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On resenant scattering for time-periodic perturbations
D.R. YAFAEV
LOMI, Fontanka 27, Leningrad
191011 USSR

1. The energy of a quantum system desribed by a time-dependent
Hamiltonian H(t) is not conserved. However, if a dependence of H(t) on t is periodic, it
can be changed only by some integer number. In other words, the quasi-energy, i.e.
the energy defined up to an integer, is a conserved quantity.

Here we discuss scattering of a plane wave by a time-periodic potential. Due
to the quasi-energy conservation such a process is desribed by a set of amplitudes
S,(A) where 4 is energy of an incident wave (in other terms, of a quantum particle)
and n is arbitary integer. We always decomposeA asA =m+0 wherem € Z is the
entire part of 2 and 6€ [0,1]. Each S_(1) corresponds to a channel when energy is
changed by n-m. Actually, amplitudes Sn(l) for n>0 correspond to outgoing waves
and amplitudes Sn(l) for n<0 correspond to exponentially decaying modes. In some
sense these modes play the role of bound or quasi-bound states for
time- independent Hamiltonians. It means that they represent states which can have
long though finite time of life. Thus exponentially decaying modes are essential for a
detailed picture of interaction of an incident wave with a quantum system but they
do not contribute to the scattering matrix of this process. Qur aim is to study the
transformation of exponentially decaying modes into proper bound states as a
time-periodic perturbation is switched off.

In fact, we shall consider the following situation. Suppose that
H(t) =H +¢V(t) where the Hamiltonian H, has a negative eigenvalue A and the
coupling constant € is small. Physically, it is natural to conjecture that the bound state

of the system with the Hamiltonian H, will give rise to some kind of long-living state
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for the family H(t). Due to the quasi-energy conservation this state is insignificant if
energy A of an incident particle and 2, do not coincide by modulus of Z. However, if
energy A is resonant, that isA-4 =K € Z, then an incident particle can strongly
interact with this quasi-bound state. Therefore the corresponding amplitude
Sm_K(l.e) is expected to be very large for small ¢. Below we will show at the
example of zero-range potentials that this physical picture is correct.

The problem of resonances for time-periodic perturbations was studied earlier
by K. Yajima [1] in a different, more mathematical, framework. Our approach is closer
to physical papers [2]- [5]. In particular, in [5] an attempt was made to study the
amplitudes S, for small time-periodic perturbations. However, the appearence of

resonant energies seems to be neglected in this paper.

2. The Hamiltonian H corresponding to a zero-range potential well of a
2

"depth” h, is defined as H = - d > » X € R, with the boundary condition u'(o) =
dx

-hu(o), h =Hr The operator H >0, if h <0, and it has (exactly one) negative
eigenvalued = —hfwith the eigenfunction exp(-h, x), if h >0. Let H, = ~d%/dx”
with the boundary condition u(o) =o be the "free" Hamiltonian. The scaltering matrix
Sm(l) for the pair H, H, at energy 2 equals
sa) = (h-ia'"?) (h+in'?)™ . (1)

We shall consider zero-range potential well whose depth depends periodically
on time. Mathematically this problem is governed by the equation

du a%u

i—=-— ,XxeR_, (2)

'3t 2
at ax

with the time-dependent boundary condition
u’'(0,t) = h(t) u(o,t), h(t) = h(t), h(t+2r) = h(t) (3)
We will look for solutions of equation (1) which have a representation of the form
~ —iln+0)t

ulxt) = 2 u (x)e (4)

n= - oo n
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where the parameter 6< [0,1]. Such solutions describe a stationary process in the

sense that for any 1€ R

T+2%
)

(zn)"J o dt= X lu (0l (5)

n=-o
T

Substituting (4) into (2) we find that u_(x) should satisfy the equations

—uz (x) = (n+6) u (x), (6)
whose solutions are linear combinations of exponentials. In particular, the solution
corresponding to the incoming wave exp(- ia'”? x),A=m+6, me Z, 6€[o,1[, has

the form

1/2

u (xA) = S__exp (-i2'?x) - S_ () exp (i(6+n)'*x), o

whereSmm=1, Snm =0, if n=zm, and

i(0+n)1/2 = —l9+nll/2

, ng-1.
The terms S (1) exp (i(0+n)""? x) desribe out going waves, if n>0, and they are
exponentially decaying, if n<0.

Equations (6) are coupled by the boundary condition (3) which allows us to
determine the amplitudes S_(). In fact, substituting (7) into (4) and then into (3)

we obtain the equation

(o]

1/2 ~-imt 1/2 -int
“in e ™o Y (8+n) S e R

n=-o0

©0

a e ™ - 3 s ae ™. (8)

Nn=-0 n

Explanding h(t) in the Fourier series and comparing coefficients of e ! we arrive at
an infinite set of algebraic equations for the amplitudes Sn(l).

Note that functions S (1) are continuous in 2 € [m, m+1] for every
m=0,1,2,... Moreover, S (m-0) = S_, (m+0) forall n€Z and m=1,2,...,

3. Below we restrict ourselves to the consideration of the simplest case

h(t) - -h, + 2¢ cost (9)
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Then equation (8) is equivalent to the following system of equations

) 1/2 (o)
(i(6+n) "~ + h]) Sn—e(Sn+1+ Sn_l) = Sn ,NEZ, (10)
where
( 0) .. 1/72 (0) (0)
S, @) =h-ia"",S " (e)=S_, () =-¢ (11)

and S;O) = 0 for In-m| > 2. We emphasize that the amplitudes S_ = S_ (&.¢)

depend on energy A of incoming wave and on the parameter € in (9). It is convenient
(o)

n

to rewrite the system (10) in vector notation. Set s ={S_}, s, ={S_ "}, n€ Z, and
A = diag{i(6+n)"* + h} ,K = T +T*

where T, (T6), = 6 is the shift operator. Then (10) is equivalent to the

n+t"’
equation

(A-€K)s =5, (12)
which can be considered, for example, in the space £, (Z).

In the case € = 0 the function (9) does not depend on t so that equations (10)

become independent and can be easily solved. In fact, S_(,0) = s\t )(JL) and S ) =
0, if n=m, n>0. For negative n the amplitude Sn(l.o) = 0 in case
h, = l0+n|'"2 (13)

and S_(,0) is arbitrary in case h, =10+nl'’. The latter equality is possible only if
h >0and -2 € Z. In this case the function (4) is given by the relation

u(x,t) = (exp(- in'"?x)- st () exp ("% x)) exp (iat)+y exp(—hlx+ih12 t) (14)
with arbitrary Y. The last term in (14) disappears (i.e. Y=0) if h <0 or h >0 and

A-2, & 2

4. Our goal is to study the limit of the amplitudes Sn(l.e) ase — 0. We first
consider the non-resonant case when either h 0 or h >0 and 2-4, ¢ Z. Then
condition (13) holds for all n=-1,-2,... so that the operator A is invertible and (10)
is equivalent to the relation

I-£eA"K)s =A"so

Since K is a bounded operator, for sufficiently small € this equation can be solved by
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iteration :

[e e}

se) = X ¢ (A KA s (e). (5)
p=0

Thus for non-resonant energies AL-2 ¢ Z, the asymptotic expansion of
amplitudes is described by regular perturbation theory. In particular, (15) ensures

In-m]|

that S A.) = ofe ) so that the probability of excitation of states with energies
A+K,KeZ, is proportional to el ki . The amplitude Sm(l.e) converges to the scattering
matrix (1), i.e.

S_(e) = (h-ia'?) (h+in'?)™ + 0e?). (16)
The leading term of the corrections to the case€ = 0 is determined by the amplitudes

s, (e) =-2ie a2 (h+ i @x)"?) T (n+in'?) 7+ 0(e?). (17)

5.1fh >0anda equals one of the resonant points A +K, K €Z, there arises
a non-trivial interaction of the incident wave with the quasi- bound state of the
time-dependent well. This interaction does not vanish in the limite — 0. From the
mathematical viewpoint the problem is due to the appearence of zero eigenvalues of
the operator A. The operator A - €K is invertible for all ¢ > 0 but some of the
matrix elements of (A-¢ K)_l tend to infinity as ¢ — 0. For definiteness we suppose
that 0 <h <1 and 2 approaches the pointd = l—hlz. In this case the resonant
interaction is the most significant. In fact, we shall obtain asymptotic formulas for
S,(.e) which hold uniformly ina€I;= [8,1-8],8 > 0,as € — 0.

To bypass the problem of small denominators which appears now we
distinguish equation (10) with n= -1

(h-(1-2)""%)S_ -€(S, +S_,) = -¢ (18)
where all coefficients vanish as 2 — 4, and ¢~ 0. First we consider only equations in
(10) which correspond to n>0. We shall solve this system with respect to amplitudes
S,»n > 0,withS_ playing the role of a parameter. Since all diagonal elements

, /2 , . .
1(7t.+n)' +h, n > 0, are separated from zero, this system can be solved by iteration

which gives the relation
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S, =(h+ia'"?)”

(eS_, +h_ -ir'"?) (1+0(e)). (19)
We emphasize that quantities as 0(:-:2 ) are uniform in A € Is. Similarly, solving
equations in (10) corresponding to ng -2 with respect to S, ng-2,wefind that
S, =¢(h-(2-2)'")"s_ (1+0?)). (20)
Substituting expressions (19), (20) into (18) we obtain finally the equation
for S_. It follows that

S_e) = 2ie2'?2 ™ (Le) (1+0()). (21)

where

1/2+€ (h-(2 l)l/Z) ](h 1/2)+82

Here we have taken into account that

Q@) = [-h+(1-2)

ke QellgC.
Combining (19) with (21), we find also the asymptotics of S, :

s, (e) = (h-i2"?) (h+in'?)" + 2ie? 2% (h,+in'?

)'e T e)role). (22)
Clearly, IS (&,€)l =1 up to an error of order €.

If 2 is separated from the point 2 , we can replace Q(&.¢) by Q(@,0) which is
not zero. In this case we recover the relations (16), (17) (for m = 0). In the particular

cased =4 we have that

(A,e) = €7 (h, - (1+h)"?) ™ b,
where
b, = 2h, - (1+h)"% + i (1-n)'"
There fore according to (21), (22)
S_&,e) = 2i (1-0)""%(h, - (1+0)'"?) b e + 0(1),

— A
S,(koA) = B, b+ 0(e).
As could be expected, the amplitude S_ (4 .¢) grows infinitely as € — 0. By

virtue of (5) it follows that for the corresponding function (4) and any r>0 the

integral
tends to infinity as € — 0. This is consistent with the decoupling of bound states and
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scattering states in the stationary case € = 0 when, by (14), the integral (23) has
arbitrary value,

The amplitude S,(&,.€) has a finite limit S (&,,0) which is, however, different
from the scattering matrix (1) at energy A, for the time- independent boundary
condition u’(0) = -h u(0). Therefore, at energy A, we find an additional resonant
phase shift which does not vanish in the limite — 0.

6. In stationary problems resonances are usually defined as complex
"eigenvalues" for which the Schrodinger equation has solutions satisfying the outgoing
radiation condition at infinity. Similarly, a compex point A can be called [3] resonant

point for the problem (2), (3) if there exists its solution of the form

u(x,t) = 2 An exp [i(l+n)l/2x - i(n+a)t]

fl=-00

It is easy to see that at such A the homogeneous system of equations

(ia+0)"%+ h) A -e (A, + A _) =0

n+1
should have a non-trivial solution. This system can be studied by the method of
section 5. In the case 0 <h <1 there exist for sufficiently small € resonant points
obeying the relation

A= n-h-267h((1+0)'"% + i(1-0)"?) + 0(e*)
where n is an arbitrary integer. In the limit € — 0 these complex points approach

real points differing froma, = ”h12 by some integer.
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