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Smoothing of Dispersive Waves

WALTER A. STRAUSS
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Brown University

Providence RI 02912, U.S.A.

Given the classical Schrodinger equation i9fU = AIA, {x 6 R'1) with initial condition
u(x^t) == <^(a*), we know that the mapping y ^ u(t) is unitary on Z^R") and hence
the solution is no smoother than the initial data. However, if y 6 L1 with compact
support, then the solution is analytic for t -^ 0, as we see immediately from the formula
u(t^) = c„<~"n/2exp(^[.r[2/4() * y?. A way to see this smoothing property one derivative at
a time is to use the Ginibre-Velo identity \\xu + 2itUj:\\L2 = H^^I lL 2 - I11 a remarkable
paper in 1983 Kato proved a similar property for the KdV equation Uf + u^xx +uux = 0;
namely, the solution is C°° for 0 0 if f°°^ \V\2^ + ex)dx < oo.

In this talk I report on joint work with W. Craig and T. Kappeler generalizing
and sharpening such smoothing results. We consider a general class of linear dispersive
equations with variable coefficients, for which we prove "micro semi-local" smoothing
estimates with asymptotic conditions at infinity. Our method works for certain classes of
nonlinear equations as well but I will not consider them here. Using different methods,
some related problems have been considered by Ponce, Sjolin, Vega [7], Constantin-
Saut, Hayashi-Nakamitsu-Tsutsumi, Yamazaki [8], and Kapitanski-Safarov [5]. (Other
references may be found in [2].)

There is some nice intuition which explains the smoothing property. Singularities travel
along bicharacteristic rays and they travel at infinite speed, as first proved by Lascar [6]
and Boutet de Monvel [1] in the 1970^. The rays, if they are not trapped, travel in from
spatial infinity. Assuming that the initial datum y? vanishes at infinity backwards along
the rays, we deduce that in infinitesimal time the singularities from y have passed by any
given point and the solution is smooth. So where has the wave front set WF(u) gone?
It resides in the set of points which are trapped in the past. In particular any periodic
orbit of the bicharacteristic flow could be in WF(u\

The class of linear equations we treat is the following. Consider the evolution equation

(i) .n=-(^)«, (o,—)
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with a real C°° symbol a(.r,^). Assume it is
/^

(i) Dispersive : — —> oo uniformly in x as |^[ —^ oo.

(ii) Flat at infinity :

(2) ^ [̂.(.,0 - a(<x),0] ^ ̂  ̂ Q^^

where ^ > 0 and (ry) = (1 + M2)1/2.

(iii) Non-trapping : \x(t)\ —»• oo as t —* oo uniformly for |a'(0)| and |^(0)|~1 bounded,
where (a;((),^(()) denotes a solution of the bicharacteristic equations

(3)
dx 9a d^ Qa
' d t ^ ' 9 ^ ' ~dt =~'^ '

We use the energy method in the following simple form. Write the equation (1) as
iOfU = Au and write {u^v) = Re J uvdx. Assuming A* = A and choosing any linear
operator B, we take the inner product of (1) with {B — B*)u to obtain

(4) ^{B^iu}={[A^B}u^} ,

[A, J3] = A-B—BA. Vr)(t) is any scalar function for which (for simplicity) 77(0) = rj(T) = 0,
then

rT rT
iu,iu}dt= / n(t}{\A^\u,u)(5) - / rf(t){Bu,iu}dt= I ri(t){[A,B]u,u}dt .

Jo Jo

If A has order m^ then [A, B] has a gain of m^ — 1 derivatives relative to 2?. Thus we
deduce a gain of regularity if 77 > 0 and [A, B] = C is an elliptic operator in some region.

On the symbol level the last equation takes the form

{a ,6}=zc , {a,b}=^0^a9^b^0^a9^b .
j

Using the flow (X(<; re, ̂ ), S(<; x^ ^)) defined by (3), this is the same as

^&(X,5)=ic(X,2) .

Thus, given a symbol c(a;,^) > 0, we define

y+oo

(6) b{x^)=-i
Jo

y+oo

(6) b{x^)=-i / c(X(<;:r,0,5(<;a;,0)<ft ,
Jo
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which is justified if the integral converges and &(Jf,S) —^ 0 as t -^ +00. Thus b is the
integral of c over the forward flow defined by a. Typically, the supports of 5 and c will be
in a "backward domain" ft which has the properties that the trajectory backwards from
any point (re, ̂ ) € ft remains within ft and tends to spatial infinity and the trajectory
forwards from (rc,^) € ft exits from ft within the time {{x) + D}/\a^\ where D is fixed.
A typical backward domain is a neighborhood of a fixed backward trajectory.

The symbols must grow as |a;| —^ oo in the backward directions. For example,
in the simple case a{x^D) = D2 and 6(a:,JO) = 6(;r,D) in one dimension, we have
C = [D2^} == bf(x)D2+ (lower order terms). We require V{x) > 0 and ^ 0. Thus h{x}
tends to two different constants at ±00. In the second induction step c(:r, ̂ ) behaves like a
non-zero constant as \x\ -^ oo in one direction. Hence b(x^) grows like 0(|a-|). Repeated
induction leads to the requirement that the symbols behave like [rc^ as \x\ —> oo in one
direction. Thus we are led to the following definition.

b belongs to the symbol class 5^(m, A*. /?, 6) if

(i) supp(6) C 0

(ii) |9?^6(rc,0| < C^^-W (x)^^-6^
(iii) b{x, ̂ ) > bo (^m {x}1' (&o > 0) in a; where u} C a) C ft.
For simplicity we now limit ourselves to the second-order case.

Theorem 1. (Regularity) Let a(x^D) have order 2 and satisfy the conditions (dis-
persive, Gat at oo, non-trapping backwards) stated earlier. Let K be a positive integer
and 0 < p < 6 < l , p + 6 > l . Given initial data y € L2^) such that

(7) \{B°y^}\ < oo for some B° = b\x,D), b° 6 S^O,K,p,6)

for some backward domains fto C fto C ft. Then there exist operators

(8) Bk=bk(x,D), b k e S ^ K ^ k , p , 6 )

and a backward domain a? C fto such that for all 0 < T < oo the following estimates
hold :

tT
(9) / ^|(B^iu,u)|rf«oo

Jo

(10) sup tk\{BkU,u}\ < oo
[o,ri

for k = 0,1..., K. (In the special case k = K, the symbol class S(K + l ,—l ,p ,^)
is redefined to replace (a')"1 by a fixed integrable function of \x\.) (The construction
provides a set u} only slightly smaller than fto.,)

Thus we gain one derivative of regularity of the solution for each power of decay of
the initial data.
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Corollary. If there are no trapped rays at all, and \y\2 possesses finite moments of
all orders, then u € C°° tor allt ^ 0.

What about the behavior forward along a ray ? If a ray is not trapped backwards but
is trapped forwards, the solution still is microlocally smooth all along the forward ray in
an appropriately narrow microlocal neighborhood. On the other hand, if it is not trapped
forwards then it tends to infinity in the forward direction. We now address the question
of the asymptotic behavior of the derivatives of the solution u in the forward direction.

For that purpose we need symbols supported in a "full domain" ft = ft"1' U ft"", where
ft~ is a backward domain, 0 is an open set contained in ft"", and ft4" is the set 0
carried forward by the flow. In the relatively narrow forward set ft4' the symbols are
of the "bad" type p = 1, 6 = 0. We consider two full domains uj C ^ C ft and define
6€^(m,fc+,l,0)(m,^,^)if

(i) supp(6) C ft.

(ii) In ft^, b belongs to 5°-. (m, A-_,/),^) as defined earlier.

(iii) In ft4', b satisfies

l^(^.^6(:r,0| < ̂ (O^I^-H^I

and in u4" it satisfies

^O^MO^)^ (&o>o) .

Theorem 2. (Forward behavior) Let a(a*, D), K, 6, p, y and B° satisfy the conditions
of Theorem 1 with b° G 5"Z (0, K, p, 6} where ft = ft-^ U ft""" is a full domain and ft^"

""0

is a backward domain with closure in ft"". Then there exist operators Bk = bk(x^D),
bk € S^(k, -fc - 1,1,0)(fc, K - k, p, 6) and a full domain u) such that for all 0 < T < oo
the estimates (9) and (10) hold, (Here a; C ft and uj" C fto" C ft~ are only slightly
separated,)

Thus there are bounds on the growth rates of the derivatives of u in the forward
direction.

The symbols that appear in Theorem 1 satisfy p < 6 and 1 < p+6 and can be treated
as a special case of the Weyl calculus [4]. On the other hand, the symbols that appear in
the forward direction have type (m, fc, 1,0) with k ^ —m and two additional properties.
They have support in the forward flow, and the derivatives ^ • 9^ in the direction of
the flow have p = 0. These properties allow us to prove that such a "forward" operator
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B = b(x,D) is bounded on L2^) if m = k = 0. Moreover, if k < -m we have the
generalized Garding inequality {Bu,u) ^ const(Cu,u} - const(u,u), for some operator
Co! type (m- l , Jb+ 1,1,0).
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