JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

MITSURU IKAWA

On the poles of the scattering matrix for two convex obstacles

Journées Équations aux dérivées partielles, nº 1 (1985), p. 1-14 http://www.numdam.org/item?id=JEDP 1985 1 A5 0>

© Journées Équations aux dérivées partielles, 1985, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON THE POLES OF THE SCATTERING MATRIX

FOR TWO CONVEX OBSTACLES

by Mitsuru IKAWA

§1. Introduction.

Let $\mathcal O$ be a bounded open set in $\mathbb R^3$ with smooth boundary Γ . We set $\Omega = \mathbb R^3 - \overline{\mathcal O}$. Suppose that Ω is connected. Consider the following acoustic problem

(1.1)
$$\begin{cases} \Box u(x,t) = \frac{\partial^2 u}{\partial t^2} - \Delta u = 0 & \text{in } \Omega \times (-\infty, \infty) \\ u(x,t) = 0 & \text{on } \Gamma \times (-\infty, \infty) \end{cases}$$

where $\Delta = \sum_{j=1}^{3} \partial^2 / \partial x_{j}^2$. Denote by $\mathcal{S}(z)$ the scattering matrix for this problem. About the defintion of the scattering matrix, see for example Lax and Phillips[7,page 9]. The result I like to talk about is the following

Theorem 1. Let \mathcal{O}_j , j=1,2, be open and strictly convex sets in \mathbb{R}^3 with smooth boundary Γ_j , that is, the Gaussian curvature of Γ_j is positive everywhere on Γ_j . Suppose that $\overline{\mathcal{O}_1} \cap \overline{\mathcal{O}_2} = \phi$. Then the scattering matrix $\mathfrak{L}(z)$ for

$$O = O_1 \cap O_2$$

satisfies the following:

(1) There exist positive constant c_0 and c_1 such that $\mathcal{S}(z)$ is holomorphic in

{z; Im
$$z \le c_0 + c_1$$
} - $\bigvee_{j=-\infty}^{\infty} D_j$

where

$$D_{j} = \{z; |z - z_{j}| \le C(1+|j|)^{-1/2}\},\$$
 $z_{j} = ic_{0} + \frac{\pi}{d}j, \quad d = dis(\mathcal{O}_{1}, \mathcal{O}_{2}).$

- (2) For large |j|, every D_{j} contains exactly one pole of $\mathcal{L}(z)$.
- (3) Denoting the pole in D by ζ we have an asymptotic expansion

(1.2)
$$\zeta_{j} \sim z_{j} + \beta_{1} j^{-1} + \beta_{2} j^{-2} + \cdots$$
 for $|j| \rightarrow \infty$

where β_1 , β_2 , are complex constants determined by \mathcal{O} .

(4) In D_{i} $\mathcal{L}(z)$ is of the form

(1.3)
$$\mathcal{S}(z)f = \frac{1}{z-\zeta_{j}}(f,\psi_{j})m_{j} + \mathcal{H}_{j}(z)f$$

for all $f \in L^2(S^2)$, where m_j , $\psi_j \in L^2(S^2)$ such that $m_j \neq 0$, $\psi_j \neq 0$ and (\cdot, \cdot) stands for the scalar product in $L^2(S^2)$, and $\mathcal{H}_j(z)$ is an $\mathcal{L}(L^2(S^2), L^2(S^2))^{\frac{1}{2}}$ valued holomorphic function in D_j .

Concerning the existence of non-purely imaginary poles of $\mathcal{L}(z)$, Bardos, Guillot and Ralston[1] proved under the same assumption as ours the existence of an infinite number of the poles in

{z; Im
$$z \leq \epsilon \log(1+|z|)$$
}

for any $\varepsilon>0$. This result is generalized by Petkov[11] and Petkov and Stojanov[12] to a case of many strictly convex obstacles. For non-strictly convex obstacles Ikawa[5] showed an example of two

¹⁾ We denote by $\mathcal{L}(E,F)$ the set of all linear bounded mappings from E into F.

convex obstacles whose scattering matrix has a sequence of the poles converging to the real axis. On the other hand Lebeau[9] considered the distribution of poles for one strictly convex obstacle.

§2. Reduction of the problem.

Consider a boundary value problem with a parameter $\mu \in \mathbb{C}$

(2.1)
$$\begin{cases} (\mu^2 - \Delta)u(x) = 0 & \text{in } \Omega \\ u(x) = g(x) & \text{on } \Gamma \end{cases}$$

for $g \in C^{\infty}(\Gamma)$. For $\text{Re}\mu > 0$ (2.1) has a solution u uniquely in $\bigcap_{m>0} H^m(\Omega)$. We denote the solution by $U(\mu)g$. Then $U(\mu)$ is holomorphic in $\text{Re}\mu > 0$ as an $\mathcal{Z}(C^{\infty}(\Gamma), C^{\infty}(\overline{\Omega}))$ -valued function. We shall show the following theorems on $U(\mu)$.

Theorem 2.1. (i) $U(\mu)$ is prolonged analytically as an $\mathcal{Z}(C^{\infty}(\Gamma),C^{\infty}(\overline{\Omega}))$ -valued function into

$$\left\{ \operatorname{Re} \mu \geqslant -c_0-c_1 \right\} - \bigcup_{j=-\infty}^{\infty} \operatorname{iD}_j.$$

(ii) Set for k∈R

$$G_k = \{ \mu \in \mathbb{C}; |\mu + ik| \le c_0 + c_1, \text{Re} \mu \ge -c_0 - (\log(1 + |k|))^{-1} \}.$$

Then for large |k|, $U(\mu)$ is represented in $G_k \cap \{Re\mu > 0\}$ as

(2.2)
$$U(\mu) = \frac{\beta(\mathbf{x}, \mathbf{k}, \mu)}{\mathbf{P}(\mu) - \gamma(\mathbf{k}, \mu)} F(\mathbf{k}, \mu) + V(\mathbf{k}, \mu).$$

Here

(a)
$$\beta(\bullet,k,\mu)$$
 is $C^{\infty}(\overline{\Omega})$ -valued holomorphic function in G_k .

(b)
$$\mathcal{P}(\mu) = 1 - \lambda \lambda e^{-2d\mu}$$
, $0 < \lambda$, $\lambda < 1$.

(c) For any N positive integer

$$| \gamma(k,\mu) - \sum_{1 \leq l \leq N} \sum_{0 \leq h \leq N} \gamma_{l,h} k^{-l(\mu+ik)^{h}} | \leq C_{N} |k|^{-N}$$

where $\gamma_{\text{$\ell$,h}}$ are complex constants.

- (d) $F(k,\mu)$ is an $\mathcal{L}(L^2(\Gamma),\mathbb{C})$ -valued holomorphic function in G_k .
- (f) $V(k,\mu)$ is an $\mathcal{L}(C^{\infty}(\Gamma),C^{\infty}(\overline{\Omega}))$ -valued holomorphic function in G_k .

<u>Corollary.</u> $U(\mu)$ is prolonged analytically as $\mathcal{Z}(C^{\infty}(\Gamma),C^{\infty}(\overline{\Omega}))$ valued function into

$$\bigcup_{\substack{|\mathbf{k}|: \text{large}}} (G_{\mathbf{k}} - \{\mu; \mathcal{P}(\mu) - \gamma(\mathbf{k}, \mu) = 0\}).$$

Theorem 2.2. Suppose that $\mu \in G_k$ and $\mathcal{P}(\mu) - \gamma(k,\mu) = 0$ for |k| large. Then we have

 $dim\{u; \mu\text{-outgoing solution of (2.1) for g=0}\} = 1.$

Note that the zeros of $\mathcal{P}(\mu)=0$ are $\{iz_j, j=0,\pm 1,\pm 2,\cdots \}$ and

$$\left|\frac{\mathrm{d}}{\mathrm{d}\mu}\left(\mathcal{P}(\mu) - \gamma(k,\mu)\right)_{\mu=iz_{j}}\right| \geqslant d - C|k|^{-1}.$$

By setting $k=-\frac{\pi}{d}$ j we have that $\mathcal{P}(\mu)-\gamma(k,\mu)=0$ has only one zero in iD, and it is simple. Denote it by i ζ , and we see that ζ , has an asymptotic expansion (1.2).

Theorem 1 is immediately derived from Theorems 2.1 and 2.2 if we recall the relationships between $\mathcal{S}(z)$ and $U(\mu)$ shown in Lax and Phillips[7], especially Theorem 5.1 of Chapter V, which says that $\mathcal{S}(z)$ has a pole at exactly those points z such that $\mu=iz$ is a pole of $U(\mu)$.

§3. Sketch of the proofs of Theorems 2.1 and 2.2.

3.1. Asymptotic solutions for oscillatory boundary data.

Let $a_{j} \in \Gamma_{j}$ be the points verifying

$$|a_1 - a_2| = dis(O_1, O_2).$$

Denote by $S_{j}(\delta)$ for $\delta > 0$ a connected component containing a_{j} of $S_{j} \cap \{x; \ dis(x,L) = \delta\}$

where L is a straight line passing a_1 and a_2 , and denote by $\omega(\delta)$ a domain surrounded by $\{x; dis(x,L)=\delta\}$ and $S_j(\delta)$, j=1,2. Let $\upsilon_k(x)$ be a smooth function satisfying

$$v_{k}(x) = \begin{cases} 1 & \text{for } x \in S_{1}(k^{-\epsilon}) \\ 0 & \text{for } x \notin S_{1}((1+\delta)k^{-\epsilon}) \end{cases}$$

for some $\delta > 0$, $\epsilon > 0$ small constants. Let $h(t) \in C^{\infty}(0,d/2)$ satisfying $h(t) \ge 0$ and $\int h(t) dt = 1$. Set

(3.1)
$$m(x,t;k) = e^{ik(\psi(x)-t)} w(x)h(t-j(x))$$

where $\psi \in C^{\infty}(S_1(\delta_0))$ is a real valued function satisfying some conditions and j(x) a fixed smooth function determined by \mathcal{O} . We construct a sequence of functions of the form

(3.2)
$$u_{q}(x,t;k) = e^{ik(y_{q}(x)-t)N} \sum_{j=0}^{N} v_{j,q}(x,t;k)(ik)^{-j}$$

(I) $\boldsymbol{\varphi}_{\alpha}$, q=0,1, \cdots are determined successively by

$$\left\{ \begin{array}{ll} |\nabla \boldsymbol{\mathcal{G}}_0| = 1 & \text{in } \omega(\delta) \\ \\ \boldsymbol{\mathcal{G}}_0 = \psi & \text{and } \partial \boldsymbol{\mathcal{G}}_0/\partial n > 0 & \text{on } S_1(\delta), \end{array} \right.$$

$$\begin{cases} |\nabla \mathcal{G}_1| = 1 & \text{on } \omega(\delta) \\ \mathcal{G}_1 = \mathcal{G}_0 & \text{and } \partial \mathcal{G}_1/\partial n > 0 & \text{on } S_2(\delta), \\ |\nabla \mathcal{G}_2| = 1 & \text{on } \omega(\delta) \\ \mathcal{G}_2 = \mathcal{G}_1 & \text{and } \partial \mathcal{G}_2/\partial n > 0 & \text{on } S_1(\delta), \\ \vdots & \vdots & \vdots \end{cases}$$

(II) On amplitude functions.

Set

$$T_q = 2 \frac{\partial}{\partial t} + 2 \nabla \varphi_q \cdot \nabla + \Delta \varphi_q.$$

 $v_{0,q}$, q=0,1,2, ···· are defined successively by

$$\begin{cases} T_0 v_{0,0} = 0 & \text{in } \omega(\delta) \times \mathbb{R} \\ v_{0,0} = f(x,t) & \text{on } \Gamma_1 \times \mathbb{R} \end{cases}$$

where f(x,t)=w(x)h(t-j(x)), and for $p \ge 1$

$$\begin{cases} T_{2p-1}v_{0,2p-1} = 0 & \text{in } \omega(\delta) \times \mathbb{R} \\ v_{0,2p-1} = v_{0,2p-2} & \text{on } \Gamma_2 \times \mathbb{R}, \\ \\ T_{2p}v_{0,2p} = 0 & \text{in } \omega(\delta) \times \mathbb{R} \\ \\ v_{0,2p} = v_k(x)v_{0,2p-1} & \text{on } \Gamma_1 \times \mathbb{R}. \end{cases}$$

Next for $j \ge 1$, $v_{j,q}$, $q=0,1,2,\cdots$ are defined successively for all $p \ge 0$ by

$$\begin{cases} \mathbf{T}_{2p}\mathbf{v}_{\mathtt{j},2p} = \square \, \mathbf{v}_{\mathtt{j-1},2p} & \text{in } \omega(\delta) \times \mathbb{R} \\ \mathbf{v}_{\mathtt{j},2p} = 0 & \text{on } \Gamma_{\mathtt{l}} \times \mathbb{R}, \\ \end{cases}$$

$$\begin{cases} \mathbf{T}_{2p+1}\mathbf{v}_{\mathtt{j},2p+1} = \square \, \mathbf{v}_{\mathtt{j-1},2p+1} & \text{in } \omega(\delta) \times \mathbb{R} \\ \mathbf{v}_{\mathtt{j},2p+1} = \mathbf{v}_{\mathtt{j},2p} & \text{on } \Gamma_{\mathtt{2}} \times \mathbb{R}. \end{cases}$$

On the asymptotic behavior of φ_q , $v_{j,q}$ for $q \longrightarrow \infty$, we have the following Lemmas.

Lemma 3.1. It holds that

$$| \mathbf{\mathcal{G}}_{2p} - (\mathbf{\mathcal{G}}_{\infty}^{+} 2dp + d_{0}) |_{m} \le c_{m}^{\alpha^{2p}}$$

 $| \mathbf{\mathcal{G}}_{2p+1} - (\mathbf{\mathcal{G}}_{\infty}^{+} (2p+1)d + d_{0}) |_{m} \le c_{m}^{\alpha^{2p}}$

where $oldsymbol{arphi}_{\infty}$, $oldsymbol{\widetilde{arphi}}_{\infty}$ are functions independent of ψ , and they verify

$$|\nabla \mathcal{G}_{\infty}| = 1$$
 in $\omega(\delta)$ and $\mathcal{G}(a_1) = 0$, $|\nabla \widetilde{\mathcal{G}}_{\infty}| = 1$ in $\omega(\delta)$ and $\widetilde{\mathcal{G}}(a_2) = 0$,

and d_0 is a constant depending on ψ , α is a positive constant < 1.

Lemma 3.2. It holds that

$$\begin{aligned} |\mathbf{v}_{\mathtt{j},2p}(\mathtt{x},\mathtt{t};\mathtt{k}) &- \mathsf{bw}(\mathtt{A}) \left(\lambda \widetilde{\lambda}\right)^{p} \mathbf{v}_{\mathtt{j},\infty}(\mathtt{x},\mathtt{t}-2p\mathtt{d}-\mathtt{j}(\mathtt{A})-\mathtt{d}_{\infty};\mathtt{k})|_{\mathtt{m}} \\ &\leq C_{\mathtt{j},\mathtt{m}}(\alpha \lambda \widetilde{\lambda})^{p} \mathtt{M}_{\mathtt{m}+2\mathtt{j}}, \\ |\mathbf{v}_{\mathtt{j},2p+1}(\mathtt{x},\mathtt{t};\mathtt{k}) &- \mathsf{bw}(\mathtt{A}) \left(\lambda \widetilde{\lambda}\right)^{p} \widetilde{\mathbf{v}}_{\mathtt{j},\infty}(\mathtt{x},\mathtt{t}-2p\mathtt{d}-\mathtt{j}(\mathtt{A})-\mathtt{d}_{\infty};\mathtt{k})|_{\mathtt{m}} \\ &\leq C_{\mathtt{j},\mathtt{m}}(\alpha \lambda \widetilde{\lambda})^{p} \mathtt{M}_{\mathtt{m}+2\mathtt{j}}, \end{aligned}$$

where λ , $\widetilde{\lambda}$ are constants determined by $\mathcal C$ such that $0 < \lambda$, $\widetilde{\lambda} < 1$,

$$M_{\ell} = k^{\epsilon \ell} \sum_{\beta \mid \beta \mid < \ell} \sup_{\Gamma \times R} |D_{X, t}^{\beta}|,$$

 $v_{j,\infty}$ and $\widetilde{v}_{j,\infty}$ are functions of the form

$$v_{j,\infty}(x,t;k) = \sum_{k=0}^{2j} a_{j,k}(x,k)h^{(k)}(t-j(x)),$$

$$\widetilde{v}_{j,\infty}(x,t;k) = \sum_{k=0}^{2j} \widetilde{a}_{j,k}(x,k)h^{(k)}(t-\widetilde{j}(x)),$$

and b is a constant depending on ψ , A is a point in $S_1(\delta)$ depending on ψ .

Remark that we have

$$\Box u_{q} = e^{ik(\mathcal{G}_{q}-t)} (ik)^{-N} \Box_{V_{N,q}}.$$

Next we construct by a usual method asymptotic solutions for

(3.3)
$$\begin{cases} \square u = 0 & \text{in } \omega \times \mathbb{R} \\ u = (1 - v_k(x)) u_{2p}(x, t; k) & \text{on } \Gamma_1 \times \mathbb{R} \end{cases}$$

Denote the asymptotic solution by u_{2p}^{\prime} . Extend $\Box (u_{2p}^{\prime} + u_{2p}^{\prime})$ and $\Box u_{2p+1}^{\prime}$ by a fixed manner into Θ so that these are smooth in $\mathbb{R}^3 \times \mathbb{R}$, and denote by $u_q^{\prime\prime}$ the solution of

$$\begin{cases} \Box u = - \Box (u_q + u_q') & \text{in } \mathbb{R}^3 \times \mathbb{R} \\ u = 0 & \text{for } t < 0 \end{cases}$$

where we set $u_{2p+1}^{\prime}=0$. By taking account of the continuity from u_q to u_q^{\prime} and $u_q^{\prime\prime}$ we have a Lemma of the type Lemma 3.2 on the convergence of u_q^{\prime} and $u_q^{\prime\prime}$. Set

$$r_q = u_q + u'_q + u''_q$$

and we have

Lemma 3.3. It holds that

$$\begin{split} \left| \mathbf{r}_{2p}(\mathbf{x},\mathsf{t};\mathsf{k}) - \mathsf{bw}(\mathsf{A}) \, \mathrm{e}^{-\mathrm{i} \mathsf{k} \, (\mathsf{j} \, (\mathsf{A}) + \mathsf{d}_{\infty})} \, \mathrm{e}^{\mathrm{i} \mathsf{k} \mathsf{d}_{0}} \, \left(\lambda \widetilde{\lambda} \right)^{p} \\ & \cdot \mathbf{r}_{\infty}(\mathbf{x},\mathsf{t} - 2\mathsf{p} \mathsf{d} - \mathsf{j} \, (\mathsf{A}) - \mathsf{d}_{\infty};\mathsf{k}) \, \right|_{m} \leqslant \, C_{m} \left(\alpha \lambda \widetilde{\lambda} \right)^{p} \, \mathsf{k}^{m+1} \\ \\ \left| \mathbf{r}_{2p+1}(\mathbf{x},\mathsf{t};\mathsf{k}) - \mathsf{bw}(\mathsf{A}) \, \mathrm{e}^{-\mathrm{i} \mathsf{k} \, (\mathsf{j} \, (\mathsf{A}) + \mathsf{d}_{\infty})} \, \, \mathrm{e}^{\mathrm{i} \mathsf{k} \mathsf{d}_{0}} \, \left(\lambda \widetilde{\lambda} \right)^{p} \\ & \cdot \widetilde{\mathbf{r}}_{\infty}(\mathbf{x},\mathsf{t} - 2\mathsf{p} \mathsf{d} - \mathsf{j} \, (\mathsf{A}) - \mathsf{d}_{\infty};\mathsf{k}) \, \right|_{m} \leqslant \, C_{m} \left(\alpha \lambda \widetilde{\lambda} \right)^{p} \, \mathsf{k}^{m+1}, \end{split}$$

where \mathbf{r}_{∞} , $\widetilde{\mathbf{r}}_{\infty}$ are functions independent of ψ and w.

Set

$$r(x,t;k) = \sum_{k=0}^{\infty} (-1)^{q} r_{q}(x,t;k).$$

Evidently it holds that

$$\Box r = 0$$
 in $\Omega \times \mathbb{R}$.

We consider the Laplace transformation of r in t, that is,

(3.4)
$$\hat{\mathbf{r}}(\mathbf{x}, \boldsymbol{\mu}; \mathbf{k}) = \int e^{-\boldsymbol{\mu}t} \mathbf{r}(\mathbf{x}, t; \mathbf{k}) dt.$$

We have from Lemma 3.3 the following

<u>Proposition 3.4.</u> Let $Re\mu > 0$. Then (3.4) converges and we have a representation of $\hat{\mathbf{r}}(\mathbf{x},\mu;\mathbf{k})$

(3.5)
$$\hat{r}(x,\mu;k)$$

= bw(A)e^{-(j(A)+d_∞)(µ+ik)} e^{ikd}₀
$$p(\mu)^{-1}$$
 $r_{\infty}(x,\mu;k) + s(x,\mu;k)$,

where $\widehat{r}_{\infty}(x,\mu;k)$ is an entire function in μ independent of ψ and $\widehat{s}(x,\mu;k)$ is holomorphic in Re μ > $-c_0-c_1$. Moreover we have on Γ_1

$$\hat{\mathbf{r}}(\mathbf{x},\mu;\mathbf{k}) - e^{-(\mu+i\mathbf{k})j(\mathbf{x})} e^{i\mathbf{k}\psi(\mathbf{x})} w(\mathbf{x})\hat{\mathbf{h}}(\mu+i\mathbf{k})$$

$$= e^{ikd_0} bw(A)e^{-(j(A)+d_\infty)(\mu+ik)} \{ v_k(x) \sum_{k \in \mathbb{N}} \sum_{0 \le h \le N} a_{j,h}(x)(ik)^{-j} \}$$

$$x(\mu+ik)^{h} \hat{h}(\mu+ik) + a_{1}(x,k,\mu) \} \mathcal{P}(\mu)^{-1} + e_{1}(x,\mu;k),$$

and on Γ_2

$$\hat{r}(x,\mu;k) = e^{ikd_0} \frac{1}{P(\mu)} bw(A) e^{-(j(A)+d_\infty)(\mu+ik)} a_2(x,k,\mu) + e_2(x,k,\mu),$$

where $a_{j,h}(x)$ are smooth functions on $S_1(\delta)$, a_1 and a_2 are entire functions independent of ψ and w having an estimate

$$\sup_{\mathbf{x} \in \Gamma_{i}} \left| \mathbf{a}_{j}(\mathbf{x}, \mathbf{k}, \boldsymbol{\mu}) \right| \leq C_{N,R} |\mathbf{k}|^{-N}$$

and e_1 and e_2 are holomorphic in $\text{Re}\mu > -c_0 - c_1$ and satisfy

$$\begin{split} \left| \mathbf{e}_{1}(\mathbf{x}, \mathbf{k}, \boldsymbol{\mu}) \right| & \leq \begin{cases} \left| \mathbf{k} \right|^{-1} & \text{on } \mathbf{S}_{1}((1+\delta) \left| \mathbf{k} \right|^{-1}) \\ \left| \mathbf{k} \right|^{-N} & \text{on } \Gamma_{1} \setminus \mathbf{S}_{1}((1+\delta) \left| \mathbf{k} \right|^{-1}), \end{cases} \\ \left| \mathbf{e}_{2}(\mathbf{x}, \mathbf{k}, \boldsymbol{\mu}) \right| & \leq \left| \mathbf{k} \right|^{-N} & \text{on } \Gamma_{2}. \end{split}$$

3.2. Reduction to an integral equation on Γ_1 .

Suppose that Γ_1 is represented as $x(\sigma) = (\sigma_1, \sigma_2, x_3, (\sigma_1, \sigma_2))$ near a_1 . Let $g(x) \in C_0^{\infty}(S_1(\delta_0))$. Then

$$g(\mathbf{x}(\sigma)) = (2\pi)^{-2} \int e^{\mathbf{i}\mathbf{k}\sigma \cdot \xi} \widehat{g}(\mathbf{k}\xi) k^{2} d\xi$$
$$= (2\pi)^{-2} \mathbf{w}(\mathbf{x}(\sigma)) \int e^{\mathbf{i}\mathbf{k}\sigma \cdot \xi} \widehat{g}(\mathbf{k}\xi) k^{2} d\xi$$

where $w(x) \in C_0^{\infty}(S_1(2\delta_0))$ such that w(x)=1 on $S_1(\delta_0)$, and $\hat{g}(\xi) = \int e^{-i\sigma \cdot \xi} g(x(\sigma)) d\sigma.$

If we define $\widetilde{U}_1(k,\mu)$ an operator from $L^2(S_1(\delta_0))$ into $C^{\infty}(\overline{\Omega})$ by

$$(\tilde{U}_{1}(k,\mu)g)(x) = (2\pi)^{-2} \int u(x,\xi;k,\mu)\hat{g}(k\xi)k^{2}d\xi$$

where $u(x,\xi;k,\mu)$ denotes $\hat{r}(x,\mu,k)/\hat{h}(\mu+ik)$ constructed for $\psi(x(\sigma))$ = $\sigma \cdot \xi$. Then we have from Proposition 3.4

Proposition 3.5. $\tilde{U}_1(k,\mu)$ is of the form

(3.6)
$$\widetilde{U}_{1}(k,\mu)g = \frac{\widehat{r}_{\infty}(x,\mu;k)}{p(\mu)} F_{0}(k,\mu)g + S(k,\mu)g$$

where

(3.7)
$$F_{0}(k,\mu)g = (2\pi)^{-2} \int b(\xi)w(A(\xi))e^{-(j(A(\xi))+d_{\infty}(\xi))(\mu+ik)} \cdot e^{ikd_{0}(\xi)} \hat{g}(k\xi)k^{2}d\xi,$$

 $S(k,\mu)$ is $\mathcal{L}(L^2(S_1(\delta_0)),C^{\infty}(\overline{\Omega}))$ -valued holomorphic function in $Re\mu > -c_0-c_1$. Moreover it holds that

(3.8)
$$(\mu^2 - \Delta)\widetilde{U}_{1}g = 0 \qquad \text{in } \Omega ,$$

(3.9)
$$\widetilde{U}_{1}g = g - \frac{\alpha(x,k,\mu)}{\varphi(\mu)} F_{0}(k,\mu)g - E(k,\mu)g \quad \text{on} \quad \Gamma_{1}$$

(3.10)
$$\widetilde{\mathbf{U}}_{1}g = \frac{\widetilde{\alpha}(\mathbf{x}, \mathbf{k}, \mu)}{\mathbf{\mathcal{P}}(\mu)} \mathbf{F}_{0}(\mathbf{k}, \mu)g + \widetilde{\mathbf{E}}(\mathbf{k}, \mu)g$$
 on Γ_{2} ,

(3.11)
$$|\alpha(x,k,\mu)F_0(k,\mu)g| \le C|k|^{-\epsilon} \|g\|_{L^2(\Gamma_1)}$$

(3.12)
$$\|E(k,\mu)g\|_{L^{2}(\Gamma_{1})} \leq C|k|^{-\epsilon} \|g\|_{L^{2}(\Gamma_{1})}$$

(3.13)
$$|\tilde{\alpha}(x,k,\mu)F_0(k,\mu)g| \leq C|k|^{-N} ||g||_{L^2(\Gamma_1)}$$

(3.14)
$$\|E(k,\mu)g\|_{L^{2}(\Gamma_{2})} \le C|k|^{-N} \|g\|_{L^{2}(\Gamma_{1})}$$

Note that the solution U₂h of

$$\begin{cases} (\mu^2 - \Delta)u = 0 & \text{in } \mathbb{R}^3 - \overline{\mathfrak{O}}_2 \\ u = h & \text{on } \Gamma_2 \end{cases}$$

is continued into $\{\mu; \text{Re}\mu \geqslant -a \log(|\mu|+1)\}$ for some a > 0. Then

$$\mathbf{U}_{1}(\mathbf{k},\boldsymbol{\mu})\mathbf{g} = \widetilde{\mathbf{U}}_{1}(\mathbf{k},\boldsymbol{\mu})\mathbf{g} - \mathbf{U}_{2}(\boldsymbol{\mu}) \, (\widetilde{\mathbf{U}}_{1}(\mathbf{k},\boldsymbol{\mu})\mathbf{g}\big|_{\Gamma_{2}})$$

is also of the form (3.6) and satisfies (3.8), (3.9), (3.11) and (3.12), and

(3.10)'
$$U_1(k,\mu)g = 0$$
 on Γ_2 .

Remark. We can extend the definition of $U_1(k,\mu)$ for any f $\in L^2(\Gamma_1)$ by using the argument in §8 of [2]. Hereafter we denote by U_1 the extended one.

3.3. Representation of $U(\mu)$.

Lemma 3.6. Let H and E be linear operators with $\|H\|$, $\|E\| < 1/2$. Then we have

$$(I - H - E)^{-1} = I + \mathcal{C}_1 + \mathcal{C}_2$$

where

$$T_1 = \mathcal{H} + \mathcal{H}E + \mathcal{H}E\mathcal{H} + \mathcal{H}E\mathcal{H}E + \cdots,$$

$$T_2 = E + E\mathcal{H} + E\mathcal{H}E + E\mathcal{H}E\mathcal{H} + \cdots,$$

$$E = E + E^2 + E^3 + \cdots,$$

$$\mathcal{H} = H + H^2 + H^3 + \cdots.$$

Pose

$$H(k,\mu)g = \frac{\alpha(x,k,\mu)}{\mathcal{P}(\mu)} F_0(k,\mu)g.$$

An application of the above lemma gives

(3.15)
$$(I - H - E)^{-1} = (I + \mathcal{E}) + \frac{(I + \mathcal{E})\alpha}{\mathcal{P}(\mu) - \gamma} F_0(I + \mathcal{E})$$

where

$$\gamma\left(\mathbf{k},\boldsymbol{\mu}\right) \ = \ \mathbf{F}_{0}\left(\mathbf{k},\boldsymbol{\mu}\right)\left(\left(\mathbf{I}+\boldsymbol{\xi}(\mathbf{k},\boldsymbol{\mu})\right)\boldsymbol{\alpha}\left(\bullet,\mathbf{k},\boldsymbol{\mu}\right)\right).$$

Evidently we have in $Re\mu > 0$

(3.16)
$$U(\mu) = U_1(k,\mu) (I-H(k,\mu)-E(k,\mu))^{-1}.$$

Then a substitution of (3.15) into (3.16) gives

$$U(\mu) = \frac{r_{\infty}(x,k,\mu)}{p(\mu) - \gamma(k,\mu)} F_{0}(k,\mu) (I + \xi(k,\mu)) + S(k,\mu) (I + \xi(k,\mu)).$$

By posing

$$F(k,\mu) = F_0(k,\mu) (I + \mathbf{\xi}(k,\mu)),$$

$$V(k,\mu) = S(k,\mu) (I + \xi(k,\mu)),$$

we have a representation (2.2).

References

- [1] C.Bardos, J.C.Guillot and J.Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., 7(1982), 905-958.
- [2] M.Ikawa, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J.Math., 19(1982), 459-509.
- [3] ———, On the poles of the scattering matrix for two strictly convex obstacles, J.Math.Kyoto Univ., 23(1983), 127-194.
- [4] ——, On the poles of the scattering matrix for two strictly convex obstacles: Addendum, J.Math.Kyoto Univ., 23(1983),795-802.
- [5] ———, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, to appear in Osaka J.Math.
- [6] ———, Precise informations on the poles of the scattering matrix for two strictly convex obstacles, in preparation.
- [7] P.D.Lax and R.S.Phillips, Scattering theory, Academic Press, New York, (1967).
- [8] ______, A logarithmic bound on the location of the scattering matrix, Arch.Rat.Mech.and Anal., 40(1971), 268-280.
- [9] G.Lebeau, to appear.
- [10] R.Melrose, Polynomial bound on the distribution of poles in scattering by obstacles, Journées "Equations aux dérivées partielles", Soc.Math.France, (1984).

- [11] V.M.Petkov, Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux, Séminaire Bony-Sjöstrand-Meyer, 1984-1985, Exposé n°XII.
- [12] V.M.Petkov and L.Stojanov, Periods of multiple reflecting geodesics and inverse spectral problems, preprint.