JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

NICOLAS LERNER

Opérateurs pseudo-différentiels et capacités symplectiques

Journées Équations aux dérivées partielles (1990), p. 1-11

http://www.numdam.org/item?id=JEDP 1990 A19 0>

© Journées Équations aux dérivées partielles, 1990, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

OPERATEURS PSEUDO-DIFFERENTIELS ET CAPACITES SYMPLECTIQUES

Nicolas LERNER

Les résultats de rigidité symplectique établis par Gromov [4], Ekeland et Hofer[1], Sikorav[8], sont liés au principe d'incertitude d'Heisenberg. En effet , l'impossibilité du plongement symplectique de la boule unité de \mathbb{R}^{2n} dans un ensemble du type

$$\{ \; |\; x_1|\;,\; |\xi_1|\; \leq\; \epsilon \;\; ; \quad |\; x'|\;,\; |\xi'|\; \leq\; \epsilon^{-1} \;\; \} \;,$$

reflète l'obstruction à une localisation trop fine sur des axes conjugués. Le principe d'incertitude a été reformulé par Fefferman et Phong [2] , [3] : l'importance d'un ensemble { $(x,\xi) \in \mathbb{R}^{2n}$, $a(x,\xi) \leq \lambda$ } (e.g.pour un symbole classique a d'ordre deux) se jauge au nombre d'images canoniques disjointes du cube unité qu'il peut contenir. Dans [6] , on s'inspirait de cette reformulation pour établir des résultats sur la borne inférieure d'opérateurs de Schrödinger avec champ magnétique et d'opérateurs pseudo-différentiels. Cette approche conduit à considérer des quantités du type

$$\inf_{\chi\in\Phi}\;\; \iint\limits_{\chi(Q_0)} a(x,\xi)\; dxd\xi \;\;,$$

où Φ est une famille de transformations canoniques et Q_0 le cube unité de \mathbb{R}^{2n} . On peut remarquer que l'infimum ci-dessus a des propriétés fonctionnelles analogues à celles de l'inverse d'une capacité symplectique(cf.[1], [9]) ainsi que

$$\inf_{\chi\in\Phi} \ \left\{ \max_{\chi(Q_0)} \ a(x,\xi) \right\} \ .$$

Toutefois, les questions liées aux opérateurs pseudo-différentiels n'amènent pas à considérer toutes les transformations canoniques, mais des plongements symplectiques dont on contrôle les dérivées.

Je suis très reconnaissant à Jean-Claude Sikorav d'avoir eu la patience de m'expliquer quelques résultats de rigidité symplectique. Il a fournit également, avec C. Viterbo, l'exemple exposé au paragraphe 3, à la limite de la rigidité et la flexibilité symplectique.

1. Quelques faits de géométrie symplectique

1.1 Un peu d'algèbre

Soit (E,σ) un espace vectoriel muni d'une forme bilinéaire alternée non dégénérée. Alors, la dimension de E est paire (2n), et il existe une base de E dans laquelle la matrice de σ est $\begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$. On peut identifier cette forme à $\sigma:E\to E^*$, inversible vérifiant $\sigma^*=-\sigma$. Le groupe symplectique est constitué par les isomorphismes de E tels que $\sigma(AX,AY)=\sigma(X,Y)$, i.e. tels que $A^*\sigma$ $A=\sigma$. Rappelons que les générateurs du groupe symplectique sont

1.2 Rappels de géométrie symplectique

Soit (M , ω) une variété symplectique, i.e. la donnée d'une variété C^∞ M et d'une 2-forme ω non dégénérée, fermée . Les exemples classiques sont (\mathbb{R}^{2n} , σ) (vu plus haut), le fibré cotangent ($T^*(X)$, $d\lambda$) où X est une variété C^∞ et λ la 1-forme canonique, les surfaces orientables, les variétés kälhériennes . Etant donnée une fonction $f\in C^\infty(M)$, on définit son champ hamiltonien H_f par l'identité

(1.1) $\omega \sqcup H_f = -df$, où $\sqcup désigne le produit intérieur$. Par ailleurs, pour f et g dans $C^\infty(M)$, on définit leur crochet de Poisson par

(1.2)
$$\{f,g\} = \langle \omega, H_f \wedge H_g \rangle$$
.

La condition $d\omega = 0$ est équivalente à l'identité de Jacobi,

(1.3)
$$[H_f, H_g] = H_{\{f,g\}}$$
.

Notons également que, si X est un champ de vecteurs sur M,

(1.4)
$$\mathcal{L}_{\mathbf{X}}(\omega) = d\omega \perp \mathbf{X} + d(\omega \perp \mathbf{X}) = d(\omega \perp \mathbf{X})$$

$$\begin{split} & (1.4) \qquad \qquad \mathcal{L}_X (\,\omega\,) \,=\, d\omega\,\,\lrcorner\,\,X \,\,+\,\, d(\,\omega\,\lrcorner\,\,X\,) \,=\,\, d(\,\omega\,\lrcorner\,\,X\,) \\ \text{Par suite} & \,\,\mathcal{L}_X (\,\omega\,) \,=\, 0 \quad \text{\'equivaut \'a} \quad \omega\,\lrcorner\,\,X \,\,\, \text{exacte et , en particulier si} \\ \end{split}$$
 $\omega \sqcup X = -da$ i.e. $X = H_a$, on obtient que le flot de H_a conserve ω (c'est encore vrai dans le cas non autonome où la fonction hamiltonienne a dépend de t). Un difféomorphisme C^{∞} χ $(M_1, \omega_1) \xrightarrow{\chi} (M_2, \omega_2)$ est dit symplectique si $\chi^*(\omega_2) = \omega_1$. On dira que χ est un symplectomorphisme (ou une transformation canonique). Le théorème fondamental de la géométrie symplectique locale est le

Théorème 1.1(Darboux, voir [10]) Une variété symplectique (M , $\boldsymbol{\omega}$) de dimension 2n est localement symplectomorphe à \quad (\mathbb{R}^{2n},σ) .

Notons également qu'un symplectomorphisme est un difféomorphisme C^{∞} préservant les crochets de Poisson: $\chi^* \{ f, g \} = \{ \chi^* (f), \chi^* (g) \}$.

1.3 Rigidité symplectique

Les obstructions au plongement symplectique autres que celles qui tiennent à la topologie ou au volume (un plongement symplectique préserve ω^{n}) constituent la rigidité symplectique. Un théorème de Gromov [4] fournit un exemple, lié par ailleurs à une question de Fefferman et Phong (§ 7.2 de [3]).

Théorème 1.2 (Gromov [4], voir aussi Ekeland-Hofer [1]) Si la boule B $^{2n}(r)$ = { $(x_1$, ξ_1 ,, x_n , ξ_n) $\in \mathbb{R}^{2n}$, $\sum_{j=1}^n x_j^2 + \xi_j^2 \leq r^2$ } se plonge symplectiquement dans le cylindre d'équation $x_1^2 + \xi_1^2 \leq s^2$, alors $r \leq s$.

Notons que, mis à part le cas trivial n=1, il ne s'agit pas d'une obstruction due au volume et que, d'autre part, il n'y a pas de restriction pour le cylindre "horizontal":

En utilisant le théorème précédent et l'invariant de volume, on obtient le

Corollaire 1.3

Les produits
$$B^2(r_1) \times B^2(r_2) = \{ (x_1, \xi_1, x_2, \xi_2) \in \mathbb{R}^4 ; x_1^2 + \xi_1^2 \le r_1^2, x_2^2 + \xi_2^2 \le r_2^2 \}$$
 dans (\mathbb{R}^4, σ) , avec $r_1 \le r_2$, sont symplectiquement distincts.

Ces résultats sont liés , au moins heuristiquement , au principe d'incertitude abondamment décrit et reformulé par Fefferman[2]. En effet, le plongement canonique de la boule unité de \mathbb{R}^{2n} dans un ensemble du type du cylindre "vertical" { $x_1^2+\xi_1^2\leq\epsilon^2$ } induirait une localisation trop fine sur des axes conjugués x_1 , ξ_1 et violerait le principe d'incertitude. La preuve d'Ekeland et Hofer repose sur la construction d'une capacité symplectique i.e. d'une fonction croissante c définie sur les parties de \mathbb{R}^{2n} telle que, pour tout symplectomorphisme χ , et toute partie S de \mathbb{R}^{2n} , on ait $c(\chi(S))=c(S)$ ainsi que $c(B^{2n}(1))=c(B^{2n}_{\chi_1,\xi_1}(1))$ La construction de telles

fonctions est non triviale, et notre motivation ici est de montrer que l'analyse pseudo-différentielle fournit des expressions analogues à des capacités symplectiques.

2. Opérateurs pseudo-différentiels

2.1 Généralités

On considère une fonction $a(x,\xi) \in C^{\infty}(\mathbb{R}^{2n})$ telle que

$$|D_{\xi}^{\alpha}D_{x}^{\beta} \ a(x,\xi)| \leq C_{\alpha\beta} \left(1+|\xi|\right)^{2-|\alpha|}.$$

On lui associe un opérateur a w par la quantification de Weyl :

(2.2)
$$(a^{W} u)(x) = \iint e^{i\langle x-y,\xi\rangle} a(\frac{x+y}{2},\xi) u(y) dy d\xi$$

Diverses microlocalisations amènent à considérer des classes plus générales de symboles , associées à des métriques sur l'espace des phases : pour tout $(x,\xi)\in\mathbb{R}^{2n}$, on se donne $g_{x,\xi}$, une forme quadratique définie positive. On dit

que
$$a \in S^{\mu}(g)$$
 si

$$(2.3) \qquad | \ a^{(k)}(X) \ (\ T_1 \ , \ldots, \ T_k \) \ | \ \leq C_k \ \lambda(X)^{\mu} \ g_X^{}(T_1)^{1/2} \ \ldots \ g_X^{}(T_k)^{1/2} \ ,$$
 avec $X = (x,\xi) \ , \ T_j \in \mathbb{R}^{2n} \ ,$

(2.4)
$$\lambda(X) = \inf \frac{g_X^{\sigma}(T)}{g_X(T)}$$
, $g_X^{\sigma}(T) = \sup_{g_X(U) = 1} \sigma(T, U)^2$.

En particulier, si $g_{x,\xi}(t,\tau) = \frac{|t|^2}{\phi(x,\xi)^2} + \frac{|\tau|^2}{\Phi(x,\xi)^2}$, $a \in S^{\mu}(g)$ signifie que

$$|\operatorname{D}_{\xi}^{\alpha}\operatorname{D}_{x}^{\beta}\ a(x,\xi)\,|\,\leq \operatorname{C}_{\alpha\beta} \overset{\mu\text{-}\,|\beta|}{\phi(x,\xi)} \overset{\mu\text{-}\,|\alpha|}{\Phi}_{(x,\xi)} \quad,$$

avec en outre
$$g_{x,\xi}^{\sigma}(t,\tau) = \Phi(x,\xi)^2 |t|^2 + \phi(x,\xi)^2 |\tau|^2$$
 et $\lambda = \phi \Phi$

Les résultats de Hörmander ([5], ch.18) montrent qu' on dispose d'un calcul pseudo-différentiel et de continuité si la métrique satisfait les trois propriétés suivantes.

(2.5) Il existe
$$C > 0$$
 telle que , pour X , Y dans \mathbb{R}^{2n} ,
$$g_X^-(X-Y) \leq C^{-1} \quad \text{implique } g_Y^- \leq C \; g_X^-.$$

(2.6) Pour tout X de
$$\mathbb{R}^{2n}$$
, $g_X \leq g_X^{\sigma}$.

(2.7) Il existe
$$C > 0$$
 et N tels que ,pour X , Y dans \mathbb{R}^{2n} ,

$$\mathsf{g}_{\mathsf{X}} \leq \mathsf{C} \ \mathsf{g}_{\mathsf{Y}} \left[\ 1 + \ \mathsf{g}_{\mathsf{X}}^{\sigma}(\mathsf{X}\text{-}\mathsf{Y}) \ \right]^{\mathsf{N}}.$$

La condition (2.6) est évidemment liée au principe d'incertitude, et garantit que les axes conjugués de localisation ont un produit borné inférieurement; pour X fixé dans \mathbb{R}^{2n} , on peut trouver une base symplectique telle que

$$g_X(t,\tau) = \sum_{j=1}^n \lambda_j^{-1} (t_j^2 + \tau_j^2)$$
. La condition (2.6) signifie que inf $\lambda_j \ge 1$. La fonction

 λ (2.4) est importante pour le calcul symbolique : elle représente le "gain" du calcul et assure par exemple que le commutateur de deux opérateurs d'ordre 1 (i.e. dont les symboles sont dans $S^1(g)(2.3)$) est un opérateur d'ordre 1 .

2.2 Classe propre d'un symbole

Si a est un symbole d'ordre μ pour une métrique G (cf(2.3)) satisfaisant (2.5-2.6-2.7), on peut construire une métrique g, conforme à G, telle que $G \leq g$ et satisfaisant les propriétés (2.5-2.6-2.7) telle que l'une des dérivées d'ordre $<\mu$ de a soit elliptique dans ce nouveau calcul. Cette construction, introduite par Fefferman et Phong , a fourni une preuve d'une inégalité de Gårding avec gain de deux dérivées ([3] et th.18.6.8 dans [5]). La nouvelle classe, obtenue par un découpage de Calderon-Zygmund , dépend du symbole a de départ . Si μ = 2 , on peut construire g de la manière suivante : on pose

(2.8)
$$\lambda(X)^{2} = \max_{0 \le k \le 3} (1, \|a^{(k)}(X)\|_{G_{X}}^{\frac{4}{4-k}} \Lambda_{G}(X)^{\frac{-2k}{4-k}}),$$

où Λ_G est donnée par (2.4) pour la métrique de départ G et avec

(2.9)
$$\|a^{(k)}(X)\|_{G_X} = \sup_{T,G_X(T)=1} |a^{(k)}(X)T^k| .$$

On définit alors la nouvelle métrique $g_{_{\mathbf{X}}}$ par

(2.10)
$$g_X = \Lambda_G(X) \lambda(X)^{-1} G_X$$
.

On vérifie alors la proposition suivante (proposition 3.3 dans [6]), en supposant que la métrique de départ G satisfait les conditions (2.5-2.6-2.7).

Proposition 2.1

La métrique g définie par (2.10) vérifie (2.5-2.6-2.7) et la formule (2.4) donne $\lambda_g(X) = \lambda(X), \text{ où } \lambda \text{ est donné par (2.8)}. \text{ Le symbole a appartient à } \text{ } \text{S}^2(g) \text{ .}$

L'intérêt d'une telle microlocalisation réside dans le fait que , dans cette nouvelle classe, le symbole a, ou l'une de ses trois premières dérivées, est elliptique ,i.e. est un symbole de S^{μ} équivalent à λ^{μ} , pour μ convenable .

2.3 Borne inférieure d'opérateurs pseudo-différentiels

En utilisant la proposition 2.1 et des hypothèses de non-négativité du symbole ou des moyennes du symbole, on obtient des inégalités de Gårding

précisées (cf. [3], [6]). On se bornera à citer ici le théorème 1.1 de [6]. On considère l'opérateur de Schrödinger avec champ magnétique,

(2.11)
$$P = \sum_{j=1}^{n} (D_{x_{j}} - A_{j}(x))^{2} + V(x) ,$$

où $D_{x_j}=\frac{1}{i}\;\frac{\partial}{\partial x_j}$, et A_1 ,..., A_n , V sont des polynômes réels de degré < m . Le symbole de Weyl de l'opérateur est

(2.12)
$$p(x,\xi) = \sum_{j=1}^{n} (\xi_{j} - A_{j}(x))^{2} + V(x) .$$

On note Φ le groupe de transformations canoniques de \mathbb{R}^{2n} suivant : $\chi \in \Phi$ si

(2.13)
$$\chi(x,\xi) = (x_0 + \lambda x, \lambda^{-1}\xi + \nabla \phi(x)),$$

où $x_0 \in \mathbb{R}^n$, $\lambda > 0~$ et $~\varphi~$ est un polynôme réel de degré $\leq m$. On a alors le

Théorème 2.2 (th. 1.1 de[6])

Pour tout entier m, il existe $\delta_m > 0$ vérifiant la propriété suivante . Si le symbole p , donné par (2.12) ci-dessus , est tel que ,pour tout χ de Φ ,

(2.14)
$$\iint (p_0 \chi)(y, \eta) \ dy d\eta \ge 0$$

$$\max(|y|, |\eta|) \le \delta_m$$

alors l'opérateur P, donné par (2.11), est non-négatif.

La condition ci-dessus signifie que , pour obtenir la positivité de l'opérateur P, il est suffisant de requérir la positivité de moyennes du symbole sur des images canoniques du cube unité. L'infimum des quantités (2.14) pour χ décrivant Φ apparaît comme équivalent à la borne inférieure du spectre de l'opérateur P. En d'autres termes, pour que la quantification de p soit positive, il n'est pas nécéssaire que p ne prenne que des valeurs positives , mais il suffit qu'une certaine capacit'e de l'ensemble de négativité de p soit "petite". En effet , pour $a \in C^\infty(\mathbb{R}^{2n})$, la quantité

(2.15)
$$\inf \int \int a(x,\xi) dxd\xi,$$

$$\chi \in \Phi \chi(Q_0)$$

où Q_0 est le cube unité de \mathbb{R}^{2n} , et Φ une famille de transformations canoniques, apparaît comme l'inverse d'une capacité symplectique de l'ensemble $\{(x,\xi): a(x,\xi) \leq 1\}$. Lorsqu'on considère des transformations canoniques ne préservant pas la classe du symbole a, il est préférable d'utiliser

(2.16)
$$\inf_{\chi \in \Phi} \left\{ \max_{\chi(Q_0)} a(x,\xi) \right\} .$$

Les quantités (2.15) et (2.16) fournissent des capacités pseudo-différentielles liées à la famille Φ considérée, et par conséquent au groupe d'invariance associé. L'exemple du paragraphe suivant, dû à Jean-Claude Sikorav et à Claude Viterbo [7], constitue un exemple frappant de l'incidence de la famille Φ sur la quantité (2.15).

3. L'exemple de Sikorav et Viterbo

3.1 Enoncé

Théorème 3.1

Soit n entier ≥ 2 . Pour tout $\epsilon > 0$, il existe un symplectomorphisme χ

de
$$(\mathbb{R}^{2n}, \sigma)$$
 tel que
$$(3.1) \qquad \int_{\chi(Q)} (x_1^2 + \xi_1^2) \ \sigma^n < \epsilon ,$$
 où $Q = [0, 1]^{2n}$.

Soient N un entier ≥ 1 et $\delta \in \]0$, 1/2[. On a $Q = \bigcup_{\alpha \in A} Q_{\alpha}$, où A est l'ensemble des multi-indices à coordonnées entières (α_1 , α_2 , ... , α_{2n}) tels que $~0 \leq \alpha_j < N$ et

(3.2)
$$Q_{\alpha} = \prod_{j=1}^{2n} \left[\frac{\alpha_j}{N}, \frac{\alpha_j + 1}{N} \right] .$$

On pose

(3.3)
$$Q'_{\alpha} = \prod_{j=1}^{2n} \left[\frac{\alpha_j + \delta}{N}, \frac{\alpha_j + 1 - \delta}{N} \right].$$

On construit dans le paragraphe suivant une isotopie hamiltonienne $\chi_t \in \text{Symp}(\mathbb{R}^{2n})$, $0 \le t \le 1$, $\chi_0 = \mathrm{id}$, telle que

(3.4) pour tout
$$t \in [0, 1]$$
, supp $\chi_t \subset]0, 1[^2 \times \mathbb{R}^{2n-2} = C_1]$,

(3.5) pour tout
$$\alpha \in A$$
, $\chi_1(Q'_{\alpha}) \subset]0$, $1/N[^2 \times \mathbb{R}^{2n-2} = C_{1/N}]$.

Dans ces conditions, on a , avec $Q' = \bigcup_{\alpha \in A} Q'_{\alpha}$, $\chi_1 = \chi$,

$$\begin{split} \int_{\chi(Q)} (x_1^2 + \xi_1^2) \ \sigma^n &= \int_{\chi(Q')} (x_1^2 + \xi_1^2) \ \sigma^n \ + \ \int_{\chi(Q \setminus Q')} (x_1^2 + \xi_1^2) \ \sigma^n \\ &\leq 2 \ N^{-2} + 2 \ |\chi(Q \setminus Q')| \leq 2 (N^{-2} + 2\delta \, (2n+1)) \ , \end{split}$$

qui peut être rendu arbitrairement petit.

3.2 Construction de χ_t

Pour tout multi-indice α de A , on considère la translation de $\mathbb{R}^{2n},\ \tau_{\alpha,t}$ définie par

(3.6)
$$\tau_{\alpha,t}(X) = X - \frac{t}{N} v^{(\alpha)},$$

avec

(3.7)
$$v_1^{(\alpha)} = \alpha_1$$
, $v_2^{(\alpha)} = \alpha_2$, $v_3^{(\alpha)} = -R_{\alpha}\alpha_1$, $v_4^{(\alpha)} = -R_{\alpha}\alpha_2$,

avec, en ordonnant A lexicographiquement,

(3.8)
$$R_{\alpha} = N(2\delta)^{-M_{\alpha}-1}$$
 , $M_{\alpha} = \# \{ \beta \in A, \beta < \alpha \}$.

On peut remarquer que

(3.9)
$$R_{\alpha} \ge N (2\delta)^{-1}$$
, $\beta < \alpha$ implique $R_{\beta} < R_{\alpha}$ et $R_{\beta} \le 2\delta R_{\alpha}$.

On vérifie alors que

(3.10) pour tout
$$\alpha \in A$$
, $\tau_{\alpha,0} = id$, $\tau_{\alpha,1}(Q'_{\alpha}) \subset C_{1/N}$,

$$(3.11) \ \text{pour tout} \ \alpha \in A \ \text{et tout} \ t \in [0,1] \qquad , \qquad \tau_{\alpha,t} \left(Q_{\alpha}^{'} \right) \subset C_{1} \quad ,$$

$$(3.12) \text{ pour tout } \alpha \in A \text{ et tout } t \in [0,1] \text{ ,} \\ \tau_{\alpha,t}(Q_{\alpha}^{'}) \cap \{ \underset{\beta < \alpha}{\cup} (Q_{\beta}^{'} \cup \tau_{\beta,1}(Q_{\beta}^{'})) \} = \emptyset \text{ .}$$

On prolonge alors $\, \tau_{\alpha,t} \,$ à l'extérieur de $\, Q_{\alpha}' \,$ en une isotopie hamiltonienne $\, \phi_{\alpha,t} \,$ telle que

$$(3.13) \ \text{pour tout} \ \alpha \in A \ \text{ et tout } t \in [0,1] \ , \ \text{ supp } \ \phi_{\alpha,t} \subset C_1 \setminus \underset{\beta < \alpha}{\cup} (Q_\beta' \cup \tau_{\beta,1}(Q_\beta')) \ .$$
 On a , avec $M = N^{2n}$, $\alpha^{[1]} < \alpha^{[2]} < ... < \alpha^{[M]}$ et on pose $\Phi_{\mu,t} = \phi_{\alpha^{[\mu]},t}$ ainsi que
$$(3.14) \ \chi_t = \Phi_{M,t} \circ \Phi_{M-1,t} \circ \circ \Phi_{1,t} \ .$$

C'est une isotopie hamiltonienne à support dans C_1 .En outre les propriétés (3.12) et (3.13) impliquent , par récurrence sur α , que

(3.15) pour tout
$$\alpha\in A$$
 ,
$$\chi_1(Q_\alpha^{\,\prime}\,)\,=\,\tau_{\alpha,1}^{\,}(Q_\alpha^{\,\prime}\,)\ ,$$
 ce qui prouve (3.5) .

References

- [1] Ekeland I. et H.Hofer: Symplectic topology and hamiltonian dynamics I, Math.Z.200(1989) 355-378.
- [2] Fefferman C.L.: The uncertainty principle, Bull.AMS 9,129-206, 1983.
- [3] Fefferman C.L. et D.H.Phong: The uncertainty principle and sharp Gårding inequalities, CPAM 34, 285-331, 1981.
- [4] Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds, Invent. Math.82(1985) 307-347.
- [5] Hörmander L.: The analysis of linear partial differential operators, 4 volumes, Berlin Heidelberg New-York Tokyo, Springer 1985.
- [6] Lerner N. et J. Nourrigat: Lowerbounds for pseudo-differential operators, à paraître, Ann. Inst. Fourier.
- [7] Sikorav J-C.: Communication personnelle.
- [8] Sikorav J-C. : Rigidité symplectique dans le cotangent de \mathbb{T}^n , Duke Math. Journ., 59,n°3, 1989, 759-763.
- [9] Viterbo C.: Capacités symplectiques et applications, Sem. Bourbaki, 88-89, 714, Astérisque 177-178, 1989, 345-362.
- [10] Weinstein A.: Lectures on symplectic manifolds, CBMS, Reg.Conf.Ser.Math.29, AMS, Providence, 1977.