JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

TERESA MONTEIRO-FERNANDES Constructibilité des solutions des systèmes microdifférentiels

Journées Équations aux dérivées partielles (1982), p. 1-5

http://www.numdam.org/item?id=JEDP 1982 A4 0>

© Journées Équations aux dérivées partielles, 1982, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CONSTRUCTIBILITE DES SOLUTIONS DES SYSTEMES MICRODIFFERENTIELS

par Teresa MONTEIRO-FERNANDES

D'après les travaux de Kashiwara-Schapira et Kashiwara-Kawai, si \mathfrak{M} et \mathfrak{N} sont deux systèmes microdifférentiels holonomes singuliers réguliers sur une variété analytique complexe X les faisceaux de solutions $\operatorname{Ext}_{\mathcal{K}}^{j}(\mathfrak{M},\mathfrak{N})$ (E_{X} désignant l'anneau des opérateurs microdifférentiels sur X) sont $\operatorname{C-constructibles}$; c'est-à-dire qu'il existe une stratification de Whitney $(Z_{\alpha})_{\alpha} \in I$ du fibré cotangent à X, $\operatorname{T}^{*}X$ (on le note $\operatorname{T}^{*}X = \underset{\alpha \in I}{\cup} Z_{\alpha}$) telle que pour tout j,α , $\operatorname{Ext}_{\mathcal{K}}^{j}(\mathfrak{M},\mathfrak{N})|_{Z_{\alpha}}$ soit un faisceau localement constant de rang fini sur C . On peut cependant donner une condition plus faible pour aboutir à la même conclusion.

Pour cela nous nous ramenons au cas où \mathcal{N} est un système holônome à caractéristiques simples sur une sous-variété V lagrangienne lisse conique de T X privé de sa section nulle . Dans cette situation on note \mathcal{P}_V^1 le sous faisceau d'anneaux de \mathcal{E}_X engendré par \mathcal{F}_V , l'ensemble des opérateurs d'ordre ≤ 1 dont le symbole d'ordre un s'annule sur V. Kashiwara et Kawai ont défini un morphisme d'anneaux ([3], [5]) $\mathbf{L}^{(o)}$ de \mathcal{P}_V^1 sur \mathcal{P}_V^1 (O) (le faisceau des opérateurs différentiels sur V homogènes de degré zéro) en posant, pour un système de coordonnées symplectiques (\mathbf{x}, ξ) sur \mathbf{T}^* X et pour $\mathbf{P} \in \mathcal{F}_V$ dont le symbole total s'écrit $\mathbf{P}(\mathbf{x}, \xi) = \sum\limits_{i \leq 1} \mathbf{P}_i(\mathbf{x}, \xi)$,

$$L^{(O)}(P) = H_{P_1} + P_O - \frac{1}{2} \sum_{j=1}^{n} \frac{\partial^2 P_1}{\partial x_i \partial \xi_j}.$$

Soit $\theta = \sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial \xi_{j}}$. Alors $\forall P \in \mathcal{D}_{v}^{1} [\theta, L^{(o)}(P)] = 0 \text{ et } \forall v, L^{(o)}(P) \text{ opère}$

dans $\mathcal{O}_{v}(v)$ (le faisceau des fonctions holomorphes sur V homogènes de degré v).

Proposition 1 [3]: Le noyau de L $^{(o)}$ est égal à $\mathcal{E}_{X}^{(-1)} \mathcal{D}_{V}^{1}$.

On démontre grâce à [10], [11], [12] ou encore [9] la proposition suivante :

Proposition 2 : Soit \mathcal{M}_o un \mathcal{D}_V^1 -module cohérent et soit $\mathcal{M}_{-1} = \mathcal{E}_X^{(-1)} \mathcal{M}$, $\overline{\mathcal{M}}_o = \frac{\mathcal{M}_o}{\mathcal{M}_{-1}}$. Alors $\overline{\mathcal{M}}_o$ est un \mathcal{D}_V^1 (o)-module cohérent et la variété caractéristique de \mathcal{D}_V^1 (o) $\overline{\mathcal{M}}_o$ 0 dans \mathcal{D}_V^1 (o), la variété 1-microcaractéristique de \mathcal{M}_o 1 le long de V.

$$\mathcal{M}_{O} = \frac{\mathcal{D}_{V}^{1}}{\mathcal{D}_{V}^{1}(t^{2}D_{t} + x_{1})} \quad \text{Alors} \quad C_{V}^{1}(\mathcal{M}_{O}) = T^{*}V \text{ et } Ch_{V}(\mathcal{M}_{O}) = \{(x,t,\xi,t) \in T^{*}x, x_{1} = 0\}.$$

On note $\mathcal{E}_{\mathbf{X}}$ le faisceau des opérateurs microdifférentiels formels (cf.[13])

Notre condition est alors la suivante

Théorème 3 : Soit \mathcal{M} un \mathcal{E}_X -module cohérent et \mathcal{M}_O un sous- \mathcal{D}_V^1 -module cohérent qui l'engendre. Supposons $\mathrm{Ch}_V(\mathcal{M}_O)$ lagrangien. Alors :

1) il existe localement $v_0 \in \mathbb{N}$ tel que pour $|v| \ge v_0$ on ait :

$$\forall j, \mathcal{E}_{x}t_{x}^{j}(\mathcal{M},\mathcal{N}(v)) \simeq \mathcal{E}_{x}t_{y}^{j}(\mathcal{M}_{o},\mathcal{N}(v+1))$$

et ces faisceaux sont C-constructibles.

Remarquons que si $\mathcal M$ et $\mathcal N$ sont singuliers réguliers les conclusions du théorème 3 résultent immédiatement des travaux de Kashiwara-Schapira [7], Kashiwara-Kawai [3] et Kashiwara-Oshima . Cependant le système $\mathcal M$ défini par les équations $(tD_t)u = (x^2D_x + 1)u = 0$ dans $\mathfrak C^2$ (x,t) avec $V = \{(x,t;\ \xi,\tau) \in T^*\mathfrak C^2,\ t = \xi = 0\}$ n'est pas singulier régulier et $Ch_V(\mathcal M_O)$ est isotrope puisque vide.

Pour démontrer le théorème 3 nous utilisons les lemmes suivants

Lemme 4 : Soit \mathcal{M} un \mathcal{E}_X -module cohérent et \mathcal{M} un \mathcal{E}_V^1 -sous-module cohérent de \mathcal{M} qui l'engendre. Alors les groupes :

$$\mathfrak{D}_{\mathbf{V}}^{1}$$
 $\mathfrak{D}_{\mathbf{V}}^{1}$ $\mathfrak{D}_{\mathbf{V}}^{1}$ $\mathfrak{D}_{\mathbf{V}}^{1}$, $\mathfrak{M}_{\mathbf{V}}$

sont nuls pour i > 0.

Lemme 5 : Soit $\mathcal A$ une $\mathfrak C$ -algèbre, θ un élément du centre de A et soient $\mathcal M$ et $\mathcal M$ deux $\mathcal K$ -modules à gauche. Supposons que pour tout $\lambda \in \mathbb Z$, l'application $\theta - \lambda$ de $\mathcal M$ dans $\mathcal M$ soit surjective et que $\forall j$, dim $\operatorname{Ext}_{\mathcal A}^{\mathbf j}(\mathcal M\mathcal M) < +\infty$. Notons $\mathcal M_\lambda$ le noyau de θ - λ dans . Alors :

(1) $\forall \lambda$, \forall j, $\operatorname{Ext}_{\mathcal{A}}^{j}(\mathcal{M},\mathcal{N}_{\lambda})$ est un \mathbb{C} -espace vectoriel de dimension finie ;

(2)
$$\forall j$$
, $\exists \lambda_0 \in \mathbb{N} |\lambda| \ge \lambda_0 \Longrightarrow \operatorname{Ext}_{\mathcal{A}}^{j}(\mathcal{M}, \mathcal{N}_{\lambda}) = 0$.

<u>Démonstration du théorème 3</u>: Prenons des coordonnées locales de sorte que l'on peut supposer $X=\mathbb{C}^n$ muni des coordonnées (x_1,\ldots,x_n) et $V=\mathbb{T}^*_ZX$, Z désignant l'hypersurface d'équation $x_1=0$. On peut alors supposer $\mathcal{M}=C_{Z\mid X}$, le faisceau des microfonctions holomorphes le long de Z, d'ordre fini, et $\mathcal{M}(\vee)=C_{Z\mid X}(\vee)$. D'après le lemme 4 on a

$$\begin{array}{lll} \forall \, \nu \,\,, & \forall \, j \,\,, \, \, \, & \forall \, x t_{0}^{j} \,\, & (\,M_{\!o}^{} \,\,, \, \, \frac{^{\,C_{\scriptstyle Z\,|\,X}^{\,(\nu)}}}{^{\,C_{\scriptstyle Z\,|\,X}^{\,(\nu-1)}}}) \,\, \simeq \,\, \\ & \simeq \,\, \, \, \, \, & \stackrel{c_{\scriptstyle Z\,|\,X}^{\,(\nu)}}{\stackrel{c_{\scriptstyle Z\,|\,X}^{\,$$

Un théorème de Kashiwara [1] entraı̂ne que les faisceaux $\mathcal{E}xt_{\mathfrak{D}_{V}(O)}^{j}$ $(\overline{m}_{O}, \mathcal{O}_{V})$ sont \mathfrak{C} -constructibles (puisque $\mathfrak{D}_{V} \underset{V}{\mathfrak{D}_{V}(O)}$ \overline{m}_{O} est holonome). On peut alors appliquer le lemme 5 avec

$$\mathcal{X} = \mathfrak{D}_{V}(0)$$
, $\theta = \xi_{1} \frac{\partial}{\partial \xi_{1}}$, $M = \overline{M}_{O}$ et $\mathcal{N} = \mathfrak{D}_{V}$;

on en conclut l'existence locale dans chaque strate de la stratification de Whitney de V un $v_0 \in \mathbb{N}$ tel que pour $|v| \geq v_0$ on ait , \forall_j , $\operatorname{Ext}_{\mathcal{D}_V}^j(0)$ $(\overline{m}_0, \mathcal{O}_V^j(v)) = 0$. On applique alors la :

Proposition 6 : Sous les hypothèses du théorème 3, pour tout jet v les faisceaux $\mathbf{Ext}_{\mathbf{V}_{\mathbf{V}}}^{\mathbf{j}}(v)$ ($\overline{m}_{\mathbf{O}}$, $\mathbf{O}_{\mathbf{V}}^{\mathbf{j}}(v)$) sont \mathbf{C} -constructibles, nuls pour |v| assez grand, localement sur \mathbf{V} .

Par suite on a localement et pour |v| assez grand

D'après la condition de Mittag-Leffler on en déduit que pour ν assez grand les $\text{Ext}^{j}(\mathcal{M}_{0}, C_{Z|X}(-\nu))$ sont nuls.

Le théorème 3 en résulte et de la proposition 6 aussi .

Q.E.D.

En particulier si \mathcal{M} et \mathcal{M} sont deux \mathcal{E}_X -modules et si la variété 1-micro caractéristique $C^1(\mathcal{M},\mathcal{M})$ est isotrope dans $T^1(T^1X)$ les \mathcal{E} xt \mathcal{E}_X (\mathcal{M},\mathcal{M}) vérifient la conclusion 2) du théorème 3.

Remarquons enfin que l'on démontre grâce aux résultats de [12] le

Théorème 7 : Soit V une sous-variété involutive lisse conique de T X - T_X^* X et soient M et N deux C_X^* -modules cohérents, M à caractéristiques simples sur V. Supposons que dans une feuille bicaractéristique Σ de V l'on a $C_V^1(M)$ isotrope. Alors les faisceaux

$$\operatorname{Ext}_{X}^{j}(M,N) \mid_{\Sigma}, \operatorname{Gxt}_{Y}^{j}(M,N(v)) \mid_{\Sigma}$$

sont constructibles, pour tout j et ν .

BIBLIOGRAPHIE

- [1] M. Kashiwara: Publ. R.I.M.S. Kyoto Univ. 10, 1975, p. 563-579.
- [2] M. Kashiwara : Cours rédigé par Teresa Monteiro-Fernandes, Pré Publ. Publ. Math. de l'Université Paris-Nord.
- [3] M. Kashiwara, T. Kawai : R.I.M.S. 1979, p. 293 (Preprint).
- [4] M. Kashiwara, T. Kawai : in Lecture Notes in Phys. 126, 1980, p. 21-77.
- [5] M. Kashiwara et T. Oshima : Ann. Maths., 106, 1977, p. 145-200.
- [6] M. Kashiwara : Inv. Math., 49, 1978, p. 121-135.
- [7] M. Kashiwara, P. Schapira : Acta Math., 142, 1979, p.1-55.
- [8] M. Kashiwara, J. Sjöstrand et T. Kawai : Ark. för Mat. 17, 1979, p.83-91.
- [9] Y. Laurent: in Lecture Notes in Phys., 126, 1980, p.77-89.
- [10]T. Monteiro-Fernandes : Comptes Rendus Acad. Sc. 290, série A, 1980, p.787.

- [11] T. Monteiro-Fernandes : Comptes rendus Acad. Sc., 290, série A, 1980, p. 833.
- [12] T. Monteiro-Fernandes : Problème de Cauchy pour les systèmes microdifférentiels (A paraître).
- [13] M. Sato, T. Kawai et M. Kashiwara : Lecture Notes in Math., 287, Springer, 287, Springer, 1973, p. 265-529.

