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CONFERENCE N° V
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O. Introduction

It is well known that the solutions of large classes of
boundary value problems (bvp's) or of equations on manifolds
with singularities have an asymptotic expansion of the form

o0 mJ(Y)

u(y.t)~ > S & 5k (¥)

j=0 k=0

Py (Y) k
t log ¢t (0.1)

as t —» 0, with exponents pjé C. The variable y runs tangent

to the boundary or on a manifold M.
If ueC” (M x IR,) admits an expansion like (0.1) we speak

about a conormal asymptotics of the type
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'? - (pj 'mj)JeZ+ / (002)

(pj,mj)ééc X Z o For c® regularity up to fhe boundary, e.ge.

in classical elliptic bvp's, (O.1) is the Taylor expansion,

where m:j = O and pj = je On the other hand a general conormal

asymptotics of the form (0.1) was observed for

(i) mixed bvp's, i.8. when the boundary conditions may have
jumps,

(ii) bvp's for operators of the form

<

A(y,t,D .t‘Dt), ¥ = 1, (0e3)

Y
(iii) operators on manifolds with singularities such as

conical points, wedges, corners, and bvp's in domains

with boundaries that have singularities,

(iv) classes of ordinary differential equations with degene=
rate symbols (such as of Fuchs type) and coefficients
with conormal asymtptotics.

The list of problems can easily be enlarged, cf., for
instaﬁce. the paper of Lee, Melrose [9]. In many cases one
also studies asymptotic expansions of the form (0O.1) as t —» o
The problem of characterizing the type of the asymptotics of
the solutions is rather classical and of practical interest
in many concrete situations, ee.g. in numerical methods. A
large bibliography was given in (8].

It became a typical approach to use the Mellin transform
or Mellin operators in t direction involved in parametrix
constructionse Let us mention e.ge results of Eskin [4] on
the half axis for operators (0.3) with y= 0, a higher-

dimensional theory of the authors [(13],[14], and the theory



of Melrose [10) for ¥ = 1.

Parametrix constructions for DOs on a complete symbolic
level in c”™ spaces with conormal asymptotics were obtained
by the authors. Here we sketch some of the results. The
details are given in [15), which is the first of a series of
papers that employ systematically numerous classes of Mellin
operators in the applications mentioned at the beginning.

For classical elliptic bvp's there is a complete symbolic
calculus which yields parametrices in C“’spaces up to the
boundary, cf.[2], @ZJ. The basic difficulty of constructing
a good analogue in the cases (i), (ii), (iii) is that we
have to expect individual singularity types (0.2) with a
complicated branching behaviour of the pj(y) and changing of
multiplicities mj(y) under varying ye. It is the aim of our
theory to arrange the symbolic calculus and the negligible
operators sensitive enough to reflect that interesting
phenomenon and to obtain parametrices in classes of functions
with conormal asymptoticse.

1. Boundary symbolic calculus and Mellin operators

In this section we consider boundary symbols that appear
in the analysis of pseudo-differential operators on mani=-
folds with boundary, or locally on the half spacele. The
algebra generated by the pseudo~differential action is the
model of other variants that belong to the applications
mentioned at the beginning. We may deal with symbols of
order zerq modulo order reducing operators, With a(&) c
C“ﬁRn\ 0), positively homogeneous of order zero, we associate

a family of operators on IR



-4-

oR, (3) (') : L3(R,) —=L2(R,). (1)
&‘Ean'l. &= (&), defined by opw(a) = k+op(a)e+.
-1 i(t=s)v +.
op(a)(g')u = (2) Se a(g'.x)u(s)dsde, ru = u’lR /
+

e’ as in Section 0. The splitting of the covariables refers
to the coordinates x = (x‘,t)éan, X' = (xl""’xn-l)'

If a has the transmission property, (1) induces a conti=-
nuous operator f@ﬁ;) — f(ﬁ;), 3(ﬁ+) - :?OR)’ﬁ;' if not
we get an operator between spaces with more general asympto=-
tics. The algebra generated by operators opw(a) also contains
so~called Mellin and Green operators,

As usual, the Mellin transform is defined by the formula
’ (2]
U(z) = (Mu)(z) = S t2= 1y (t)dt,
o

(54
first for u ¢ C (R ), where z &C, and then by extension to
other function and distribution spaces on iR_, where we have
a subset W £ C on which u(z) is defined in a natural way,

In particular M leads to an isomorphism

2
Mo PR, —=L2(Ty,),
f& = {zeem t Re z = Q} « We are dealing with spaces of func=
tions uE:L20R+)tW dw0R+) with conormal asymptotics near

t = 0and t = 00 of the types ¢ = (pj.mj) and o =

jez,
(.qk,lk)ke z respectively,
+

1
Repj > —§.Repj-——>oo as j == 00 ,

Re qk< -%. Re qk-—-—--oo as k e 00 .

The space of these functions may be equipped with a natural

semi~norm system under which is becomes a nuclear Fréchet
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space., Denote it by C,*2 o

uec,;"o{ for which e+(1-w)u ¢ Y(R), Y(R) the Schwartz space

on IR, w a cut=off function, i.es WE Cw(l§+). W = 1 near

o Let bo,p be the subspace of all

t = 0,W=20near t = , QDQWI:-:M(C‘” ) can easily be

IV'QI
characterized as a space of meromorphic functions in C with
poles at zj = ---p‘,j and z; = -q, of multiplicity my ¥ 1 and

lk + 1, respectively, which in addition strongly decrease

for |Im z| ~= w ,
Write for abbreviation A3 = (p .o,), %= (Wj'nj)jez' If

and for a function h(z)

A xou !
»EC we set T } (W;j J'X"nj)jez

(Txh)(z) = h(z +Y)e

If ) = (Wj’nj)je z s an arbitrary sequence in C x Z_with
Re w‘j —=+ 0 as j -» + 00 , we define ‘bﬁéa {h : Tsh €
(I)‘(ZTx‘} } » where -y is choosen in such a way that Re:(w;i + 25~)
# % for all j.

Let h € ’ISZZ} and Wér ¢ r4/2' j €Ze. Then

opy(h)u = op,(h)u := M™% (htu)
induces a continuous operator

opd(h) : L3R,) —= L2(R,)
If W 1is a cut= off function the operator

wop;(h)w : 9;, — ¥y

is continuous, tooe, Here ¥ = lim Y. means the inductive

limit over all singularity types ¥ . It is obvious how to

calculat9 the precise singularity type of wopﬁ(h)wu for

I
~

givenue% . If/u Z 0 we choose a ¥ 0= ¥ = min (1./u)

and set
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- -r
oprfh)u = e opy (T¥h)t¥u, (2)

where we admit Mﬁ eljyz for a finite number of points w&
and y is assumed to satisfy Wy ot ¥ ¢ r'1/2 for all jeAZ.

such that T'h is holomorphic near ijz. It can be proved

that another choice of ¥ only affects the action coop;/u(h)m
modulo a so=-called Green operator, cf. the definition below,

Now consider sums of the form

o0
LM = N -]
j=0
coj(t) = (o(cjt), with a sequence of constants cj:>0 and hJ
€ ’Yméj. where we assume convergence in ,;L)(f12 .ffw) for given

¥ and the associated i that is determined by the 5? o

1. Definition. An operator of the form (3) is called a Mellin

operator oan+ a

s m = hy, jez,,

its conormal symbol of order =j.
Let g(t.s) ¢ PR, xR,) (= LB(R,) @, L2(R,) with @,

as the Hilbert space tensor product) and
o0

opg(a)u(t) = § g(t.s)u(s)ds (4)
o)

the associated Hilbert=Schmidt operator,

26 Definitione o = opG(g) for ge :f'“. ®xf°] is called a
Green operator, of +AC certain singularity types.:
is the projective tensor product and a nuc=-
5:(,@,,5’0' proj P
lear Fréchet space, againe. The notation Green operator comes
from the tradition in boundary value problems, cf.[2], where

in the context of operators with the transmission property
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the kernels belong to :90§+)Q§ﬂ§f0§;). Observe that (4)

with ge¢ :ﬁr C)‘j% induces continuous operators

) —

for arbotrary p . We set G&'j(a‘}) =0, Jez..
¢

opg(9) : L2wR,) —=9_, ¥

3. Theorem (cfe. [15]% The class of operators of the form
W+ o, where #m is a Mellin and o a Green operator, form
an algebra, with the Green operators as a two sided ideal,
For the conormal symbols we have
st my) = 2 (T my)) 65 y) (5)
jtksl

lez .,

To (1) we also associate a sequence of conormal symbols
sal(a) 3= Gal(opw(a)). lez o Define g (z) = (1-32‘312)-1.
g*(z) = 1-g7(z).

6n(a)(z) = a3 g'(2) + agg™(2), (6)
L1 -
s (a) (g 2) =[al(5e" (=) + al(x)e" @} T k-2)7h ()
224‘ k=1
Here " |
+ i A<
. 5 . I‘ 1
ap(§’) " (S—Q-E a(pg 1)|Q=0

are homogeneous polynomials in é' of order ke

Set ,¥o = (k'o)ke:Z" Further denote by ¥ +9 that singu-
o)

[SS IS ]
larity type which appears under the multiplication of u,v

for u e 5& ’ \re,fﬁ‘. Then it can be proved that

op_\p(a)_ : :qu — :f,¥+¥o (8)

i -
is continuous for every singularity type g4 with Tqu =9



jez,.
Let
o = op_(a) + mv + (9)
v %
(&‘ # O fixed), aw a Mellin, 0] a Green operator, and
6 o = 6 () + 6 I, jez, . ' (10)
The conormal symbols (10) are meromorphic but not necessarily
strongly decreasing for |Im z| —» o, Set ¢iv(a4 = a.
4, Theorem (cf. (15])e The class of operators (9) form an

algebra, where those of the form My + 0 and zy form two=-

sided ideals. For the symbols we have

silloymy) = ¥ (e @) e @y,

j+k=1l
& (405) = 6 (rq) 6y (05)e
v 1”2 P S p 2
This assertion is not a priori obvious, since at a first
glance it may seem that the Yy DOs of the form r*F~lare®

(F the Fourier transform) and the Mellin operators containing

M-l

h M do not fit together. Fortunately we have a Mellin
expansion of the pseudo-~differential action, cf. Theorem 5,
which actually leads to the desired algebrae.

5. Theorem (cfe. [15]). For every N€ Z_ there is a k = k(N),

k(N) —= © as N =-=o00, such that for any cut-off function

N .
@op, (@) (x')w =w 3 tlopy (6 (a)) (5 )0 + opgle) (§') (41)
j=0

with a kernel g(t,s, 3 )é.C UR o o, CkOR XIR_))e

Note that both the Green kernels and the Mellin symbols

n=1

are functions of §'e R \ 0, where the Mellin symbols in
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‘opaj(h) are polynomials in §£°' of order j. On the half axis
the parameter dependence may be neglected, but it plays a
role in the higher dimensional calculus, where the operators
on IR, are considered as boundary symbols.

The boundary symbols are of the form

N N
o {5 _:ﬁ?GDC 1 j;@)C 2
(x'.F') + T @y s R CNY / (12)
/el q C 1 C 2

(x'. &) ¢ Q x R™Y, Q5 R™?Y open, and on principal symbolic
level the left upper corners are as in Theorem 4 , whereas
the other operators being finite~dimensional express the
boundary and coboundary conditions. In this sense we have an
extension of the concept of Boutet de Monvel, cf.[2], here for
operators without the transmission property. (The case of t
depending interior symbols can easily be included). In partic=-
ular we have the notion of ellipticity of objects of the form
(12), namely that fdr the principal symbols the LZ(R+)
closures have to be bijective for every (x',§')., which

N N
necessarily implies that §¢@1)(Xé/2') s C Lt 1 and
o)
‘oo . 1 1 . .
6 () (X', & ,z)|Re 22 C - ~>C ~ are bijective. In that
case both on principal and complete symbolic level we have
the inverses in our class, the latter modulo negligible

boundary symbols.

2+ Mixed boundary problems and branching of exponents

The asymptotic properties of solutions of boundary prob-

lems are local in nature and we may deal with the half space

n+l

casetR+

=-{xn+1> O}. Let us illustrate how mixed boundary
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problems lead to a calculus as sketched in Section 1 (cf. (i)

of the Introduction)e. For simplicity consider DOs of order

zero. Let
L2(|R2+1,E)
A @
s=(1, ] : LBR™LE) — L2®".G,) (1)
®
T. 2,.N
L™ (R_,G_)

be a mixed boundary problem for an elliptic DO A with the

n+l

transmigssion property with respect to DR,

= R" ) x‘(x.'xn)o
X' = (x1.....xn_1). and T, = rZrk, TX elliptic boundary con=

+
ditions in. open neighbourhoods oflR: mﬁ = {anfO} y, T u =

uan. E & ¢M ' G+ 2 C e Further let
4 -—
— . Lz(Rn*i.E)
A 2,0+l +
o= ()¢ LRIHE) —= @
Te L5 (R",G)

n+l
+
n=1 -

be elliptic and of the class as in [2], Reducing & to @R

by means of Sio leads to a DO on IR" with a jump on R
n .

{xER P X, = O}

+_+ + ot - 2,,N 2,.n

rT Coa rT Coe L (R+,G+) L (R+,G+)
D := H @ . — @

rmTTC et rTTTC e L2®",6_) L2(R".6_)

Here C  is the coboundary part of a parametrix 545'1) =
+. 2,,Nn 2,,n
(fo,co) of 540 and e~ : L (Ri,gi) —e L7(R,G) extends func=
t ons by zero to the opposite half space, GhRn = G, e The
+ wa
reflection ¢ : R: -—-Rf, g(x',xn) = (x'.-x&T induces an
operator

-1
1 0\ /1 0
D : L2R".¢2N) — L2 R",c2N) (2)
o &* o g * * '
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which, in general, is of the class %) ° studied in [13]. A
general theory of mixed boundary problems in Sobolev spaces
and the principal symbolic calculus were developed in [14].
Any assertion on the solvability of (2) gives rise to a result
on (1)e It is easily seen that the concrete choice of T0 is
not essential. So we may assume that T0 coincides with T in

a neighbourhood oflRf. Then

r"T"coe+ =0, rTCe =1
and it suffices to consider

e et ¢ LP@wD.e") — L2@D.Y) (3)
which is a 'vDO oan: of the form r+Pe+ with the action of

the zero order operator P = T+C0 on LzaRn,mN) in the usual

sense. In general P has not the transmission property with

respect to R""L,

As a (higher order) example consider the Laplacian A in

R:+1 under jumping oblique derivatives
+ n+l +
T=— = z by (%) Dxi
i=l

For an action on HS(R2+1

%-I-E, 0L EL %o

) we set 8 = so+k, ké2+ fixed, 8, ®

Then a reduction of orders and reduction to the

boundary leads to the symbol:

P(x.}p) = _:_1__._.__,-:3" k+t"':‘lr:('x""i")'“ ' (4)
4 + izn c (x‘t)

X ) T (8 )
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+ . L X _
=(x.g) = 2 b(x) Zi v 0,08l

Let us disregard here the non-homogeneity of p which causes
some extra arguments in the precise calculus for the strip
|2’| 3 1. For simplicity assume that for large x all co=
efficients are independent of x.

Let, for instance, k = O, Then the operator

rtPet ¢ L3(RT) —= L2(R") (5)

P = Op(p), may happen to be Fredholm without boundary condi=-
+

tions oann"l. This depends on the coefficients ﬁg(x),

+ +

5;+1(x) near x_ = O Since b__, is supposed to be ¥ O (the

ellipticity of Ti). we may set b;; 1. The curve « =-%

1 2
defines three connection components w, ., w,,«w_ in the real
(x ,8) plane, ¢y, containing the origin and @, the point
(32,22)¢ For

(b;(x), b;(x)) € @, near x =0 (6)

(and ¢ > O sufficiently small) (5) is Fredholm. For
(b:(x). b;(x))é @, we have to pose one boundary or one co=-

boundary condition on IR"™1

, according to the signe. The details
are elaborated in [14]. Now assume, for instance, that (6)
holds., Then we may hope to get a regularity of (5) in the
sense that

r'pe” : ¢ ®"1L, :gp ) —= PR, f\" ) (7)

is Fredholm, too (:faRn_i,E) being the Schwartz space of
E-valued functions) and that the kernel of (5) belongs to
:PORn'1.5¥ ) and the kernel of the adjoint to :fORn-i.j% )

fp,o] certain singularity types. Moreover a parametrix of
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(7) should be obtained by a higher dimensional version of

the calculus in Section 1. This is indeed true, provided the
singularity types are independent of x'. The precise theorems
of this sort for rather general classes of mixed problems
(arbitrary order, systems) will be published in Chapter 3

of (15].

Here we only want to discuss the qualitative phenomenon.
The main difficulty in dealing with variable coefficients is
that the singularity types are functions of x' and that the
exponents pJ(x‘) may have a complicated branching behaviour

which is individual for any concrete problem (a situation
similar to eigenvalues of parameter depending operators),
This makes the spaces in (7) highly suspect, and it turns out
that basically we have to replace them by more general spaces
with conormal asymptotics. These spaces are briefly dis=-
cussed in Section 3, ‘

Now let us show that the branching points actually occur.,

First it is known that the singularity type of a solution
of (5) for a smooth right hand side contains (x+j, J)Jez '
m the factorization index of (4), cf.[4]. In [14] is proved
a similar behaviour for right hand sides in ﬁ% o« It is clear
that o 1is a function of x'. )

In the case of systems we have not always a good factoriza-
tion, but we can state the
1. Theorems Let P be elliptic and u a solution of rtpetu = f,
fedf (JRn'l j; @0: )+ ¢ some singularity type. Then
ue YR -1 :P ® ¢N) for a singularity type ¢ that contains
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both o| and the points (rJ.lj). where r
0

N

Jédi runs through

the zeros of det @ (H+Pe+) and 1 +1 denotes the multiplicity

J

for.e
of r,

The JV can be described more precisely, but we drop the
details here, since they would require much more technical
background.

Consider the following mixed problem

n+l 2

A 0O "2 (RN, c?)
o A . ®
st = | T : WML, 6%) ——  HOTZ(RT,CP)
2
04 I+ s 3 G% 2
T, rR H>2(R_.C7)
o T2

Here Ti are as in the previous example for i = 1,2 and R is

a smooth non=vanishing vector field on m|R2+1.

Reduction of orders and reduction to the boundary leads
to an elliptic operator
+

rrret i L2R"L,0%) —= L2(R""1,¢?),

cfe (3), with the property that det sﬁ(r*Pe+)(x'.z) = 0

> 6 rPet)(x"12) = 0, k= 1,2,

Here Pk = Op(pk), with
: S M ERS
pk(x'Z) = -L-:—-En ) --lé-———-—— . k 3 1'2'
associated to TE, k = 1,2, in the sense of (4). It is obvi=-
)

ous that det SN(r+Pe+) has a two-fold zero for those x',
where the vector fields involved in Ti, Tf coincides On the
other hand, the zeros are simple if the factorization index

of py is different from that of Po which is usually the
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case, Thus, applying Theorem 1, we observe a branching behavi-
our of the singularities. The example is typical and easy to
generalize, for instance, to mixed boundary problems for the
Lam& system in any dimension. Besides, even for the first
example, the Laplacian with jumping oblique derivatives, we
can obtain branching singularities. This requires a more
careful discussion of the structure of the parametrixe.

In Section 3 we give an idea how to arrange the spaces
that are adapted to the general situation. Here let us formu-
late a result on (1) under the condition that the zeros in
€ of 6;(r+Pe+) in Theorem 1 are independent of x'.

A theorem on general mixed problems (cf.[15], Chapter 4)
says that (under a certain weak topological condition) St

can be extended to a Fredholm operator

LZ(R:_H'l,E)
A 0 &
c R LR ) L3(R",G, )
R = 7 Tl @ —_— @ (8)
T_ R_ Lz(Rn-i,H) LZ(RS,G_)
S Q @
, L2R"1 k)

with H = ch. Kack tfor certain h,kezz;. S and R+ are extra

boundary and coboundary conditions, respectively, with res-

pect to R™1, and Q is a " DO on R™1,

Introduce polar coordinates (t'f ) in the (xn.x )} plane,

n+1
such that t=0 corresponds to the origin and 0 £ ¢ =7 to

Xne1 & 0. For any singularity type ¥ Wwe can define the

spaces C([0,7], j&) and f(Rn-l.Cu?[O,Iﬂ], f?)) and also the

spaces based on H¥ o
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Set
w0 :P(Rn'l.cop(EO.n].:fpé@ E))
25’(‘*?"—1.0 ([0-'31.:)?;,@ E)) ® b
%y - O © o T ZP(‘Rn—lv?Pq; ®¢,)
PR 1) g? -
JRE ST @)
f(an-'l,K)

I = dp Ry

2+ Theorem, [15, Chapter 3] Under the mentioned conditions
i’) induces a Fredholm operator ;}\’b : 301 — ‘yz with the same
index as ) and ker Jy < )01. ker J5%*(C :Pz. A parametrix
of Jb can be obtained by a higher=-dimensional analogue of

the calculus in Section 1,

3+ General sinqularity types

As noted in Section 2 for dealing with mixed boundary
problems or boundary problems for operators without the
transmission property in Coospaces we have to introduce a
new type of asymptotics, first on the half axis near t = O,

n+1

and then in IR_"~ near Rn'i (where the conditions have a jump)

or in R} near R"7%,

The spaces in higher dimensions are defined in terms of
spaces on R . In a similar way the actions of operators are
obtained by actions on IR, composed with certain more stan-
dard operations in the other variables. So the main point
is the calculus on the half axis in the general classes with
asymptqtics.

Let ué sketch the idea, first of the definition of the

spaces on R, with general asymptotics. Let /\ be a closed
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set in € being the disjoint union of compact sets /\J" jez,,
/\({Rez<%j.sup{Rez:zé/\j}-——’-eo as j —» w0,
Denote by gl‘(/\j) the space of analytic functionals carried
by /\J" Then we define a space ‘5\ of functions in C°°(1R+)(\
L2(R+) for which there is a sequence (fjé 54'( /\j) with

o0
u(t)e Z(Cj(w). t'w> as t —» 0 (1)
j=0

and e+(1- W(t))u(t) a Schwartz function on IR for any cut-off
function )« The functional é:j acts with respect to w and
is uniquely determined by u. This definition can be given
in terms of a countable system of semi~norms under which 5?\
becomes a nuclear Fréchet space.
In a similaf' way we can define a space 07\. = , where

=(C€ is the disjoint union of compact sets Ej in {Re z> %},
inf {Re zZ:2€ = j} —>© as j =»oo , with analytic func-

tionals QJ. € &L‘(EJ')' where in addition to (1)

u(t) o 5 Loy, t™y as t =
The definition of }B\ ' CX,: can be generalized to arbitrary
closed sets A\ C {Re z < %} . = C{Re z >%} that inter-
sect each strip of the form {o(l < Re z « 0(2}. «1,0(2é IR,
in a compact set. Clearly }P/\ C CX.-;_—. set Z=/\u = and
denote by /-7537.2 the space of holomorphic functions in €\ Z
being the Mellin image of some fé& 07\,-_-. 1f z'< ¢ is
another set in C with the property IR Z, Y€ R fixed,

we have not necessarily [",,2 N Zl = @, Then we define mzl =
- . ’
[17%h . he B4,
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The model of the new quality of Mellin operators are ob-
jects of the form

i gy ¥
~J .= jk jk jk
0Py (hj) : 2 t opM(T hjk)t
k=1
XJk
with functions h, ké']]lzjk for which T th are holomorphic

near ‘?2 and 0 = Bjk = Je

hy s= 3 hy (2)

is holomorphic in m\\(kj ZJk). If h‘ké{]X)ZJkn is another
system of functions w1th h 21 th,the associated operator,
multiplied from the left and the right by a cut-off function,
only changes modulo a Green operator, here defined as an
integral operator with a kernel in ‘f f@ JEP for certain
sets AL A 2¢ ¢, 3 the complex conjugatlon.

The expression 1 (3) can also be defined for h, as in (3)

J
and we can use all notations of Section 1, The operators of
the form 1 (9) form an algebra, again, and we have an analogue
of 1. Theorem 4, Any operator of the form 1 (9) with the

more general Mellin and Green operators induces a continu=-

ous operator

op?(a) + NWv+'2} : 33\1-—-4r j>\2
for any singularity type /\1 and a resulting singularity
type /\2 that also depends on mv and o1

The boundary symbols mentioned in Section 1 can also be
defined in the 4K setting. The corresponding higher
dimensioﬁal calculus leads to an analogue of 2, Theorem 2,

here for the spaces :P/\ = lim :P/\ (the inductive limit
—

—
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over all singularity types). The non=clasical ingredients
are the Mellin and Green operators, Let us mention, for
instance, the complete Mellin boundary symbols oann*l X IR
involved in the calculus of operators r+Pe+, P a DO without
n-1

the transmission property with respect to IR « They have the

form of asymptotic sums
x
M(X .& )r\\ LM/U_J-(X'.E’ ):
j=0

/uélR the tangential order, )
w 1

Mpumg (X7 £1) =2 wlc tg( >>opM(hl/J L) (gD @ eyt (F))

1=0

hy, = € Z ON JkQ sl+/u R x RT7L),
Here ¢ ¢ Cm(lR+),L>O. Z(t) = t for t Z 1, and the c,>0 are
constants, increusing sufficiently fast as 1 —e 0 ,

Now the idea of treating the branching of singularities
is to represent thém as smooth families of analytic functionals,
The parametrices that we obtain can be applied to functions
with discrete asymptotics in the sense of the Sections 1,2,
and the resulting solutions just inherit the branchings, in=-
duced by the zeros of the principal conormal symbol. Although
their behaviour may be rather capricious, it can actually be
described in terms of smooth functions with values in @' (C).

The details are given in [15], Chapter 3.

4, Notes on the spectral asymptotics

The relation between the asymptotic properties of distribu-

tions on IR, and the behaviour of the Mellin image can be



intefpreted for the counting function N(t) ={’# Xk : Ak s p}
of the eigenvalues Ak of some self=adjoint positive opera=-

tore

Denote by l—%b) the space of those holomorphic functions

in Re z > % which are the Mellin image of some u & L%b)'

2 2
L(b) S {v €L (R+) : suppv bounded }

Then for every § 20, N 28, rez

2

T'% A+2)"" Mu € IL(b)

<> u¢€ tg(-)\+t%-t-)" L?b)‘
Let u be én extendible distribution on R, with bounded
support and Mu(z) its Mellin transform (a definition of M
on distributions was given in [6]). Then for any extendible
distribution u with bounded support on IR, the following
conditions are equivalent:

(i) There exist constants ‘Ejké ¢, O S ks m,, Je2z_, such

J
that for every § 2 0 there is an N = N ) e z_and an

r=r(§)€ z such that

N m, .
i P, § .
u= 3 Y &yt Jlog tXa(t)et (=h )" LZpy (1)
j=0 k=0

L any cut-off function, A= § ,
(i1) Mu(z) is a meromorphic function in € with poles at
zJ = --pj of multiplicity mJ + 1, and for every\g =0

there are N = N(§), r = r(§) with

N m
- P,k 2
Tu8(>\‘|‘2) r‘(MU(Z) - z Z1 ka f \ (Z))é u_(b)o
j=0 k=0
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Lok .
37 (2) = m(e'd log tKu(e))(@), AES .

p..k ‘
Note that the functions f J are strongly decreasing as

|Im z| == o In this way, roughly speaking, any extendible
distribution u on R_, supp u:bounded, admits an asymptotic
expansion of the form (1) as t =» O provided the Mellin image
is meromorphic and does not increase faster than some poly=-
nomial in Im z » —21- -3 as (Im z| —=® . A similar property
can be formulated with respect to the half planes Im z:>% +9.
Meromorphic functions of that type are called of finite
order.

Now our remark on the asymptotics of the counting func=
tion N(t) as t —» o is that we can apply an analogue of (1)
for t —e 00 if we know that the ¢ function of the operator
is of finite ordec..

Set

2 2
L(a) ={uc.L (lR+) : dist (O, supp u) > 0} .

Then v —s 5™t v(s-l) induces an bijection " : L?b) — L%a)'
and '

[2 4] «Q

g 2" y(dt = v )(s)ds, w= -z,

e 0

In the Mellin image we get a correspondence between L%a) and
u—%a) :n{ g(1-w) g)elL%b)}. For a distribution u on R_,

dist (0,supp u)>» 0O, extendible with respect to t = O under

1

the substitution t = s , the condition

N m,
— J p S

-3 T by ae e (g et Wy,
j=0 k=0

>

¥ = o. QZ&,}N = N(g), T o= r(§). X(s) = (s,
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is equivalent to Mu(w) meromorphic with poles at wj= -pj of
multiplicity m_+1 and
’ @_ .fj p..k
e +w)Tuw) = 5 5T L £ mnell?,, .
j=0 k=0
Let A be an elliptic pseudo~differential operator on a
closed compact manifold X, n = dim X, m = ord A>0, and
suegose that A is self=adjoint and positive. Denote by <:A(z)

- ;Z: Xﬁ the (¢ =-function of A, O <,X1 s Xz % +e. being
k=1

the eigenvalues of A. Then

(-] xR
g () = S t2 dN(t) = =z \ £2"L N(t)de, (2)
9 o

Re z < = %, with the counting function N(t).

It is well known that {A(z) has a meromorphic extension
with simple poles at zj & - -n-;l. j€z ., cf. seeley [17], and
the residues can be expressed in terms of the complete symbol
of A. In many cases it is known that &A(z) is of finite order,
in other words, there exists a real function /u(x), /u(xl) =

/u(xz) for x, = X5. such that for suitable c(x)>0, a(x)>0

- (Xo)‘ <
lmz] / | Calz)| = c(xy) (3)
< . >
for Re z = x_, |Im z| = a(x ), X €IR.

For the Riemann Z function this is a classical result,
but it is very hard to get precise bounds for Mo For scalar
PDOs in Duistermaat, Guillemin [3] it was proved that (,
is of finite order, In the case.of systems this follows from

the results of Ivrii {5]. in a similar manner as in [3]. In

all these cases we obtain the following

1. Proposition. Let éA(z) be of order /u(xo) < oo for
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Re z = X xoelR. Then the counting function N(t) of A has

an asymptotic expansion of the form

q n=l . (x)
N(E) = 3 bt K () e t'5(Q +tg-t-)/u o L%a) (4)

j=0
ko -d gy as{#s - FlExfxec®,),

= 0 near t = O, = 1 for t & 1, . = Res
X X =1,y

Z = -

n-j (A'

i

Indeed, (2) and (3) imply
- )+1
lIm zl /u(xo ' [M(N)(2)] £ c(x,),
[Im 2| z a(xo), Re z & X and hence T—x(e +z)-/U(x°)(M(N)(z)

q n=4,0
-3 éj f—“rl (z))ell.%a), xo=%+b‘,ezl§. The formula
j=0

for the coefficients follows from M(tp) = (z+p)~1.

The formula (4) can be interpreted as a substitute of the
expansion ot N(t) which is usually obtained by a Tauber
argument. The poles of the (t function do not lead to all
terms in the classical precise form, but we always have the

asymptotics in the mean, provided the é function is of

finite order. So it is a task to find precise bounds for

/U(X)o
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