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Conférence n° 21

THE POISSON SUMMATION FORMULA FOR A DIRICHLET PROBLEM
WITH GLIDING AND GLANCING RAYS

by M. J. BENNETT and F. G. FRIEDLANDER

1. Introduction. Let M be a compact Riemannian manifold with smooth

boundary, and let /N be the Laplacian on M. This is an unbounded opera-
tor on LZ(M) which has a self adjoint extension with domain the Sobo-

lev space {u € HZ(M): ul M = 0} y whose spectrum subset of R~ , say
{O >-My 2 N, 3 -w} The corresponding eigenfunctions e; are a com-

plete orthonormal set in LZ(M); in fact, they are ¢ ¥ and satisfy

(1) Aej « s ey =0 e, |PM=0, =42,

) P

in the classical sense. So the )"j and e:j are, respectively, the eigen-
values and the eigenfunctions of the Dirichlet problem for /A on M.
The eigenvalues }A.j s Wwhich we take to be positive, satisfy Weyl's

dim H)

estimate ﬁf{)%yrk 0( T as T—> x ., Hence the spectral measure

o0
(2) STy = 20, (T-ky)
34

is a tempered distribution.
Consider now the following initial value problem for the wave

equation on M x IR :

3) {/()i-A)u-O, u\t=o=feczo(l7l) , atu]t - 0=0>
o,

hux R =
0,0 P
For any %, this defines a map C_ (M) > £ — u(.,t) € ¢ (M) whose

Schwartz kernel is a function Ks R — O '(Mx M) which can be expanded as
~

~
(4) K(r,g,8) = 25 o (x) oy(¥) cos pujt -

j=1
One can also look upon this as a function Mx M — & '( R), and as such

it has a trace given by



00

(5) tr K = /K(x,x,t) dg, = ZJ cos,wjt R

j=1

where dg_ is the Riemann measure on M. By (2) one can write this
identity also as

(6) tr K = 3 e(t)

A
where Ge is the even part of the Fourier transform of & ,

A A A A
1) S, )= 3 (SI) ¥ s¢-B) = L (S(T) +6(-D),

1
2

Andersson and Melrose [11 have shown that, if JM is everywhere
geodesically concave or convex, then (6) extends the Poisson formula for
compact boundaryless manifolds due to Chazarain (_3]and Duistermaat and
Guillemin (47, to the Dirichlet problem for A . In particular, the
singular support of ée is contained in the set

{ TE Rs |T| is the length of a closed broken geodesic on M or of a

closed boundary geodesioc 3 .

Here, the broken geodesic flow includes reflection, with the usual 'equal
angles' law, at the boundary, and the boundary is equipped with the induced
Riemann metric. Furthermore, if |T| is the length of a closed broken
geodesic which meets M transversally a finite number of times, and satis-
fies a certain non-degeneracy condition, then Guillemin and Melrose [5]
have established an extension to manifolds with boundary of the asymptotic
expansions of [31 and (41 for the restriction of /o\"e(t) to a sufficiently
small neighbourhood of T.

This leaves two open questions. The first is that of the contribution
of closed broken geodesics which graze the boundary; this can happen if
OM has a geodesically concave oonnected component. The second one, which
may be oalled the gliding ray problem, concerns the behaviour of ge

in the rleighbourhood of T when T is the length of a boundary geodesic.



We shall discuss a simple two-dimensional example which throws some

light on these questions. The results are primarily due to the first author.

2. The eigenvalue problem. The manifold is a portion of a cylinder,

M = (0,d) X( BR/2Y Z), where ¥ > O and d > O, equipped with the metric
(l+x)(d12+ dyz). So the eigenvalue problem (1) for our example can be put

into the form

(0 (2432 g+ pPux) g-0 m (0,0)x R,

¢| 220 = ¢|x=d =0, y—> f has period 2Y ,

and we take p.) 0.

(10) Proposition. With x ¢ R, k¢ R’ , and NER, write
(11) = a ()o) = P02 - opd)

and let Ai(z), Bi(z) be the standard solutions of Airy's equation
F" (z) = s F(s). (See[9], for example.) For each m = 0, 1,..., let

P”mj s where j = 1, 2, «sey be the roots of

(12) Ai(z';) Bi(:) - Ai(z':) Bi(z:) = 0,

m
arranged in ascending orderj here z_ = zx(pL, mY/r’ ). Then the }L m3
are the eigenvalues of (9); they are simple if m = 0, and of multi-
plicity 2 if m > O.
The proof is straightforward, and omitted. It is convenient to

let m range over Z and put

(13) Mom,j " Pbmj y M< 0y j=1y2y oo}

this takes care of the multiplicities.The speotral measure (2) is then

0 20
(14) s (1) = Z\,\ Z 3 (T Mm;) '
m=-00 4514



and the even part of its Fourier transform, (7), becomes

0 20
(15) 5,(4) - S, DL ikt

me—po J =1

3. The broken geodesic flow. For our example, the wave equation is

Pu = (1l+x) bgu - aiu - bsu .

The geodesic flow on T*M is just the bicharacteristic flow of P. Leaving
aside the zero seotion ('geodesics of zero length'), one ocan restrict this
to S*M = { (x,7,3,7 ) € T*Ms §2 + rLz -1+ xz’a.nd %t then gives the
(signed) length of the geodesios, which are the bicharaoteristic ocurves.
On the covering manifold’\l( = (O,d) X R , one can visualize these as the
trajectories of a billiard ball on an infinitely long inolined billiard
table whose (parallel) edges are horizontal, and perfectly reflecting.
From now on, we shall refer to the broken geodesios, both on ‘!\IJ and
on M, as geodesiocs., A closed geodesic on M, of length T ;‘ Oy is the image
under’;l/—yl of a geodesic on M such that x(T) = x(0), y(T) = y(0)+ 2nY ,
where n € Z , comsisting of parabolioc arcs reflected or grasing at the
boundary. Here n is the winding number; one must also associate an integer
k £ 0 with the geodesic, where | k| is the number of reflections at x = d,
with k> 0 if T > Oy and k < 0 if T< 0. We denote such a geodesioc by Y ..
It will be said to be of type I if it does not meet x = 0, of type II if
it is reflected alternately at x = 4 and at x = 0, and grazing if it
is tangent to x = 0. Geodesics of type II are of no interest for the
problem in hand, and will be ignored. Elementary computations give the

following:



(16) Proposition. Let 7 ©be a real number, and put

(17) T, =2 \(1+d-22)E | Ty = % (14d-02)% (14442 A2) |

let n and k be nonzero rational integers. There is & closed geodesic Knk
of type I, with length 21d1'¢ s if there is a A\ such that l<‘)2 < 144
and

(18) K¥p, = nf .

Thia has no (real) solutions if In/k| > (1+d4)/Y. If in/ki < (1+44)/Y ,
then (18) has one solution ,An.k such that i\ik > %(144); if also

\n/kl > Zd%/Y, then the second solution 'A;lk of (18), for which

'A‘nfc < #{1+d), is also admissible. If d%/Y is a rational number, and
\n/kl = 2d%/Y, then (18) holds for A= 1 or for A = -1, and the corres-
ponding b/nk is grazing.

Remark. Let Ft: S*M — S*M be the map obtained by letting every
point of S*M move for a time t along the lifted (broken) geodesic issuing
from it, with a suitable convention for po:';nts lying above O M. If
Y C M is a closed geodesic of (signed) length T, then it is clear that
the points of X s lifted to S*M, and their y~translates, are the fixed
point set of FT . So this set has dimension 2. One can show that it is
clean, in the sense of [4] and of CS] y unless ¥ is. of type I and
R} = (-?g—(l+d))% . Such a geodesic will be called degenerates; it occurs

when the roots of (18) coincide, and one then also has

(19) 37;/3’)‘ =0.

4. The trace formula. In our example, the first member of (5) can

be obtained without explicitly determining K by solving the initial

value problem (3). One needs a technical lemma.



(20) Lemma.Let z € R, and put

©  dt
21 (z) = 1 i
(21 A ~ f,z AL () + 8O

Then fxe Cw( R) is positive and strictly decreasing, and one has

(22) tan 8 7((z) = Ai(z)/Bi(z) if Bi(z) A O .

Furthermore, -7('(2) is also strioctly decreasing. For z large and posi-

tive, one has X (z) = O(exp(-4z3/2/3) and

(23) ™ 7((-z) =47 +-§- 53/2 + 0(5-3/2) .
This follows from standard properties of the solutions of Airy's
equation ( 91 . One can now reformulate Proposition (10). With zZ, defined

by (11), put
(24) 3 = Yezg( Ty ) = Y5 (T,7), (T,0) ER xR.

Then %) Oy and T — 3 is strictly increasing. One can therefore invert
(24) to obtainm:
= ulzn) € C¥(R*'cm)
(25) T = K3 )
and infer from (12) that the eigenvalues of the Dirichlet problem (9)

are given by A, = (i, m™/Y). So one ocan write (15) as

[ 4

-
(26)  S,0)= 2. 0(3) cos (K(5mVDH) ,

m,j = -

where ?(i ) € C'.‘w( R) is such that

(27) 0 =0 f 3¢8 i if 23, 0¢§Ve L,

The: second member of (26) converges in J '( R). So, if g e J(R)

is real valued, one has
® A
A . \ Ing
(%,sé? = Re ZJ P'3)¢°}L(3’m'/y)-

4= -00



A
It is not hard to show that P( i )Bop(3 s )E 4¢( ]R2). One can therefore
appeal to the classical Poisson summation formula, and after some mani-
pulations, one obtains:

(28) Proposition. Let § € T (R) be real valued. Then

. L]
A A \\ A
(29) <6,8% = R Y /snkmm«rm “Re ), (S8,
X

N, ke n,R=~00
where

(30) § 4 (T) = /Ank(¢,>«)exp(isnk(rr,$\) an

(31) snk=217k§(fr,ﬁ)+2nx’kfr ,

(32) 3 (6N = x(T3(a% ) - X (7H3(A% )

(33) (37/2v)a, =
003 (TA((2&) %/ (B3(3%1) - (2% +14a) %' (P/3(2R-a-1))).

Also, A

I "
nk = 0 for Tgd y Where S ) 0 depends on the choice of P .

A
5. The singularities of Ge . These can now be examined by analysing

the behaviour of 26‘ nk((r ) as [{»00. Roughly speaking, the terms

with k¥ = 0 are related to the singularity at t = O. As this is now well
understood in the general case«ilo-l ’ (8], [6]) sy it will not be‘dis-
cussed here.

For k ;4 0, it is found that the asymptotic behaviour of snk yields
information on the singularity of ge near ¢ = Tnk s the length of the
geodesioc b/nk of Proposition (16). We now go on to state the principal
results obtainedj the proofs will be published elsewhere fZ] o As Se is

even, we take t ) O. We write

(34) 2 = %T € R: there is a closed geodesic on M of length [T‘\§ ,



We shall use the notation, for any real number s,

(35) B = {fifecH (R)fortcs}.

We begin with the 'regular' case.
(36) Theorem. Let zynk be a non degenerate closed geodesic of

type I, with n and k as in Proposition (16), k > 0. Let T . be the length

nk
of ¥ i » and JCIR an open interval such that JnJ, =4T ,{. Then there
are ocomplex numbers aiz) gy m =0, 1, ... such that, for any N 0 ,
SR 2
~ m m= 5 -
B 5§ W= Renglo al®(sr_-10)™ 24, o€ BT .
Also,
(38) aﬁ{’() - 1k+€mnk/2rrk3/2)na/a>\% ,

where N is the appropriate solution of (18), and § = 1 if
n2 < 3(1+4d), €= 01 A% > 3(1+9).

The proof is in effect an application of the method of stationary
phase to (30). The result is essentially that of [5] s allowing for the
observation made in the remark following Proposition (16). The factor
ik+ € incorporates the Maslov index and the changes of sign due to reflec-
tion at the boundary. The other factor in (38) is proportional to the
so-oal;ed invariant volume of the relevant fixed point set of the
geodesic flow on S*M.

It is clear from (19) and (38) that (37) cannot hold when the
closed geodesioc .Knk is degenerate. In fact, the phase function which
comes from (31) and (32) is then degenerate. However, this case is easy
to handle. We only remark that, whereas in the non-degenerate oase
S;k is a classical symbol of order ég it is the sum of two such in the
degenerate case, of orders % and % respectively, and omit the detailed

formulae.



(39) Theorem. Suppose that d%/Y is a rational number, and that
in/k\ = Zd%/Y, k > 0. Then there is a closed grazing geodesic<y£k of
length T . = 2n(2+d4)/3Y. Let J ¢ R be an open interval such that
Jn 2={Tnk§.'l‘hen /G\e‘J is the sum of two terms, one of which has the
expansion (37), while the other one can be expanded as

N

(40)  Re ), gm(t-'rnk—io)(““4)/3 yry, Ty € g(M-3)/6- w6, 1,...
m=0

The g involve the (oscillatory) integrals

A )
P W aw

~
where A+(w) = Ai(emi/B'w) and & (w) = Ai(e—zn 1/3w) $ in particular,

go is a multiple of ot ank'

In this case, the significant contribution to (30) comes from a neigh-
bourhood of A= 1 or D= -1, and the term ?{(¢2/3(’A2—1)) in 8 _, cannot
be handled by means of (23). However, it also follows from Lemma (20)

that, if k€ Z , then

exp ik(ﬂ’(z)— %ﬁ = Al_((z)/A]:(z) .

This gives an alternative form of Snk which, with appropriate asymptotic

analysis, gives (40). The 'strange constants' ¢, resemble those which

km

appear in the problem of forward scattering [7] and, like them, are no

doubt related to the fact that Airy operators are needed for the construc-

tion of microlocal parametrices near diffractive points of the boundary.
Finally, we consider the gliding ray problem, perhaps the most interes-

ting feature. Write 3°n = {dfx( ]R/ZY Z) for the geodesically convex con-

nected component of JM. Its (Riemannian) length is L = 2Y(1+d)% . It is

not a geodesic, but a limit of (broken) geodesics. Indeed, the following

is easily deduced from Proposition (16):



10

(41) Proposition. The set of accumulation points of S is {m} .
For any n ) 0, there is a ko > 0 and a sequence xnk s k = ko’ ko+1,...
of non-degenerate closed type I geodesics such that Ank A (l+d)% ,
Tnk A nL, and these xnk converge to %M described n times with positive
orieﬁtation. Similar statements are true for n< 0.

Theorem (36) holds for each Y _? Put one cannot simply add the
asymptotic expansions (37) in order to obtain the behaviour of ge(t) in
the neighbourhood of t = nL. However, one easily sees from (38) and (17)

(o)

o = 0(k—2), g0 that the sum of the top order terms converges. Put

o0 .
Kn(t) = Re 2.1 ar(i;)(t-'rnk_io)"3/2
k=k

Then one has
(42) Theorem. Let n be a positive integer, and let J be an open
' |
interval such thak Jn S ={-rnk; k) k §, withk_and T as in Propo-

sition (41). Then

(43) 89(1;)‘.1 =K () + o(n;i&") .

-1-

Observe that this is a genuine error estimate, as Kné Hy o 3 vwe

do not know if it is the best possible.
As in the case of Theorem (39), the diffioulty is that one has to
work in a range of A (a neighbourhood of (1+d)% or of -(l+d)%) where the

application of (23) to the phase function S_. of Proposition (28) is

nk
problematical. There is a constant ¢ such that, for any T) O, the G-nk

with k » 01‘1/3 are smoothy but one cannot control the error terms for

1/3

the sum over k £ ¢T/~. However, it turns out that one can do so for the

sum of the Gnk over k & c"rl/4

c'¢1/4<ksofl/3 .

, and obtain another estimate for the range
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