Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

DANIEL BÄTTIG
 JEAN-Claude Guillot
 The Fermi surface for the discretized Maxwell equations

Journées Équations aux dérivées partielles (1991), p. 1-6
<http://www.numdam.org/item?id=JEDP_1991 \qquad A11_0>

The Fermi surface for the discretized Maxwell equations

D.Bättig and J.C.Guillot
Département de Mathématiques et Informatique
Université Paris Nord
Av. Jean Baptiste Clément
93430 Villetaneuse, France

1. Introduction

Let $\Gamma=a_{1} \mathbf{Z} \oplus a_{2} \mathbf{Z} \oplus a_{3} \mathbf{Z}$ be a lattice of $\mathbf{R}^{\mathbf{3}}$. The shifted cell problem for Maxwell's system has the following form : For each $k \in \mathbf{R}^{3}$ one considers

$$
\begin{gathered}
\nabla \wedge H=-i \omega \varepsilon E, \nabla \cdot(\varepsilon E)=0 \\
-\nabla \wedge E=-i \omega \mu H, \nabla \cdot(\mu H)=0
\end{gathered}
$$

with boundary conditions

$$
E(x+\gamma)=e^{i<k, \gamma\rangle} E(x), H(x+\gamma)=e^{i<k, \gamma>} H(x)
$$

for all $\gamma \in \Gamma$, where E (resp. H) are in $H_{l o c}^{1}\left(\mathbf{R}^{3}\right)^{3}$ and $\varepsilon(x), \mu(x)$ are smooth positive diagonal 3×3 matrices of Γ-periodic functions. Eliminating H and supposing $\mu=1$ one gets an eigenvalue problem for E :

$$
\begin{gather*}
A(\varepsilon) E \stackrel{\text { def }}{=} \varepsilon^{-1} \nabla \wedge(\nabla \wedge E)=\lambda E \tag{1}\\
D(\varepsilon) E \stackrel{\text { def }}{=} \nabla \cdot(\varepsilon E)=0 \tag{2}\\
\text { with } \quad E(x+\gamma)=e^{i<k, \gamma>} E(x) \quad \forall \gamma \in \Gamma . \tag{3}
\end{gather*}
$$

(1) and (3) form a self adjoint boundary value problem yielding a discrete spectrum

$$
\ldots \leq E_{-2}(k) \leq E_{-1}(k) \leq E_{0}(k)=0 \leq E_{1}(k) \leq \ldots
$$

where $E_{j}(k)$ depends continously on k. It is periodic in the dual lattice

$$
\Gamma^{\sharp}=\left\{b \in \mathbf{R}^{\mathbf{3}} \mid<b, \Gamma>\subset 2 \pi \mathbf{Z}\right\} .
$$

In particular $\lambda=0$ is an eigenvalue of infinite geometric multiplicity, with eigenspace

$$
N(k)=\left\{E \in L_{l o c}^{2}\left(\mathbf{R}^{3}\right)^{3} \mid \nabla \wedge E=0 \quad \text { and } \quad(3)\right\}
$$

These eigenvectors do not satisfy $\nabla \cdot(\varepsilon E)=0$ and if λ is an eigenvalue of (1) different from zero then the corresponding eigenvectors fulfill $\nabla \cdot(\varepsilon E)=0$. In view of the periodicity with respect to Γ^{\sharp}, one can replace (3) by

$$
\begin{equation*}
E(x+\gamma)=\xi_{1}^{\gamma_{1}} \xi_{2}^{\gamma_{2}} \xi_{3}^{\gamma_{3}} E(x) \tag{4}
\end{equation*}
$$

where ($\gamma_{1}, \gamma_{2}, \gamma_{3}$) are the coordinates of γ in Γ; and one defines the (physical) Fermi surface $\mathcal{F}_{\text {phys, }}(\varepsilon)$ as

$$
\mathcal{F}_{\text {phys, } \lambda}(\varepsilon)=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in\left(S^{1}\right)^{3} \mid E_{n}(\xi)=\lambda \text { for some } n \neq 0\right\}
$$

We also consider solutions ξ in $\left(\mathbb{C}^{*}\right)^{3}$,therefore we define the (complex) Fermi surface for $\lambda \neq 0$

$$
\mathcal{F}_{\lambda}(\varepsilon)=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in\left(\mathbb{C}^{*}\right)^{3} \mid \exists E \neq 0 \quad \text { solving } \quad(1),(2),(4)\right\}
$$

Clearly $\mathcal{F}_{\text {phys, }}(\varepsilon) \subset \mathcal{F}_{\lambda}(\varepsilon)$. Using regularized determinants and decomposing the operator $A(\varepsilon)$ as in [I] it can be shown that $\mathcal{F}_{\lambda}(\varepsilon)$ is a complex hypersurface in $\left(\mathbb{C}^{*}\right)^{3}$. One is interested in the following questions :

- Does $\mathcal{F}_{\text {phys, } \lambda}(\varepsilon)$ determines $\mathcal{F}_{\lambda}(\varepsilon)$?
- Does the geometry of $\mathcal{F}_{\lambda}(\varepsilon)$ contains isospectral information?
- Does $\mathcal{F}_{\lambda}(\varepsilon)$ determines (generically) ε ?

In order to focus on this geometric aspects we consider a discrete approximation. Here the analogue of the Fermi surface is an algebraic variety.

2. The discrete model

Inside \mathbf{Z}^{3} we take the lattice $\Gamma=\bigoplus_{j=1,2,3} \mathbf{Z} a_{j} e_{j}$, where e_{j} is the j-th standard basis vector and all the a_{j} are distinct, greater two and relatively prime. Let $\varepsilon=\left(\varepsilon_{i} \delta_{i j}\right)$ with $\varepsilon_{i}: \mathbf{Z}^{3} \rightarrow \mathbf{R}_{+}$be periodic with respect to Γ. The operators $\varepsilon A(\varepsilon)$ and $D(\varepsilon)$ are discretized by replacing the partial derivates ∂_{i} by the operators $S^{e_{i}}-S^{-e_{i}}$, where S^{α} is the shift operator acting on functions $\mathbf{Z}^{\mathbf{3}} \rightarrow \mathbf{C}$ by

$$
\left(S^{\alpha} f\right)(m)=f(m+\alpha)
$$

We don't change the notation for the discretized operators.
For $\lambda \neq 0$ the Fermi surface is

$$
\begin{gathered}
\mathcal{F}_{\lambda}(\varepsilon)=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in\left(\mathbb{C}^{*}\right)^{3} \mid \exists E \neq 0 \quad \text { with } \quad A(\varepsilon) E=\lambda E\right. \\
\left.D(\varepsilon) E=0, S^{a_{i} e_{i}} E=\xi_{i} E, i=1,2,3\right\}
\end{gathered}
$$

Due to the boundary conditions, the vector E is determined by its $a_{1} a_{2} a_{3}$ values on the fundamental domain of Γ. So $\mathcal{F}_{\lambda}(\varepsilon)$ translates into an eigenvalue problem for a $3 a_{1} a_{2} a_{3} \times 3 a_{1} a_{2} a_{3}$ matrix, and $\mathcal{F}_{\lambda}(\varepsilon)$ is then given by the zero set of a polynomial in the variables $\xi_{1}, \xi_{1}^{-1}, \xi_{2}, \xi_{2}^{-1}, \xi_{3}, \xi_{3}^{-1}$.

3. Results

We have

Theorem 1. Assume $\varepsilon_{1}(m)<\varepsilon_{2}(m)<\varepsilon_{3}(m) \quad \forall m \in \mathbf{Z}^{3}$ then $\mathcal{F}_{\lambda}(\varepsilon)$ is irreducible.

It follows, that if $\mathcal{F}_{p h y s, \lambda}(\varepsilon)$ contains a piece of a two-dimensional real surface, then $\mathcal{F}_{\text {phys, } \lambda}(\varepsilon)$ determines $\mathcal{F}_{\lambda}(\varepsilon)$.

The idea of the proof is to construct a compactification $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$ of $\mathcal{F}_{\lambda}(\varepsilon)$, such that the generic points added at "infinity" are smooth points of $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$.

Naively one could try to compactify $\mathcal{F}_{\lambda}(\varepsilon)$ by embedding $\left(\mathbb{C}^{*}\right)^{3}$ in $(\mathbf{P})^{3}$ and closing the Fermi surface in there. This doesn't work, since the new points added to $\mathcal{F}_{\lambda}(\varepsilon)$ are highly singular. Instead we construct, motivated by an idea of Mumford (see [M]), as in [B1] an intrinsic compactification of $\mathcal{F}_{\lambda}(\varepsilon)$ by embedding the algebraic torus $T=\left(\mathbb{C}^{*}\right)^{3}$ in the toroidal compactification X_{Σ} of T corresponding to the fan Σ in \mathbf{R}^{3} of the cones over the faces of the 6 prisms of the following picture :

$$
\begin{aligned}
& 1 \stackrel{\text { def }}{=}\left(+a_{1},+a_{2},+a_{3}\right), 2 \stackrel{\text { def }}{=}\left(-a_{1},+a_{2},+a_{3}\right) \\
& 3 \stackrel{\text { def }}{=}\left(-a_{1},-a_{2},+a_{3}\right), 4 \stackrel{\text { def }}{=}\left(+a_{1},-a_{2},+a_{3}\right) \\
& 5 \stackrel{\text { def }}{=}\left(+a_{1},+a_{2},-a_{3}\right), 6 \stackrel{\text { def }}{=}\left(-a_{1},+a_{2},-a_{3}\right) \\
& 7 \stackrel{\text { def }}{=}\left(-a_{1},-a_{2},-a_{3}\right), 8 \stackrel{\text { def }}{=}\left(+a_{1},-a_{2},-a_{3}\right)
\end{aligned}
$$

The corresponding toroidal "octahedron" is a singular complete algebraic variety with one-dimensional singular locus. The latter is stratified into $18 T$-orbits, 12 of dimension 1 and 6 of dimension 0 . The one-dimensional orbits correspond to the codimension one cones over the 8 edges of the above cube. These curves have transversal A_{k} type, with $k=2 a_{i}-1(i=1,2,3)$. The zero dimensional orbits in the closure of the onedimensional orbits correspond to the zero-codimensional faces. Take now the closure of $\mathcal{F}_{\lambda}(\varepsilon)$ in the octahedron X_{Σ}. The resulting variety is always singular in, assuming $\varepsilon_{1}(m)<\varepsilon_{2}(m)<\varepsilon_{3}(m)$ for all $m \in \mathbf{Z}, 12 \cdot 4$ points, where it meets the onedimensional singular locus of the toroidal embedding. Blowing-up these singular points in the octahedron gives the compactified Fermi surface $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$.

One shows that the divisor $\overline{\mathcal{F}_{\lambda}(\varepsilon)}-\mathcal{F}_{\lambda}(\varepsilon)$ is a connected union of reduced, irreducible curves, intersecting transversally. Furthermore $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$ is smooth on the smooth points of $\overline{\mathcal{F}_{\lambda}(\varepsilon)}-\mathcal{F}_{\lambda}(\varepsilon)$. This induces Theorem 1.

Observe now that the Fermi surface $\mathcal{F}_{\lambda}(\varepsilon)$ is the locus of points in $\left(\mathbb{C}^{*}\right)^{3}$, where the operators

$$
A(\varepsilon)-\lambda 1, D(\varepsilon), S^{a_{i} e_{i}}-\xi_{i} 1(i=1,2,3)
$$

have a common kernel in the space $F=\left\{E: \mathbb{Z}^{3} \rightarrow \mathbb{C}^{3}\right\}$. This means that $\mathcal{F}_{\lambda}(\varepsilon)$ is the support of the subsheaf \mathcal{L}_{λ} of the trivial bundle $\mathcal{F}_{\lambda}(\varepsilon) \times F$ given by

$$
\mathcal{L}_{\lambda}=\left\{\left(\left(\xi_{1}, \xi_{2}, \xi_{3}\right), E\right) \in\left(\mathbb{C}^{*}\right)^{3} \times F \mid \text { the above operators have a common kernel }\right\}
$$

Theorem 2. \mathcal{L}_{λ} can be extended to a sheaf over his compactification $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$.

By this the curves at "infinity" occurs as the support of one-dimensional spectral problems. For this we introduce the well known (see [vM-M]) one-dimensional Bloch variety $\mathcal{B}_{a}(W)$ defined by

$$
\begin{gathered}
\mathcal{B}_{a}(W) \stackrel{\text { def }}{=}\left\{(\xi, \lambda) \in \mathbb{C}^{*} \times \mathbb{C} \mid \text { there exists a nontrivial solution } \psi: \mathbf{Z} \rightarrow \mathbb{C}\right. \text { solving } \\
-[\psi(m-2)-2 \psi(m)+\psi(m+2)]+W(m) \psi(m)=\lambda \psi(m), \psi(m+a)=\xi \psi(m)\}
\end{gathered}
$$

where $W: \mathbb{Z} \rightarrow \mathbb{C}$ has period a, a odd. $\mathcal{B}_{a}(W)$ is a double covering of a hyperelliptic curve of arithmetic genus $2 a-2$.

One then has, again under the assumption of Theorem 1 :
Theorem 3. $\overline{\mathcal{F}_{\lambda}(\varepsilon)}-\mathcal{F}_{\lambda}(\varepsilon)$ contains the Bloch varieties $\mathcal{B}_{a_{\mathrm{i}}}\left(W_{i}\right)$ with

$$
W_{i}\left(m_{i}\right)=\frac{1}{a_{j} a_{k}} \sum_{m_{j}, m_{k}} \varepsilon_{i}\left(m_{1}, m_{2}, m_{3}\right), \quad(i, j, k) \in S_{3}
$$

4. Sketch of the proof of Theorem 3

$\mathcal{B}_{a_{1}}\left(W_{1}\right)$ is in the chart V of the blown-up octahedron. This chart is generated by the coordinates $(x, z, \mu) \in \mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}$. On $V \cap\left(\mathbb{C}^{*}\right)^{3}$ we have

$$
x=\xi_{1}^{-1}, z=\xi_{2}^{y_{0}} \xi_{3}^{z_{0}}, \mu z^{2}=1+\xi_{2}^{-2 a_{3}} \xi_{3}^{2 a_{2}}
$$

where $\left(y_{0}, z_{0}\right) \in \mathbf{Z}^{2}$ with $a_{2} y_{0}+a_{3} z_{0}=1$. Furthermore the fiber F over V is glued with the fiber F on $\left(\mathbb{C}^{*}\right)^{3}$ by

$$
E\left(m_{1}, m_{2}, m_{3}\right)=z^{m_{2}+m_{3}} E^{V}\left(m_{1}, m_{2}, m_{3}\right)
$$

Finally one has $V-\left(V \cap\left(\mathbb{C}^{*}\right)^{3}\right)=\{z=0\}$.
Now $S^{a_{1} e_{1}} E=\xi_{1} E$ transforms to

$$
\begin{equation*}
S^{-a_{1} e_{1}} E^{V}=x E^{V} \tag{5}
\end{equation*}
$$

Since $S^{\left(0, a_{2} y_{0}, a_{3} z_{0}\right)} E=\xi_{2}^{y_{0}} \xi_{3}^{z_{0}} E=z E$, using the transition function we have

$$
\begin{equation*}
S^{\left(0, a_{2} y_{0}, a_{3} z_{0}\right)} E_{1}^{V}=E_{1}^{V} \tag{6}
\end{equation*}
$$

A straightfoward calculation shows, that putting the transition function in

$$
A(\varepsilon) S^{2\left(0, a_{2} y_{0}, a_{3} z_{0}\right)} E=\lambda z^{2} E
$$

gives on $z=0$

$$
\begin{equation*}
\left(-S^{-2 e_{2}}-S^{-2 e_{3}}\right) E_{1}^{V}=0,-S^{-2 e_{3}} E_{2}^{V}+S^{-\left(e_{2}+e_{3}\right)} E_{3}^{V}=0 \tag{7}
\end{equation*}
$$

and $D(\varepsilon) S^{\left(0, a_{2} y_{0}, a_{3} z_{0}\right)} E=0$ translates on $z=0$ to

$$
\begin{equation*}
S^{(0,-1,0)}\left(\varepsilon_{2} E_{2}^{V}\right)+S^{(0,0,-1)}\left(\varepsilon_{3} E_{3}^{V}\right)=0 \tag{8}
\end{equation*}
$$

From (7) and (8) it follows, using $\varepsilon_{1}(m)<\varepsilon_{2}(m)<\varepsilon_{3}(m)$ for all $m \in \mathbf{Z}^{3}$, that

$$
\begin{equation*}
E_{2}^{V}=E_{3}^{V}=0 \quad \text { and } \quad S^{(0,-2,2)} E_{1}^{V}=-E_{1}^{V} \tag{9}
\end{equation*}
$$

Observe now that $S^{\left(0,-a_{2} a_{3}, a_{2} a_{3}\right)} E=\left(\mu z^{2}-1\right) E$, i.e. we get on $z=0 S^{\left(0,-a_{2} a_{3}, a_{2} a_{3}\right)} E_{1}^{V}=$ $-E_{1}^{V}$. Since a_{2} and a_{3} are relatively prime and different from 2 , it follows with (9) that

$$
\begin{equation*}
S^{(0,-1,1)} E_{1}^{V}=\kappa E_{1}^{V} \quad \text { with } \quad \kappa^{2}=-1 \tag{10}
\end{equation*}
$$

This shows that we have the boundary conditions for E_{1}^{V} given by :

$$
\begin{gathered}
S^{-a_{1} e_{1}} E_{1}^{V}=x E_{1}^{V}, S^{\left(0, a_{2} y_{0}, a_{3} z_{0}\right)} E_{1}^{V}=E_{1}^{V} \\
S^{(0,-1,1)} E_{1}^{V}=\kappa E_{1}^{V}
\end{gathered}
$$

Now we also have $z^{-2}\left(1+S^{\left(0,-2 a_{2} a_{3}, 2 a_{2} a_{3}\right)}\right) E=\mu E$. But

$$
\begin{equation*}
1+S^{\left(0,-2 a_{2} a_{3}, 2 a_{2} a_{3}\right)}=\sum_{i=0}^{a_{2} a_{3}-1}(-1)^{i}\left(S^{i(0,-2,2)}+S^{(i+1)(0,-2,2)}\right) \tag{11}
\end{equation*}
$$

Using $A(\varepsilon) E=\lambda E$ and $D(\varepsilon) E=0$ one gets after some calculation

$$
\begin{gathered}
\left(S^{i(0,-2,2)}+S^{(i+1)(0,-2,2)}\right) E_{1}^{V}= \\
z^{2}\left(-S^{(-2,0,2)}+2 S^{(0,0,2)}-S^{(2,0,2)}\right) S^{i(0,-2,2)} E_{1}^{V}+z^{2} S^{i(0,-2,2)} S^{(0,0,2)}\left(\varepsilon_{1} E_{1}^{V}\right)+z^{3}(\ldots)
\end{gathered}
$$

Since by (9) $S^{i(0,-2,2)} E_{1}^{V}=(-1)^{i} E_{1}^{V}$ we have for (11) on $z=0$

$$
\begin{gathered}
z^{-2}\left(1+S^{\left(0,-2 a_{2} a_{3}, 2 a_{2} a_{3}\right)}\right) E_{1}^{V}= \\
a_{2} a_{3}\left(-S^{(-2,0,0)}+2-S^{(2,0,0)}\right) E_{1}^{V}+\left(\sum_{i=0}^{a_{2} a_{3}-1} \varepsilon_{1}\left(m_{1}, m_{2}-2 i, m_{3}+2 i\right)\right) E_{1}^{V}=\mu E_{1}^{V}
\end{gathered}
$$

i.e.

$$
\left(-S^{(-2,0,0)}+2-S^{(2,0,0}\right) E_{1}^{V}+\frac{1}{a_{2} a_{3}}\left(\sum_{m_{2}, m_{3}} \varepsilon_{1}\left(m_{1}, m_{2}, m_{3}\right)\right) E_{1}^{V}=\mu E_{1}^{V}
$$

This shows that one gets the Bloch variety $\mathcal{B}_{a_{1}}\left(W_{1}\right)$.

5. Related results

The questions posed in the introduction were answered for the operator $-\Delta+V$ in dimension 2 and 3.

Gieseker, Knörrer, Trubowitz have shown that in dimension 2 the Bloch variety is irreducible (in the discrete case [GKT], in the continous case [KT]). Moreover for the discrete model for generic potentials V the Bloch variety determines the potential up to obvious symmetries. This has been generalized by Kappeler in $[\mathrm{K}]$ to higher dimensions.

There exists for the discretized model also using toroidal embeddings an intrinsic compactification of the Bloch variety in dimension 2 and for the Fermi surface in dimension 3 (see [B1], [B2]).

For an overview of these and more stronger results consider [P] .

6. Bibliography

[B1] Bättig, D. A toroidal compactification of the complex Fermi surface. Preprint 1990
[B2] Bättig, D. A toroidal compactification of the two dimensional Bloch variety. Thesis, ETH Zürich 1988
[GKT] Gieseker, D ; Knörrer, H; Trubowitz, E. The geometry of algebraic Fermi curves. To appear
[I] Ikebe, T. Remarks on non-elliptic stationary wavez propagation problems. Japan J. Math. Vol 6, No 2, 1980
[K] Kappeler, T. On isospectral potentials on a discrete lattice II. To appear in Adv. in Appl. Math
[KT] Knörrer, H; Trubowitz, E. A directional compactification of the complex Bloch variety. Comm. Math. Helv. 65 (1990) 114-149
[P] Peters, C. Algebraic Fermi curves (after Gieseker, Knörrer, Trubowitz). Sém. Bourbaki 89 / 90 No 723

