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INVERSE SCATTERING PROBLEMS IN SEVERAL DIMENSIONS
G. ESKIN AND J. RALSTON

Department of Mathematics, UCLA

§1. Refined inverse scattering problem for a real-valued potential
Consider the Schrédinger equation in R™:
(1) (—A+g(z) -k )u=0,
where ¢(z) is a real-valued potential,
u(z) = e** + v(z,w, k)

is the sum of the incident plane wave e'***, k > 0, |w| = 1, and the reflected wave

v(z,w, k). We assume that v(z,w, k) has the following asymptotics:

ciklz

Izl_—rl (a(o,w,k) +0 (Ti_l)) :

where 0 = ﬁ-[ and || = oo. Function a(8,w, k) is called the scattering amplitude. It is

(2) v(z,w, k) =

convenient as in [ER1] to consider an integral equation

1 §(6 — n)h(n, ¢, k .
© HEGD+ gy [ T oy % = =00

where §(£) = [gn 9(z)e™**¢dz is the Fourier transform of ¢(z). Then

% . n-3
(4) a(0,w,k)=-‘il;r—((%) e"T) h(k6, kw, k).
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Since a (8,w,k), § € S*~}, w € S"7!, k € Ry, is a function of 2n — 1 variables while
g(z) depends on n variables the inverse scattering problem of determining ¢(z) from the
scattering amplitude a(f,w, k) is clearly an overdetermined problem (see [F], [N], [NK],
[Me] where this problem was studied).

One can try to determine g(z) using only a part of the scattering amplitude. The
backscattering amplitude a(8, —6, k) is a natural candidate since it depends on n variables
(6 € S™1,k € Ry) as the potential g(z). It was shown in [ER1] that the inverse backscat-
tering is a well-posed problem when we don’t require that ¢(z) is a real-valued potential

i.e. we allow complex-valued potentials.

However when ¢(z) is real-valued the inverse backscattering problem is still overdeter-
mined. Note that §(¢) = §(—€) if ¢(z) is real-valued but the backscattering amplitude
b(¢) = a(]-g-l , -I'-é ,|€]), obtained from a real-valued potential ¢(z) does not satisfy the rela-
tion b(¢) = b(—€) i.e. b(€) is not a Fourier transofrm of a real-valued function.

In order to find a natural inverse problem in the case of real-valued potentials consider
the one-dimensional case. In this case b(§) is a complex-valued function on the real line

satisfying the following relations:

we)=r*(), €£>0,
) =r"(§), £<0,

(®)

where r+(£) and r~ () are the right and the left reflection coefficients. Note that

r¥(€) =r¥(-€), €€R'.

It is known (see [Ma)]) that in the absence of bound states one can recover real-valued

potential on the line from one reflection coeffient (either left or right). It will follow from
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our results that bound states play no role in the inverse scattering problems for n > 2.
Hence in several dimensions the analog of a reflection coefficient would be b(¢) restricted
to a half-space and the inverse problem will be the following: Choose arbitrarily a unit
vector v € R™. Denote by R? the closed half-space {¢ : £ - v > 0}. The inverse problem
will consist of the recovering of a real-valued potential g(z) from the restriction of the
backscattering amplitude to R,

As we shall show even this inverse problem is still slightly overdetermined.

If ¢(z) is real-valued function then its Fourier transform é(£) is not an arbitrary function
on R7 since it must satisfied the relation &¢) = &—¢€) for ¢ € RT such that £ - v = 0.

Let x(t) € C§°(R*) be a cutoff function such that x(t) =1 for [t| < , x(t) = 0 for |¢| > 1

and x(t) = x(—t). For each £ € R" we have the following decomposition
(6) E=(E-viv+é,
where £, - v = 0. Denote by P, the following operator acting on functions defined on R:

(PF)E) = F(6) = x(& - )5(6) + x(& - vy L&) +2f(_¢,))

Q = 1(6) + 5 x(€ - VFTE) - F(&))-
Note that

(8) (P f)(&) = P F=6)
and

©) (Pu1XE) = 5(6)
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if f(§) = f(=€) i.e. f(€) is a Fourier transform of a real-valued function.
As in [ER1] denote by H, n the closure of C$°(R™) in the norm

(10) Ifllan = sup (14 (€)™ ('f (E+h) —FON If(£)l)
&, hERn |R]

and denote by H;, y the subspace of Hq, N consisting of functions satisfying f(§) = f(—¢).

Let P, be the extension of P, f to R" by defining

(11) Puf)(€) = (P f)(=€) when ¢¢RT.

Then P, is a linear bounded operator from H, N onto H, o N

Consider the case n > 3 dimensions. (The case n = 2 need a special consideration.)
It was proven in [ER1] that there is an open dense set O C H, n such that O, = ONH o N

is also an open dense set in H; y and such that

(12) 5¢) = 5(9)

is analytic niap of O into Hy n. Therefore

(13) 5.(§) = P.5(3)

is a real-analytic map of O, to H, .

Moreover the following result holds:
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THEOREM 1. There is an open dense set O, C O, in HJ  such that the map B,5(9)

ts a local homeomorphism in H a,N in a neighborhood of any G € o..

Note the result above shows that the data ¢) on RT are still overdetermined since on
the plane £ - v = 0 one only uses the combination b(¢, ) + 5—¢,).
The proof of Theorem 1 follows the same steps as the proof of Theorem B in [ER1]. First
we show that the Frechet derivative of d(P,5(§)) is a Fredholm operator of index zero for
any § € O, and it is invertible when ||§]|a,~ is small. Since B, S(§) is a real analytic map
we get that B,S (9) is a local homeomorphism for any § belonging to an open dense set of
the connected component of O, containing zero potential. It was shown in [ER1] that O is
a connected set in Hy N but O, is not a connected set in H a,N* To prove that B,S (9) is
a local homeomorphism for any § belonging to an open dense set 0. C O, we shall follow

an approach similar to [ER3]:

Consider equation (3) for z = k +i7, k € R!, 7 € RL:

. 1 g(§ —n)h(n,(, k + 17 ~
19 MeGkin e [ TEDMRGEET) g - g ).

It follows from [ER1] that solution h(,(, k) exists for any real k assuming that § € O.
Therefore the scattering amplitude is defined for all § € S*~!, w € S*~1, k € R:

(15) a(6,w, k) = Cp xh(k6, kw, k)
where § € O and
n-3
1 k % =i
=— (=) X
(16) Cni yp ((2”) e )
In particular the backscattering amplitude

(17) b6, k) = a(8, =6, k) = Cn xh(k6, k6, k)
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is a function on S"~! x R. Note that 5(,0) = C, h(0,0,0) is independent of 6.

Denote by S;~! the closed half-sphere w - v > 0. In the case of complex-valued potentials
g(z) we shall consider the inverse problem of recovering §(¢) from the restriction of b(6, k)
to S2~1 x R!. More precisely, denote by P.Sl) the following operator acting on functions

"¢(8,k), 6 € S271, k € R, such that ¢(8,0) is independent of 6:

18)  (PDe)(6, k) = o(b, k) + % (k8- v) (c (—T%I’ —kG,) —c (%,kﬂ,)) ,

where

0=0-v)v+86,.

For any §(£) € O C Hq,n define the following map:

(1) S
(19) a(6) = POue,K), 6eSIT, keR!,
where b(, k) is the backscattering amplitude.

THEOREM 2. Denote by(€) = (P{Vb)(8,k) where ¢ = k6. If §(£) € O C Hq,n then
bi1(€) € Ho n. Moreover S is an analytic map from O to Hy N and the Frechet derivative

dSV is a Fredholm operator of indez zero for any G € 0.

Since dSS" is invertible for small llglla,ny and O is connected we obtain the following

theorem:
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THEOREM 3. There ts an open dense set O; C O such that 5'9)(6) ts a local homeomor-

phism in a neighborhood of any ¢ € O;.

Consider now the case of real-valued potentials. If §(§) € O, = O N H] y than taking
the complex conjugate of (14) we get

(20) h(EaCak) = h(-f,—Ca-k)-

Therefore if § € O, we have

(21) 5(6, k) = Cr.x h(kO,—kB, k) = Cp_ih(—k0, k8, —k) = b(8, —k).

Hence

BE) = KO F) + 2 (k0 -v) (b( ke = (5 ki, l))
(22) =b(0,—k)+%x(k0-u) (b( Izl k16, |) (;I k|0, |))=bl(—§).

Therefore b;(£) € H;, y and Theorem 3 implies the following result:

THEOREM 4. The restriction of the map sSY o0, =0n H y is a local real analytic

homeomorphism in H] y in a neighborhood of any § € O1 N Hy y.

Note that O, N H} y is open and dense in H; . Now we shall show that for § € O
the restriction of the map ,(§) = Mg (§) to R™ coincide with the map P, S(§) (see (7)).
Since b(8, k) = b(8, —k) when §(£) € O, we obtain from (18)

(23)  (PVb)(6,k) = b(6, k) + %x(kﬂw) (b (—l-z—l ko,,) - b('-g—l ,ko,)> )
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Denote £ = k6. Then &, = k6, and £ € R? when k >0, § € S}, Comparing (23) and
(7) we obtain

(24) (Pb)(€) = (PVB)(6,k) for £=k6,k>0,0€ S3"
Therefore
(25) P,b(¢) = P{Vb(6,k), E=k6

for any ¢ € O, and Theorem 1 follows from Theorem 4 with O = 0, N H y.

§2 A new well-posed inverse scattering problem in two dimensions

The singularity of the backscattering amplitude at k = 0 makes the inverse backscatter-
ing problem in two dimensions more difficult than in n > 3 dimensions.
One way to overcome this difficulty was proposed in [ER2]. It was shown there that for a

dense open set of §(£) € Ho N we have

(26) HE) = g (6165 + (@),

where x(t) is the same cutoff function as in (7), §o > 0 is small, 8 # 0 is a constant, by(§) €
H, n and by(0) = 0. It was proposed in [ER2] to consider B and by(§) as “coordinates” of
the backscattering amplitude ¥¢) and it was proven that the map §(¢) — % x(1€1651)+bo(€)
is a local homeomorphism in Hy n in a neighborhood of any § € O; where O, is an open

dense set in H, n. In this section we consider another inverse scattering problem in two

dimensions.

Fix ko > 0 and denote

27) €= %(koo - kow),
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where 6 and w are unit vectors in R?. Denote by {1 the rotation of ¢ by the angle ¥

clockwise.

For any £ # 0, |¢]| < k we define

(28) Roby = €+ [k — 167 S5 kows = —€ + (/R — €

ICI IEI

(28') kow- = § - 16l 5, kowo = - IEI2

IEI |£| '

Then |6+| = 1, |ws| = 1. Vice versa any two vectors ko8, kow where || = |w| =1, 6 # w,
can be represented either in the form (28) or in the form (28') where £ = (ko6 — kow).
Let h(£,(, k) be the solution of equation (3) for £ > 0. It was proven in [ER1] that

(29) h(EaC’k) = h(—Cs—Esk)'aV(&Cvk)'

It follows from (29) that

E.L
h(ko8, kow, ko) = h k2 — €2 =
(kof, Fow, ko) = h(C + Yo ~ Il €] ICI

L
=h(e— k&-lfl’%‘, ~ VR El-ko),

where 8 # w, £ = 1(ko8 — kow) and either (28) on (28') holds. Note that h(ko8, kow, ko) is
a single-valued function of ¢ = (ko6 — kow) for 0 < || < ko. Let x(t) be the same cutoff

=€+ /K — IEI2 ko)

function as in (7) and 6, be a fixed unit vector, |§o| = 1. Denote by b;(£) the following
function:

(31) 52(€) = Ca o h(€, =€, €]) for [€] 2 ko,
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1
b2(€) = C2,k,(h(kob, kow, ko) — x (§|0 - w|) h(ko0, ko8, ko)
1
+ X (§ 16 — wl) h(kobo,kobo, ko) for |£| < ko where

(31") §=%(k00—kow) for w#6 and £=0,-|££—J'l=0 for w=2§6.

Here Ca 4, = &= (i—:)% e'% is the same as in (16), n = 2. Note that 5;(¢) is equal to
the backscattering amplitude for ¥ > ko and it contains less information than the full
scattering amplitude for k = k¢: we have subtracted the forward scattering amplitude
C2 k. h(kob, ko8, ko) in the neighborhood |w — 6] < %. Although h(kq8, kow, ko) is a discon-
tinuous function of £ at £ = 0, b2(£) is continuous with respect to € at £ = 0. Moreover

b2(§) € Hg N assuming that §(£) € Ha,n,0<a <1, N >0.

THEOREM 5. There is an open dense set U in Hy n(R?) x Ho n(R?) such that for any
pair (§,§') € U, ba(§) = by(€) implies § = G'. Moreover, for (§,4') € U and § — §' small
in Ho N(R?) we have

g —4'llg.n < Cllbz - B2llg,n,

i.e. the map ¢ — by(€) is well-posed.

Note that one can modify b;(¢) by taking x(310 —w|) [ g, h(ko8, ko8, ko)p(6)df instead
of x(316 — w|)h(kobo, kobo, ko). Here p(8) is arbitrary such that fI0l=l p(6)d6 = 1.

Another inverse scattering problem for potential without compact support in two di-
mensions was studied in [No).
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