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CONFERENCE N° V

ON THE POLES OF THE SCATTERING MATRIX

FOR TWO CONVEX OBSTACLES

by Mitsuru IKAWA

§1. Introduction.

Let @ be a bounded open set in R> with smooth boundary T'. We

set Q = R3 - E; . Suppose that @ is connected. Consider the

following acoustic problem

_0%u .
[Juix,t) =——==- du = 0 in Qx (~», )
(1.1) ot
u(x,t) =0 on I'X(=w, =)
3
where A = I 32//% 2 . Denote by .£(z) the scattering matrix for
4=1 Xj

this problem. About the defintion of the scattering matrix, see

for example Lax and Phillips[7,page 9]. The result I like to

talk about is the following

Theorem 1. Let 195, j=1,2, be open and strictly convex sets
in R™ with smooth boundary Fj, that is, the Gaussian curvature
of Fj is positive everywhere on Fj‘ Suppose that cﬁ_f\ C}é = ¢.

Then the scattering matrix 8(z) for
O =0,n0,
satisfies the following:

(1) There exist positive constant o and cy such that ,g(z)

is holomorphic in



(o]
{z; Imzsco+cl}— "/ Dj

j=-oo
where

D. = {z; |z - zj|$(:(l+|j|)'l/2},
= I _oas
z; = icg + —37 3, d = dis( G ., 65).

(2) For large |j|, every Dj contains exactly one pole of ag(z).
(3) Denoting the pole in Dj by Cj we have an asymptotic expan-
sion

-1 =2 .
(1.2) Ly o~ Zg b B3 4 By 4 e for [J|—> =

where Bl, 82,-~-.- are complex constants determined by G .

(4) In Dj £(z) is of the form

(1.3) B(2)f = —=—(£,p.)m, + . (2)f
z Cj J ] J
2,.2 2,.2
for all feL“(S°), where mj, wj € L7 (S”) such that mj#O, wj¢o
and (¢,¢) stands for the scalar product in LZ(SZ), and )fj(z) is

an SC(Lz(SZ),Lz(SZ))ll valued holomorphic function in Dj‘

Concerning the existence of non-purely imaginary poles of
48(z), Bardos, Guillot and Ralston[l] proved under the same as-
sumption as ours the existence of an infinite number of the poles
in

{z; Im z € elog(l+]|z]|)}
for any €>0. This result is generalized by Petkov[1l] and Petkov
and Stojanov[1l2] to a case of many strictly convex obstacles. For

non-strictly convex obstacles Ikawa[5] showed an example of two

1) We denote by J(E,F) the set of all linear bounded mappings
from E into F.



convex obstacles whose scattering matrix has a sequence of the

poles converging to the real axis. On the other hand Lebeau[9]
considered the distribution of poles for one strictly convex

obstacle.

§2. Reduction of the problem.

Consider a boundary value problem with a parameter uec

(u2 - Au(x) =0 in @
(2.1)
u(x) = g(x) on T

for ge c”(r). For Reu» 0 (2.1) has a solution u uniquely in
/\on(Q). We denote the solution by U(u)g. Then U(u) is hol-

m>

omorphic in Reu> 0 as an Jﬁ(Cw(F),Cm(ﬁ))—valued functon. We shall

show the following theorems on U (u).

Theorem 2.1. (i) U(u) is prolonged analytically as an

Z(c”(m,c” @))-valued function into

{Reu Z -co—cl} - j:;; iDj.

(ii) Set for keR
!

6 = {ne€; |utik|< cpte;, Reuy —cy-(log (1+|k[))~

Then for large |k|, U(u) is represented in Gk N {Rey > 0} as

(2.2) U = KW ey 4 vk, .
P (1) -y (k,u)
Here
(a) B(e,k,u) is C”(R)-valued holomorphic function in Gy -

(b) PH) =1 %M, o<, X<,



(c) For any N positive integer

-2 . h -N
(k,u) - ) z k +ik < C.lk
v e 1< Q<N osk«uyzrh (wrik) ™ | < Nl |

where Y, p are complex constants.
’

(d) F(k,u) is an ;C(LZ(F),C)-valued holomorphic function in Gk'
(£) v(k,u) is an ;[(CM(P),Cm(ﬁ))-valued holomorphic function
in Gk'

Corollary. U(u) is prolonged analytically as .L(cw(r),cm(ﬁ))

valued function into

J (G - {u: P)-v(k,u)=0}).
|k|:1large

Theorem 2.2. Suppose that € Gy and P (u)-v(k,n)=0 for |k|

large.Then we have

dim{u; p-outgoing solution of (2.1) for g=0} = 1.

Note that the zeros of P (u)=0 are {izj, j=0,+1,4+2,++++-} and

S (PG = (k) > a - c|k| L.

—ig |
u 1zj
ISR
d

in iDj and it is simple. Denote it by iCj and we see that Cj has

By setting k=-=-3j we have that @P(u)-v(k,u)=0 has only one zero
an asymptotic expansion (1.2).

Theorem 1 is immediately derived from Theorems 2.1 and 2.2 if
we recall the relationships between S (z) and U(y) shown in Lax
and Phillips[7], especially Theorem 5.1 of Chapter V, which says
that -£(z) has a pole at exactly those points z such that u=iz

is a pole of U(u).



§3. Sketch of the proofs of Theorems 2.1 and 2.2.

3.1. Asymptotic solutions for oscillatory boundary data.

Let ajeIE be the points verifying

la; - a,| = dis( Gﬁj o3) .
Denote by Sj(é) for § >0 a connected component containing aj of
Sj N {x; dis(x,L) = §}

where L is a straight line passing a, and ays and denote by w(d)
a domain surrounded by {x;dis(x,L)=6} and Sj(d), j=1,2. Let
Uk(x) be a smooth function satisfying

1 for }{GSl(kae)

v, (x) =
k 0 for x &S, ((1+8)k™°)

for some §>0, €> 0 small constants. Let h(t)ec°°(o,d/2)

satisfying h(t)2 0 and [h(t)dt = 1. Set
(3.1) m(x,tik) = eXWE ) Lk (-5 (%))

wherelpe(fWSl(Go)) is a real valued function satisfying some

conditions and j(x) a fixed smooth function determined by c.

We construct a sequence of functions of the form

ik( P (x)-t) N .
! T v, _(x,t:k) (ik) 2.
=0 J.4

(3.2) uq(x,t;k) = e ;

(1) fﬂq, g=0,1, »»+« are determined successively by
Vel =1 in w(6)

?0 = | and ’3?0/3n> 0 on Sl(a)l



|vo:.gl| =1 on w(§)
91 = 90 and a?l/an >0 on s,(8),

Ve, =1 on w(§)

992 = 91 and 8{{’2/3n >0 on Sl(G),

(II) On amplitude functions.

Set'

9
q ot S?q ?q
Vo,q gq=0,1,2, » < -- are defined successively by
’
TOVO,O =0 in  w(§)xR
Vo,0 = f(x,t) on r, xR

where f(x,t)=w(x)h(t-j(x)), and for p21

T2p-lV0,2p-1 =0 in w(8) xR
Vo,2p-1 = Vo,2p-2 on Ty R,
T2pV0,2p =0 in w () xR
VO,Zp = vy (x)vo,zp_1 on I‘IXR.

Next for j2 1, vj q’ q=0,1,2,--+ are defined successively for
’

all p>0 by

[V5,2p = ° on FyRs
Top+1Vy,2p+#1 = O Vio1,0pe1 im0 w(OR
V3,2p41 T Yy, 2p on I



On the asymptotic behavior of ?&, vj q for g—> 00, we have the
14

following Lemmas.

Lemma 3.1. It holds that

2
| @op = (B .+ 2dp + dp) | < c P

- (& 2p
| 5°2p+1 (@ + (2ptl)d + dp) | < C o

~

where ¢ _, @ _ are functions independent of ¥, and they verify

Ive | =1 in  w(8) and P(a;)=0,

lV@Fw] 1 in  w(8) and gﬂa2)=0,

and d0 is a constant depending on ¥, o is a positive constant € 1.

Lemma 3.2. It holds that

o - ’./p - _. — o
|Vj'2p(x,t,k) bw (A) (A7) vj’w(x,t 2pd-j (A)-d_;k) Im

-~

¥\ P
< Cj’m(akk) Mm+2j,

. — ~ p N — -' -— .
|vj,2p+l(x,t,k) bw () (X)) vj,oo(x,t 2pd-j (A)-d_;k) |m

< C. (aXn)Pm
,m m

-3 +23,

where A,’X are constants determined by 0" such that 0<.A,'X<Ll,

M, = Ktz sup |DB t |,
|8|<2 xm X7
~ .
V. and v. are functions of the form
Ja® J®
2] (2) .
Vi, e (Xetik) = 2 a5 o (xR (E-5 (%)),
2j
V,etotm = 20 & eon® @Tm),

and b is a constant depending on y, A is a point in 81(6) depend-

ing on V.



Remark that we have

ik (P_-t)

Oug=e ¢ (ik) N

N,q

Next we construct by a usual method asymptotic solutions for

DQu=20 in wXxR
(3.3)
u = (l-Uk(x))uzp(x,t;k) on T,xR
. . , ,
Denote the asymptotic solution by u2p' Extend [](u2p+u2p) and

E3u2p+l by a fixed manner into (9 so that these are smooth in

R%(R, and de note by u& the solution of

! . 3
Ou - D(uq + uq) in R™XR
u=20 for t< 0
where we set uép+l=0. By taking account of the continuity from
uq to ué and u& we have a Lemma of the type Lemma 3.2 on the

convergence of ué and u&. Set

r =u_+u' + u"
q q d q

and we have

Lemma 3.3. It holds that

|r2p(x,t;k) - pw(n)e ik (I (R)+d,) ikdg ()P

m+1

~—

e r, (x,t-2pd-3 (A)-d_;k) | < cm(ax'X)P K

|2ppey (k1K) = bu(m)e O BIH) Gikdy ()P

~
cE, (x,t-2pd-3 (B)-d_;k) | _ < C_(aah)P k™1,

where r_, ?; are functions independent of y and w.



Set
> q
t=0 g
Evidently it holds that
Or =0 in QxXR.

We consider the Laplace transformation of r in t, that is,
(3.4) Llx k) = [e " (x,t;k)dt.
We have from Lemma 3.3 the following

Proposition 3.4. Let Reu>» 0. Then (3.4) converges and we

have a representation of ?(x,u;k)

(3.5)  T(x,u;k)

= (3 (A)+d,) (u+ik)

= bw(A)e etkdo P(u)-l r (x,u;k) + s(x,uik),

where ?;(x,u;k) is an entire function in 1y independent of y and

w, and ng,u;k) is holomorphic in Rep > -Cy=Cyq - Moreover we have

on Fl

Dix,usk) - e WFK)IIG) J3kb(x) 0B (1rik)

L oikdg a3 (B)+dw) (uik)

(x) £ % (x) (ik) ]

k 1€)$N oghsN

aj’h
.. h o . -1
x (u+ik) " h(u+ik) + al(x,k,u)} P(u) + e (x,u5k),

and on F2

ikd0——-—]-'—— bw(A)e

P

where aj h(x) are smooth functions on Sl(d), a, and a, are entire
14

functions independent of ¢y and w having an estimate

?(x,p;k)=e = (3 (R)+dw) (utik) az(x,k,u) + ez(x,k,u),

N
s p. a ( 7 4 ) — r]’,]z I I



10

and e and e, are holomorphic in Reu)»-co—cl and satisfy

|k]'1 on sl((1+6)|k|'l)
|eq (xixim¢

XI™  on TN s (1) [x]7h,
Iez(x,k,uﬂ < |k|_N on T,.

3.2. Reduction to an integral equation on Fl.

Suppose that T1 is represented as x(o)=(ol,02,x3(ol,02)) near

a Let g(x)ecg(sl(do)). Then

lt

g(x(0)) = (2m) 2 [e1K9°& T (xe)k2ac

2

(2m) "2 wix(o)) [eX9 85 (ke)x2ac
where w(x) ecg(sl(ZGO)) such that w(x)=1 on Sl(éo), and‘
5(E) = fe 9" 85 (x(0))do.

If we define ﬁl(k,u) an operator from Lz(sl(ao)) into ¢”(R) by
(T (w9 () = (2m) 72 fu(x, &5k, )8 (ke) kdg

where u(x,£;:;k,u) denotes ?(x,u,k)/ﬁ(u+ik) constructed for Y (x(o))
=0+&. Then we have from Proposition 3.4

Proposition 3.5. ﬁl(k,u) is of the form

~ T, (x,u5k)
(3.6) U, (k,u)g = “"}57;7—- Fy(k,u)g + s(k,u)g

where
(3.7) Fo(k,u)g =(21T)—2 fb(E)W(A(E;))e-(J (A(g))+d_(&)) (u+ik)

. eikdo (&) g(ki)kzdg,



11

S(k,u) is I(Lz(sl(éo)) ,Cm(ﬁ))-valued holomorphic function in

Reu>'—co—cl. Moreover it holds that

(3.8) w? - mTg =0 in @,
(3.9) ﬁlg =g - k) Fo(k,u)g - E(k,u)g on T,
Pw)
(3.100 U9 = T Oe,k,u) Fo(k,m)g + E(k,m)g on T,
P )
(3.11)  Ja(x,k,WFyk,w)gl € clk|™" Ngllyz o)
(3.12)  NEG,wallz o,y € k™ laligz p,,,

~ -N
(3.13) [T, kTP (k,w gl < Clk| T faligz (p,y»
-N
(3.14) llE(k:U)g“LZ (T,) < Clkl “g“LZ (T'y)
Note that the solution U2h of
2 . .
J(u - ANMu=0 in R - C?é
1 u =h on T
is continued into {u;Reu =-a log(|u|+1)} for some a>0. Then
~ ~
U, (k,u)g = U; (k,u)g - Uz(“)(Ul(k'“)glrz)

is also of the form (3.6) and satisfies (3.8), (3.9), (3.11l) and
(3.12), and

(3.10)" Ul(k,u)g =0 on T
Remark. We can extend the definition of Ul(k,u) for any £

€ Lz(rl) by using the argument in §8 of [2]. Hereafter we denote

by Ul the extended one.



12

3.3. Representation of U(y).

Lemma 3.6. Let H and E be linear operators with ||HI|,IEll< 1/2.

Then we have

(I-H-E)-l=I+ 171+ 5’2,

where
Zl=3*[+){5+)'[EM+MBHE+---- '
T, = E+ER+ERE+EREM+ -+,
¥ -E+E>+E 4«00, ,
M=n+u2+md+....
Pose
H(k,p)g = 2KeKon) Fo(ksu)g.
P (u)

An application of the above lemma gives

1

(3.15) (I -H=-E) "= (I+E) (Bt Fo(I +E)

Pl) -y

where

'Y(kll-l) = FO (klU) ((I+ z(krl-l) )a(.lklu) ).

Evidently we have in Reu> 0

(3.16) U(p) = Ul(k,u)(I—H(k,u)-E(k,u))_l-
Then a substitution of (3.15) into (3.16) gives

r (x,k,n
U(p) = P (0 v (k, 1) Fo(k,u) (I+ E(k,u)) + S(k,u) (I+ E(k,u)).

By posing

F(kll.l) = FO (k,u) (I+ B(kIU)) I}



13

V(k,u) = S(k,u) (I + E(k,u)),

we have a representation (2.2).

References

[1] C.Bardos, J.C.Guil;ot and J.Ralston, La relation de Poisson
pour 1l'équation des: ondes dans un ouvert non borné. Appli-
cation & la théorie de la diffusion, Comm. Partial Diff.
Equ., 7(1982), 905-958.

[2] M.Ikawa, Decay of solutions of the wave equation in the
exterior of two convex obstacles, Osaka J.Math., 19(1982),
459-5009.

[3] ———, On the poles of the scattering matrix for two
strictly convex obstacles, J.Math.Kyoto Univ., 23(1983),
127-194.

[4] ————, On the poles of the scattering matrix for two
strictly convex obstacles: Addendum, J.Math.Kyoto Univ.,
23(1983),795-802.

[5] ———, Trapping obstacles with a sequence of poles of the
scattering matrix converging to the real axis, to appear in
Osaka J.Math.

[6] ———, Precise informations on the poles of the scattering
matrix for two strictly convex obstacles, in preparation.

[7] P.D.Lax and R.S.Phillips, Scattering theory, Academic Press,
New York, (1967).

[8] + A logarithmic bound on the loca-
tion of the scattering matrix, Arch.Rat.Mech.and Anal.,
40(1971), 268-280.

[9] G.Lebeau, to appear.

[10] R.Melrose, Polynomial bound on the distribution of poles
in scattering by obstacles, Journées "Equations aux dérivées
partielles", Soc.Math.France, (1984).



14

[11] V.M.Petkov, Propriétés génériques des rayons réfléchissants
et applications aux problémes spectraux, Séminaire Bony-
Sjostrand-Meyer, 1984-1985, Exposé n°XII.

[12] V.M.Petkov and L.Stojanov, Periods of multiple reflecting

geodesics and inverse spectral problems, preprint.



