Mu + F(ut) =

Plu, ~u_ 15(t+r) + [(28,-28 - (d-1)/v)Iu +F(u ) Jh(t+r) + <+«
t r t Y t t

Setting the coefficient of the most singular term equal to zero
shows that U U must be continuous. Setting the coefficient of

the next term egqual to zero yields

(28 -28 -(d-1)/v)Clu 1 + [F(u_)1 = 0.
t i t t

If u is constant 1n front of the wave, then ut=0 in t+r<0, and one

finds the nonlinear transport eqgquation

) (20,-28_~(d-1)/r)Lu ] + F(Lu 1) = O,

Transport equation for oscillations.
Consider oscillatory asymptotic solutions

ot o ,s‘\.llet,r,-(tﬁ-)/s. + 58V2(t,i‘,(t+r)/"5) oo

ul

with smooth Vj(t;r,ﬁ) 2rr periodic in 8. Plugging into (3) yields

u’ + F(ui) = (20 -2 ~(d=1)/r)a.V +F(a V) + Do),

Setting the leading order term equal to zero yields a transporvt

for H:=6nvl which 1s 1dentical toc (4),
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&) (28 28 _~(d-1)/c)l + F(W) = 0.

Mote that £ is a pavameter and intergrating the trensport sguation

for W with respect to & shows that the identity JWde=0 propagates.

Solution of the transport equation.

Parametrize the focussing ray as (-r,r). Thus as r decreases to
zero, t=-r increases to zero and the ray approaches the ovigin.
The transport equation yields an ordinary differential

eguation for w(r):=lu, (-rsr )] or wirdi=(—r,7,6),

t
. p-2
7) 2dw/dr + (d-1)w/r - aw|w] = 0.
Then 2.=r(d“1)/aw satisfies
8) 2dz/dr - ar—”zlzlpma = 0, i=(d- 1) (p-2)/2.

It follows for =1 that
. -
9) d/dr[-lzl P/p - ar “‘1/(a<—ﬁ+1>>] = 0.

Consider strong dissipations that is a>0 and 3z1. Then the
fr_ﬁdr term is not integrable at r=0. Equsation (?) shows that z ()
tends to zero as v decreases to zero.

On the other hand, for 0<3<1l, z converges to a nonzero
constant as v tends to zero.

Thus, all of the energy is absorbed by the dissipative term
when 221 and a positive fraction survives 1f 0<K3<1.

For d=3, the condition 321 is equivalent to pz3 which
corresponds to a friction term utlutlp—l with at least quadratic

growth.

Explosive solutions.

If a<0., the F(ut) term supplies energy. If /321, then soclutions uf
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m

the equation for z which are nonzerc for some ro>0 explod

the ray (-r,r) reaches the ovigin.
Applying known results about piecewise smooth scluticns (i
dimension 1+1 for radial solutions) one proves blowup thecrew:

haefore the wave reaches the focus.

Formal analysis after a strongly dissipative focus.

Tuppose that a piecewise smooth solution survives focusing anc
emerges as piecewise smooth solution in [ x>0 with discontinuities
on the outgoing light cone. Along ocutgoing rays one has the

transport equation

10) (29, +28 —-(d-1)/r)Lu, 1 + [F(u, )1 = 0.
t r t t

The strong monotonicity of the dissipative pth power nonlinearity

implies that,

> P =
11) Cu ICFCu T = cltu 317, c=asg".

Multiply the transport equation by rd_ltut] and use

d-1 . _ _ d-1 2
r Cut](88t+86r (d 1)/r))[ut3 = (6t+ar)(r [utl )
. . . (d-1) 2
to find the transport inequality for { i=r [utJ
12) dr 7ar + ar Py P8 < o, Bi=(d-1)(p-2)/2.

The same analysis as for the explosive solutions shows that if 2xi
and { is nonzero at s point on the outgoing ray, then tiracing
Lockward along the rays § must explode before arriving «t the
Foaus. Thus if the solution is piecewise smooth sway firom the
origin, one must have £=0 on the outgoing ray. This predicts that
the discontinuLty in ?t’xu ts smocothed after the focus.

The same type of formal argument on an ocutgoing ray shows

that 1/ an oscillation survives focusing and em2irges as & wavse
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with an asymptotic expansion

u 5gl(t,r,(t-r)/s) + aagaft,r,(t-r)/z + v

then for {zl, the outgoing profile V

1 must be identically zero.

The two formal arguments suggest that incoming conormal
singularities o oscillations which are of critical size
(discontinuities in gradient, or as in (3)), the natural principal
symbol of the outgoing wave vanishes. In both cases,; this is a

smoothing effect.

Main Result.

e prove that the smoothing effect for oscillatory solutions does
occur. More generally, we prove such a smoothing for arbitrary
families which are uniformly smooth in the angular variables. The
smoothing is expressed by the fact that families with bcunded
energy emerge on the other side of the focus as families compact
in the energy norm.

An additional analysis is required to identify the strong
limits of the family, and, to show that solutions with profiles as
in (4) are described with profiles up to the focus (see [JMR41).

Consider a family of solutions u® of (1) with Cauchy data
ug(O,x), ui(o,x) which are of unformly bounded energy together

with their angular derivatives. Precisely, for 1=k,1=d let

13 I = xla/ax

Kyl - xka/ax

Kk 1’

ands consider initial data such that the families

3 us(O,x), 4 us(O,x), and v ug(O,x), Q<=

t,x k,l\t;x

are uniformly bounded in La(Ed). Then the families

U ltex)y 7. U (tsx)y and I, .7

t;‘r’. ksl‘tyxu‘ (ten)y t20, Ousa®l
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o=’ -

are uniformly bounded in L“(Ed), and
(Wi . p - d
Uy bounded in L™ ([O,w[xR ).

The fact that one has extra regularity in the angular
directions forces the principal directions of propagation to be

radial. Introduce
14) viii= (8 F ar>u5/a, 8 1=|x| "x-9 .

In =0, the differential equstion (1) takes the form

&

+v£)/r - z FE ug/ra + F(v£+v£) = Q.
— } k,] + -
i<k

15) 2 8 )v, — (d=-1)(v
t7 o

+
+ O

Definition. A bounded family z% in LY@ s compact at ye®© if

there is a neighborhood wc® of y such that the restrictions of z©

to w lie in a compact subset of Lq(@).

Example. The angular regularity of u® implies .that if g<2 aud

x=0Q, then Vt xu£ is compact in LY at (t,x) if and only if both
’

= . [s
and v_ are compact in LY at (L, x).

For angularly smooth solutionss compactness of v, propagates along

+ b

integral curves of atiar until they reach the origin.

THEOREM. (Propagation of compactness). Suppose that u® is

angularly smooth family as above. If the Cauchy data vf(O,') is
TN

. 2 - . .
compact in L~ at =0 then v 1s cumpactAat the points

=5

(b ~ta /x| 2:0Std ||y on the TocuzLing vay thiough x. Similarly

Y
E: 8 e n L
if v;(O,') is compact in L~ at =0 then Yo, is Compacthat all

points {(t,x+tx/1x!):0=t} of the ocutgoing vray through =x.

The rays which have passed through a focus are the at+ar rays in
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the forward light cone {t>]|=]|3. Our main result expresses the
fact that oscillations which may he present in the initial data do

not survive 3 passage through the focus.

THEOREM. CAbsorbtion of oscillations). I[f a>0 and

L=2i=td-1)(p-2)/2, then v, is compact in La at all points of the

+ &

punctured forward light cone {t>|x]|>03.

Outline of the proofs.
Step 1. Extract limits usiing uniform bounds.

Let Q:=]O,T[xmd. Passing to a subsequence, one can suppose that

= & . 1 ) 5 PP = .
16) u —uy and Fk’lu —»Fk,lg‘weakly H () and strongly in Lloc(“}'

17) Similar convergence holds for the Cauchy data.

18) F(u®) — F weakly in LP/ PV oy,

Py

It follows that the limit u is the unigue solution of
Dg_*' _F_=Op _L_l_(O,’)=U9 U(O,');‘U.

A key ingredient is to determine F which is often not equal

. &
F(lim ut).

Step 2. Independence of the Young measures.

Any lack of compactness in 7, u  must come from u

and u .
t,?( T

L Y

Introduce

it

W (& :ar)<u5«g)/a.

t

+

and I w, tend weakly to zero and are bounded in

Then the w Kol

LE(Q). FPassing to a subsequence we can suppose that there exist

£
*

i+ I

s ]
Young measures uly,dh dh ) which are probability measures on =
(with running point A=(R4,h_)) depending measurably on y=: and

such that for all f&C(Rf:E) such that f:o(lﬁjd) as A— an  and
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YaaCl ()
J@(y)f(wi(y),wi(y))dy—e Jb(y)f(k+,ht)p(y,dk4dl.)dy,
Then the Young measures p+(YadK+) of the seguence wf is given b,

j@(x+)p+(y,dx+> = j ¥(A dply,da da )
with & similar formuls for g_.
A crucial step is to show that the Young measure @ is given
by
19) plysdh dh_) = p C(ysdh Dep (y,di_ ).

This identity expresses the indpendence of the waves w, which is

+ &

linked to the fact that there are no nontrivial resonance relations

involving the phases tir.

To prove (19) it suffices to show that for f,Cy(R),
zi:=f+(wi) satisfy

weak lim(zfzf) = (weak 1lim zf)(weak 1im zf).

This follows from a variant of the div—curl lemma based on the
angular regqularity of the zf together with the wave equation

which implies that

(8,43 )z° is bounded in LI (Q\{x=03), g>l.
t i * loc

Step 3. Transport 2quations for the Young measures.
Write the equation (2) in terms of the w’s, multiply by w(y)f(wi)s

ands pass to the limit using the crucial independence relation

(19). This yields a coupled system of transport equations for ;i »
20) 28, 10 M, F (d-1)8, O p,/r) - 3x+(Ft(y”x)“t = 0,
21) Folysh,) := | ﬁ(y,ki4r)u;(y,dr) - F (y)

22) Fly,r) 1= Fea,uty) 1 ).
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This contrasts sharply with resonant problems for which the Young
measures at time t=0 do not determine their values in t>0.
Siep 4. Transport inequality for the variance of pu .

. - 3 . - s p g
Fhes strategy for proving compactness Jin L7 for gJ&£ is to prove

thot the waricnces o, of H, vanish. To do that, one derives s
transport equation for J+(y):=fkép+(y,dk+) (similarly o ),

23) (6t+8r)a4 + (d-1D)o, /v + h = 0 on x#0

where

h, (y) := f>\+F_+<y,>\+>y+<y,d>\+).

Strict monotonicity of F yields

p/2
24) h,(y) = cle (y)) .

The propagation of compactness in LCI for g<2 follows
immediately from the transport inequality (23)-(24).

For absorbtion, one reasons as in the formal arguments. If
o, is nonzero at a point of an outgoing ray, then tiracing
backward, the transport inequality (23)-(24) is explosive and o,

must approach infinity at r0>0. This contradicts the energy

bounds on ¥ u .
t;)(
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