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The Fermi surface for the discretized Maxwell equations

D.Battig and J.C.Guillot
Departement de Mathematiques et Informatique

Universite Paris Nord
Av. Jean Baptiste Clement
93430 Villetaneuse, France

1. Introduction

Let r = aiZ ® 02 Z ® 03 Z be a lattice of R3 . The shifted cell problem for Maxwell's
system has the following form : For each k 6 R3 one considers

V A H = -weE.V • (eE) = 0

-V A E = -wp.H, V • (^JT) = 0
with boundary conditions

E{x + 7) = e^^E^x), H(x + 7) = e1^^^)

for all 7 6 F, where f? (resp.JiT) are in -H7oc(R3)3 ^^d £(a;),^(a-) are smooth positive diagonal
3 x 3 matrices of F-periodic functions. Eliminating H and supposing /i == 1 one gets an
eigenvalue problem for E :

A{e)E d±f e^V A (V A E) = XE (1)

D{e)E d±f V • (eE) = 0 (2)
with £(:r+7)=ei<fcl7>£(:r) V7 6 F. (3)

(1) and (3) form a self adjoint boundary value problem yielding a discrete spectrum

... < E^(k) < JSLi(fc) < £o(^) = 0 < E^k) <. ...

where Ej(k) depends continously on k. It is periodic in the dual lattice

^ 1 1 ={66R 3 | <&,^>C27^Z} .

In particular A = 0 is an eigenvalue of infinite geometric multiplicity, with eigenspace

N(k) = {E 6 ̂ L(R3)3 I V A E == 0 and (3)}.

These eigenvectors do not satisfy V - (eE) = 0 and if A is an eigenvalue of (1) different from
zero then the corresponding eigenvectors fulfill V • (eE) = 0. In view of the periodicity
with respect to F*, one can replace (3) by

E(x+ 7) =^1^2^3^) (4)
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where (71, 72,73) are the coordinates of 7 in F; and one defines the (physical) Fermi surface
^phys,\(e) as

^^,A^)={(6,6^3)6(51)3|£;n(0=A for some n ̂  0}.

We also consider solutions ^ in (C*)3 .therefore we define the (complex) Fermi surface for
A ^ O

^(e) = {(^2,6) € (C*)3 | 3E ^ 0 solving (1),(2),(4)}.

Clearly ^phys,\^} C .^A^)- Using regularized determinants and decomposing the operator
A(e) as in [I] it can be shown that y\(e) is a complex hypersurface in (C*)3 . One is
interested in the following questions :

- Does Fphys^} determines ^F\(e)7

- Does the geometry of ^F\{e) contains isospectral information?
- Does F\{e) determines ( generically ) e ?
In order to focus on this geometric aspects we consider a discrete approximation. Here

the analogue of the Fermi surface is an algebraic variety.

2. The discrete model

Inside Z3 we take the lattice T = ©.=1 2 3 ̂ a3e^ ^ere ej is the j-th standard basis
vector and all the aj are distinct, greater two and relatively prime. Let e = (Ci^ij) with
d : Z3 —> R+ be periodic with respect to F. The operators eA{e) and D(e) are discretized
by replacing the partial derivates 9i by the operators S'6' — 5'"6', where 5° is the shift
operator acting on functions Z3 —> C by

(^/XrrO^m+a).

We don't change the notation for the discretized operators.
For A ̂  0 the Fermi surface is

^A(e) = {(^2^3) e (C^)3 | 3E + 0 with A{e)E = \E,

D(e)E = O.S^E = ̂ E,i = 1,2,3}.
Due to the boundary conditions, the vector E is determined by its 010203 values on
the fundamental domain of F . So ^F\(e) translates into an eigenvalue problem for a
3ai02^3 x 3aia2d3 matrix, and F\{e) is then given by the zero set of a polynomial in
the variables ^i^i"1,^^"1^^"1-

3. Results

We have
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Theorem 1. Assume 61 (m) < e^m) < e^(m) Vm £ Z3 then ̂ \(^) ̂  irreducible.

It follows, that if ^Fphys,\{^) contains a piece of a two-dimensional real surface, then
^phys,\(e) determines F\{e) .

The idea of the proof is to construct a compactification ^F\(e) of y\(e)^ such that the
generic points added at "infinity" are smooth points of F\{e) .

Naively one could try to compactify fx^e) by embedding (C*)3 in (P)3 and closing the
Fermi surface in there. This doesn't work, since the new points added to F\(e) are highly
singular. Instead we construct, motivated by an idea of Mumford (see [M] ), as in [Bl]
an intrinsic compactification of J^\{^) by embedding the algebraic torus T = (C*)3 in the
toroidal compactification X^ of T corresponding to the fan E in R3 of the cones over the
faces of the 6 prisms of the following picture :

1^ (+01,+02,+03), 2 ̂ (-01,+02,+03)

3 ^ (-01,-02,+03),4 =1 (+01, -02,4-03)

5 =1 (+ai,+02,-03), 6 ^ (-01,+02,-03)
I-T ^e/ / \ r* ^e/ / . \
7 == (-ai,-02,-03),8 = (+0i,-02,-03)

The corresponding toroidal "octahedron" is a singular complete algebraic variety with
one-dimensional singular locus. The latter is stratified into 18 T-orbits, 12 of dimension
1 and 6 of dimension 0. The one-dimensional orbits correspond to the codimension one
cones over the 8 edges of the above cube. These curves have transversal Ak type, with
k = 2oi — 1 (i = 1,2,3) . The zero dimensional orbits in the closure of the one-
dimensional orbits correspond to the zero-codimensional faces. Take now the closure of
y\(e) in the octahedron XE . The resulting variety is always singular in , assuming
£i(m) < e'i(m} < ^3{m) for all m G Z , 12 • 4 points , where it meets the one-
dimensional singular locus of the toroidal embedding. Blowing-up these singular points
in the octahedron gives the compactified Fermi surface y\(e) .

One shows that the divisor y\{e) — ^\(^) is a connected union of reduced, irreducible
curves, intersecting transversally. Furthermore F\(^) is smooth on the smooth points of
F\{e) - ^F\(e) . This induces Theorem 1.

Observe now that the Fermi surface 7'\{e} is the locus of points in (C*)3, where the
operators

A(£) - Al,^),^161 - ̂ 1 (i = 1,2,3)
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have a common kernel in the space F = {E : Z3 —^ C3} . This means that F\{e) is the
support of the subsheaf C\ of the trivial bundle F\{e) x F given by

^A = {((^i^2^3)?X) € (C*)3 x F | the above operators have a common kernel}.

Theorem 2. C\ can be extended to a shea/over his compactification ^F\(e) .

By this the curves at "infinity" occurs as the support of one-dimensional spectral
problems. For this we introduce the well known ( see [vM-M] ) one-dimensional Bloch
variety Z?a(^0 defined by

^a(W^) = {(^? A) 6 C* x C | there exists a nontrivial solution ^ : Z —> C solving

-[^(m - 2) - 2^(m) + ̂ (m + 2)] + W(m}^(m) = A^(m), ̂ (m + a) = ̂ (m)}

where W : Z —> C has period a, a odd. Z?a(^0 is a double covering of a hyperelliptic
curve of arithmetic genus 2a — 2 .

One then has, again under the assumption of Theorem 1 :

Theorem 3. ^x^e) — ^F\{e) contains the Bloch varieties Ba.(Wi) with

Wi(mi) =—— V ei(m^,m^,mz\ (iJ,k)eS3
a,ajfe ^-^

•' vnj ,mjk

4. Sketch of the proof of Theorem 3

Ba^(W\) is in the chart V of the blown-up octahedron. This chart is generated by the
coordinates (a*, z^ fi) € C* x C x C . On V n (C*)3 we have

7- — ^1 7 — /^O^ZO ny2 — 1 4- ^-203^202x — Sl ^ z — S2 S3 ^z — 1 ' S2 S3

where (yo,^o) € Z2 with 031/0 + ^3^0 = 1 • Furthermore the fiber F over V is glued with
the fiber F on (C*)3 by

E(mi,m2,m3) == zm^rn3EV{m^m^m^.

Finally one has V - (V n (C*)3) = {^ = 0} .

Now ^S^161^ = ̂ E transforms to

S~~alelEV =xEV. (5)

Since S^0^0^320^ = ^i0^0^ == ^£; , using the transition function we have

^(o^yo^zo)^ ^ ̂  ^
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A straightfoward calculation shows, that putting the transition function in

A^S2^'^0'03^ E == Xz^E

gives on z == 0

(_5-2e, _ s-^)E^ = 0, -5-263^ + S-^^E^ = 0 (7)

and D^).^0''12!'0'^0)^ == 0 translates on z = 0 to

5(0,-1,0)^^V) + 5(0'0'-1)(£3^) = 0. (8)

From (7) and (8) it follows, using £i(m) < e.i(m) < es^m) for all m 6 Z3 , that

E^=E^=0 and S^-^E^-E^. (9)

Observe now that S^''^3''1^ E = (^z2 - 1)E , i.e. we get on z = 0 S(o'~a'ta3'a:^a^E^ =
—£'1 . Since 03 and 03 are relatively prime and different from 2 , it follows with (9) that

S^-^E^ =KE^ with ^=-1. (10)

This shows that we have the boundary conditions for E^ given by :

S-^iE^ = xE^, 5(o>a2»o>a3^o)£;^y = E^,

5(o,-i,i)^y ̂  ̂ .

NOW we also have ̂ (l + 5'(0>-2<*2a3,2a2a3)^ = ̂  g^

0203-1
1 -|- 5-(0,-2a2a3,2o203) ^ Y^ /_^\t/^*(0,-2,2) ̂  ^<(»+1)(0,-2,2)\ /^\

t=0

Using A(e)jB = \E and D{e)E == 0 one gets after some calculation

/5..(0,-2,2) _^_ 5.(*+l)(0,-2,2)\^>^r ^

^2(_5.(-2,0,2) ^ 35(0,0,2) _ 5(2,0,2) ̂ .(0,-2,2)^V ̂  ^2 y(0,-2,2) 5(0,0,2)^^^) ̂  ̂ ( ^

Since by (9) 5*(o.-2,2)^v = (-1)'^ we have for (11) on z = 0

Z-^(\ _). 5'(0,-2a2<i3,2a203)\^V ̂

0203—1

a2a3(-5(-2•o•o)+2-5'(2•o•o))<+( ̂  e^m^m^ -2i^ +2i))E^ = ̂
»—n
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i.e.
(-5(-^)+2-5(2•0-(W+——( ̂  e^m^))E^=^.

^^s ^^^W2,m3

This shows that one gets the Bloch variety Ba^(W\) .

5. Related results

The questions posed in the introduction were answered for the operator — A + V i n
dimension 2 and 3.

Gieseker, Knorrer, Trubowitz have shown that in dimension 2 the Bloch variety is
irreducible ( in the discrete case [GKT], in the continous case [KT] ). Moreover for the
discrete model for generic potentials V the Bloch variety determines the potential up to
obvious symmetries. This has been generalized by Kappeler in [K] to higher dimensions.

There exists for the discretized model also using toroidal embeddings an intrinsic
compactification of the Bloch variety in dimension 2 and for the Fermi surface in dimension
3 ( see [Bl], [B2] ).

For an overview of these and more stronger results consider [P] .
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