DANIEL BATTIG

JEAN-CLAUDE GUILLOT
The Fermi surface for the discretized Maxwell equations

Journées Equations aux dérivées partielles (1991), p. 1-6
<http://www.numdam.org/item?id=JEDP_1991 A11_0>

© Journées Equations aux dérivées partielles, 1991, tous droits réservés.

L’accés aux archives de la revue « Journées Equations aux dérivées partielles » (http:/www.
math.sciences.univ-nantes.fr/edpa/) implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=JEDP_1991____A11_0
http://www.math.sciences.univ-nantes.fr/edpa/
http://www.math.sciences.univ-nantes.fr/edpa/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

The Fermi surface for the discretized Maxwell equations

D.Battig and J.C.Guillot
Département de Mathématiques et Informatique
Université Paris Nord
Av. Jean Baptiste Clément
93430 Villetaneuse, France

1. Introduction

Let T' = a1Z @ a;Z @ a3Z be a lattice of R® . The shifted cell problem for Maxwell’s
system has the following form : For each k € R® one considers

VAH=—iweE,V-(¢E) =0
—VAE = —zw“H’v . (“H) =0
with boundary conditions
E(x + 7) — ei<k’7>E(z),H(z +7) = ei<k,1>H(z)

for all vy € T', where E (resp.H ) are in H}, (R®)? and ¢(z),u(z) are smooth positive diagonal
3 x 3 matrices of I'-periodic functions. Eliminating H and supposing u = 1 one gets an
eigenvalue problem for E :

def

A()EE ¢ 'VA(VAE)=)\E (1)
DEE¥ V.-(eE)=0 (2)
with  E(z +v) =e<F">E(z) Vyel. (3)

(1) and (3) form a self adjoint boundary value problem yielding a discrete spectrum
o S E_g(k) < E_1(k) < Eo(k) =0 < Ey(k) < ...
where E;(k) depends continously on k. It is periodic in the dual lattice
M={beR®|<bT >C2rZ}.
In particular A = 0 is an eigenvalue of infinite geometric multiplicity, with eigenspace
Nk)={Ee L} (R®?®|VAE=0 and (3)}
These eigenvectors do not satisfy V-(eE) = 0 and if X is an eigenvalue of (1) different from
zero then the corresponding eigenvectors fulfill V - (eE) = 0. In view of the periodicity

with respect to '}, one can replace (3) by

E(z+7) = §"6"°E(z) (4)
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where (71,72, 73) are the coordinates of v in I'; and one defines the (physical) Fermi surface
Fohys,a(€) as

Fphysa(€) = {(&1,&2,63) € (S*)® | En(§) =1 for some n #0}.

We also consider solutions ¢ in (C*)? ,therefore we define the (complex) Fermi surface for

A#0
Fale) = {(€1,62,&) € (C*)* |IE # 0 solving (1),(2),(4)}-
Clearly Fphys,a(€) C Fa(€). Using regularized determinants and decomposing the operator

A(e) as in [I] it can be shown that F)(¢) is a complex hypersurface in (C*)? . One is
interested in the following questions :

- Does Fphys,a(€) determines Fy(g)?
- Does the geometry of Fy(¢) contains isospectral information ?
- Does Fy(€) determines ( generically ) € ?

In order to focus on this geometric aspects we consider a discrete approximation. Here
the analogue of the Fermi surface is an algebraic variety.

2. The discrete model

Inside Z° we take the lattice I' = @;_, , 3 Zaje;, where e; is the j-th standard basis
vector and all the a; are distinct, greater two and relatively prime. Let ¢ = (¢;6;;) with
€; : I3 — Ry be periodic with respect to I'. The operators eA(¢) and D(e) are discretized
by replacing the partial derivates J; by the operators S — S7¢  where S is the shift
operator acting on functions Z*> — C by

(8 f)(m) = f(m + a).

We don’t change the notation for the discretized operators.
For X\ # 0 the Fermi surface is

Fae) = {(&1,62,8) € (C*)* | IE£0 with A(e)E = AE,

D(e)E = 0,S%%E = &E,i = 1,2,3).

Due to the boundary conditions, the vector E is determined by its ajaza; values on
the fundamental domain of I' . So F)(¢) translates into an eigenvalue problem for a
3ajazaz X 3ajaza; matrix, and Fy(¢) is then given by the zero set of a polynomial in
the variables €1a€1—1’£2,£2—1$€3, 63_1

3. Results

We have



Theorem 1. Assume €;(m) < e3(m) < e3(m) Vm € Z3 then Fy(¢) is irreducible.

It follows, that if Fpnys,a(€) contains a piece of a two-dimensional real surface, then
Fphys,a(€) determines Fy(¢) .

The idea of the proof is to construct a compactification Fx(¢) of Fa(€), such that the
~ generic points added at "infinity” are smooth points of Fy(¢) .

Naively one could try to compactify Fx(¢) by embedding (C*)? in (P)® and closing the
Fermi surface in there. This doesn’t work, since the new points added to F,(¢) are highly
singular. Instead we construct, motivated by an idea of Mumford (see [M] ), as in [B1]
an intrinsic compactification of Fy(¢) by embedding the algebraic torus T' = (C*)3 in the
toroidal compactification Xy of T corresponding to the fan ¥ in R® of the cones over the
faces of the 6 prisms of the following picture :

d

1 lef (+a1,+az,+a3z),2 def (—ai1,+az,+a3)
de d

3 =f(—a1,—az,+a3),4 éf(+a1,—a2,+a3)
d d

5 éf (+01, +a2,—a3),6 éf (—a1,+az,—a3)

d d
7 éf (_al’—a2’_a3)’8 éf (+a17_a2,_a3)

The corresponding toroidal ”octahedron” is a singular complete algebraic variety with
one-dimensional singular locus. The latter is stratified into 18 T-orbits, 12 of dimension
1 and 6 of dimension 0. The one-dimensional orbits correspond to the codimension one
cones over the 8 edges of the above cube. These curves have transversal A; type, with
k = 2a; —1 (¢ = 1,2,3) . The zero dimensional orbits in the closure of the one-
dimensional orbits correspond to the zero-codimensional faces. Take now the closure of
Fa(e) in the octahedron Xy . The resulting variety is always singular in , assuming
e1(m) < ea(m) < ez(m) for all m € Z , 12 - 4 points , where it meets the one-
dimensional singular locus of the toroidal embedding. Blowing-up these singular points
in the octahedron gives the compactified Fermi surface Fy(¢) .

One shows that the divisor Fy(e) — Fa(€) is a connected union of reduced, irreducible

curves, intersecting transversally. Furthermore Fy(¢) is smooth on the smooth points of
Fx(e) — Fa(e) . This induces Theorem 1.

Observe now that the Fermi surface Fa(e) is the locus of points in (C*)3, where the
operators

A(e) — A1, D(e), S%% — &1 (i = 1,2,3)
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have a common kernel in the space F' = {E : Z> — C3} . This means that Fy(¢) is the
support of the subsheaf £ of the trivial bundle F)(¢) x F given by

Ly ={((¢1,€2,&),E) € (C*)® x F | the above operators have a common kernel}.

Theorem 2. £, can be extended to a sheaf over his compactification Fy(e) .

By this the curves at "infinity” occurs as the support of one-dimensional spectral
problems. For this we introduce the well known ( see [vM-M] ) one-dimensional Bloch
variety Bo(W') defined by

B.(W) def {(&,\) € C* x C | there exists a nontrivial solution v : Z — C solving
—[¥(m — 2) = 2¢(m) + P(m + 2)] + W(m)y(m) = Ap(m), (m + a) = {p(m)}

where W : Z — C has period a, a odd. B,(W) is a double covering of a hyperelliptic
curve of arithmetic genus 2a — 2 .
One then has, again under the assumption of Theorem 1 :

Theorem 3. Fy(¢) — Fi(e) contains the Bloch varieties B,,(W;) with

Wi(m) = la

a;ak

Z €g(m1,m2,m3), (i7j’ k) € S3

m; , Mg

4. Sketch of the proof of Theorem 3

B,, (W) is in the chart V of the blown-up octahedron. This chart is generated by the
coordinates (z,z,u) € C* x C x C . On V N (C*)? we have

g =&z =060, w2t = 1+ 606"

where (yo,20) € Z% with azyo + az3zg = 1 . Furthermore the fiber F over V is glued with
the fiber F on (C*)3 by

E(my,mqe,m3) = z™21ms BV (my my, mg).
Finally one has V — (VN (C*)®) = {z = 0} .
Now S*1¢1 E = £, E transforms to
S~we gV = zEV. (5)
Since S(0:82v0,8520) F — £3°¢°E = zE , using the transition function we have

S(o’“’y°’“3"‘°)E1V — EIV (6)
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A straightfoward calculation shows, that putting the transition function in
A(e)§2(Oe2v0azo) p — )2 R
giveson z = 0
(—S~2%2 — §=2)\EY =, —§72sEY 4 §(eated) gV — (7)
and D(g)S(0:92¥0,9320) F — () translates on z = 0 to
SO0 (g, EY) 4 §O0"D(gEY) = 0. (8)
From (7) and (8) it follows, using &;(m) < €2(m) < e3(m) for all m € Z3 | that
EY =EY =0 and SO 2DEY =_EY. (9)

Observe now that S(0:72293,8283) F — (22 —1)E , i.e. we get on z = 0 (%~ 9208,0203) BV —
—EY . Since ay and a3 are relatively prime and different from 2 , it follows with (9) that

SO-LDEY — kxEY  with &% = —1. (10)
This shows that we have the boundary conditions for E given by :
S~merEY = gEY,§Oe2v0ssn0) BY — BV

SO-LORY — cEY.
Now we also have z72(1 4 §(0:=26203,20203))F — 4 F . But
azag—1
1 + S(O,—2aza3,2a2a3) — z (_1)i(si(0,—2,2) + S(i+l)(0,-‘2,2)). (11)
=0

Using A(e)E = AE and D(e)E = 0 one gets after some calculation
(§i0=22) 4 GGHDO~2)\EV —
22(=S5(-202) | 95(00.2) _ §(2.0.2))gi0,~2D BV 4 ,2640,-2.2) 500 (¢, EV) 4 23(_..).
Since by (9) $¥®~2DEY = (—1)'E} we have for (11) on z =0
272(1 + §O—2a203,20203)) gV
azaz—1

azay(—SH00 42— SCONEY 4+ (Y e1(mu,mg — 2i,ms +20))EY = pEY

=0
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l.e.
1

(_S(—270’0) + 2 —_ 5(2’010))E]Y +
azas

( Z e1(my,mg,m3) ) EY = uEY.

mz,mg

This shows that one gets the Bloch variety B,, (W) .
5. Related results

The questions posed in the introduction were answered for the operator —A + V in
dimension 2 and 3. \

Gieseker, Knorrer, Trubowitz have shown that in dimension 2 the Bloch variety is
irreducible ( in the discrete case [GKT), in the continous case [KT] ). Moreover for the
discrete model for generic potentials V the Bloch variety determines the potential up to
obvious symmetries. This has been generalized by Kappeler in [K] to higher dimensions.

There exists for the discretized model also using toroidal embeddings an intrinsic
compactification of the Bloch variety in dimension 2 and for the Fermi surface in dimension

3 ( see [B1], [B2] ).
For an overview of these and more stronger results consider [P] .
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