JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOHANNES SJÖSTRAND

Opérateurs intégraux de Fourier sans phases

Journées Équations aux dérivées partielles (1981), p. 1-5

http://www.numdam.org/item?id=JEDP 1981 A2 0>

© Journées Équations aux dérivées partielles, 1981, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

OPERATEURS INTEGRAUX DE FOURIER SANS PHASES

par

J. SJÖSTRAND

Il s'agit d'une généralisation de la théorie des opérateurs intégraux de Fourier. La partie géométrique doit beaucoup à un travail de P. Schapira [3]. J'ai également profité de nombreuses discussions avec B. Lascar. Le travail présent se situe dans le cadre des singularités analytiques, et on y développe une théorie à grand paramètre à la Maslov. Cependant je pense que les mêmes idées s'appliqueront par exemple dans le cadre plus classique de singularités C^{∞} et où on construit des vraies distributions.

A. La géométrie

Dans tout ce qui suit on travaille avec des germes de variétés ou de fonctions définies près de certains points fixés. Dans $\mathfrak{C}_{\mathbf{x},\xi}^{2n}$ nous avons la forme symplectique complexe $\sigma=\Sigma$ d ξ , Λ d \mathbf{x} , et suivant Schapira [3] on observe que Re $\sigma=\frac{1}{2}(\sigma+\overline{\sigma})$ et Im $\sigma=\frac{1}{2i}(\sigma-\overline{\sigma})$ sont des formes symplectiques réelles. Nous avons donc sur $\mathfrak{C}_{\mathbf{x},\xi}^{2n}$ (et plus généralement sur une variété symplectique complexe) deux géométries symplectiques réelles en plus de la géométrie complexe. Si par exemple $\mathbf{r}=\mathbf{p}+\mathbf{i}\mathbf{q}$ est holomorphe et $\widehat{\mathbf{H}}_{\mathbf{r}}$ désigne le champ de vecteurs réel associé au champ hamiltonien complexe $\mathbf{H}_{\mathbf{r}}$, nous avons les identités :

$$H_r = H_p^{Re\sigma} = H_q^{Im\sigma}$$
 , $H_{ir} = -H_q^{Re\sigma} = H_p^{Im\sigma}$

où par exemple $H_p^{\text{Re}\sigma}$ désigne le champ hamiltonien de p pour la forme symplectique Re σ .

Suivant Schapira on dit qu'une sous-variété (de classe C^{∞}) $\Lambda \subset C^{2n}$ est $I(\mathbb{R})$ lagrangienne [symplectique] si elle est lagrangienne [symplectique] pour $Im\sigma$ (Re σ). Ainsi une variété I et \mathbb{R} lagrangienne est une variété lagrangienne complexe; C-lagrangienne.

Exemple 1 : $T^*\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$ est I-lagrangienne et \mathbb{R} - symplectique.

Exemple 2 : Soit $V \subset \mathbb{R}^n \times \mathbb{R}^n$ une variété involutive réelle alors \widetilde{V} = la réunion des complexifiées des feuilles bicaractéristiques de V, est une variété I-lagrangienne.

Si Λ est une variété I-lagrangienne transverse à $\{x=0\}$ en (0,0) alors $\Lambda:\Lambda_{\phi}:\xi=\frac{2}{i}$ $\frac{\partial\phi}{\partial x}$ où ϕ est une fonction C^{∞} réelle. (Les hypothèses minimales de régularité dans cette théorie sont vraisemblablement pour les variétés lagrangiennes d'être de classe Lipschitz et pour les fonctions génératrices d'être dans la classe $C^{1,1}$: de fonctions dérivables aux dérivées de classe Lipschitz). On remarque que $Re\sigma|_{\Lambda}=\frac{2}{i}$ $\overline{\partial}\partial\phi$.

Définition 3 : Soient F une variété C-lagrangienne définie près de $(x_0,\xi_0)\in\mathbb{C}^{2n}$ et Λ une variété I-lagrangienne définie près du même point. On suppose que F est transverse à Λ . On dit que Λ est F-pseudo-convexe s'il existe une transformation C-canonique \mathcal{H} t.q. $\mathcal{H}(F)$: x=0 , $\mathcal{H}(\Lambda)=\Lambda_{\phi}$ où ϕ est pluri-sous-harmonique près de x=0.

On peut montrer que cette définition ne dépend pas du choix de la transformation canonique $\mathcal K$ et qu'elle est même stable pour des déformations continues de $F: t \mapsto F_t$ à condition que F_t coupe Λ transversalement en (x_0, ξ_0) . On peut aussi montrer que pour $\Lambda = T^*\mathbb R^n$ (ou plus généralement pour Λ $\mathbb R$ - symplectique) alors Λ est F-pseudo convexe si et seulement si F est strictement négative (par rapport à Λ) au sens de la théorie des OIF à phases complexe.

Soient Λ_1 , Λ_2 deux (germes de) variétés I-lagrangiennes, passant par (\mathbf{x}_0,ξ_0) . On dit alors que $\Lambda_1 \leq \Lambda_2$ s'il existe $\mathbf{F}: \mathbb{C}$ -lagrangienne passant par (\mathbf{x}_0,ξ_0) telle que Λ_1 et Λ_2 sont F-pseudo-convexes et $\phi_1 \leq \phi_2$ après la réduction : $\mathcal{U}(\mathbf{F}) = \{\mathbf{x} = \mathbf{0}\}$, $\mathcal{X}(\Lambda_j) = \Lambda_{\phi_j}$, $\phi_1(\mathbf{0}) = \phi_2(\mathbf{0})$. On montre que la définition ne dépend pas du choix de \mathcal{U} . En plus on peut remplacer \mathbf{F} par toute autre variété \mathbb{C} lagragienne \mathbf{G} telle que Λ_2 soit \mathbf{G} -pseudoconvexe.

Exemple 4 : Les variétés C-lagrangiennes positives au sens de Melin-Sjöstrand [2] vérifient $\Lambda \leq T^*\mathbb{R}^n$.

L'outil principal dans les vérifications est le

Lemme 5 : Soit $\phi(x,y)$ une fonction pluri-sous-harmonique définie près de $(x_0,y_0)\in \mathbb{C}^n\times \mathbb{C}^k$ telle que $\nabla_y \phi(x_0,y_0)=0$, $\nabla^2_y \phi(x_0,y_0)$ est non dégénérée de signature O. Alors la valeur critique par rapport à $y:=\phi(x)=\phi(x,y(x))$ est une fonction pluri-sous-harmonique. Si $\phi(x,y)\leqslant \phi(x,y)$ est une deuxième fonction pluri-sous-harmonique avec $\phi(x_0,y_0)=\phi(x_0,y_0)$, alors $\phi(x)=\phi(x)$, si $\phi(x)=\phi(x)$ est la valeur critique correspondante.

B. L'analyse

Soit $\phi(x,\theta)$ une fonction C réelle définie près de (x_0,θ_0) $\in \mathbb{C}$. On dit que ϕ est une phase admissible si

- (1) ϕ est pluri-sous-harmonique
- (2) Il existe une fonction C^{∞} pluri-sous-harmonique $\psi(x,w)$ définie près de $(x_0,w_0)\in C$ t.q. $\psi+\phi$ ait un point critique non dégénéré de signature O en (x_0,w_0,θ_0) .

Les phases admissibles sont non-dégénérées au sens de Hörmander. On peut donc former $\Lambda_{\phi} = \{(\mathbf{x}, \frac{2}{\mathbf{i}} \frac{\partial \phi}{\partial \mathbf{x}}(\mathbf{x}, \theta) : \frac{\partial \phi}{\partial \theta} = 0\}$ qui est une variété I-lagrangienne. Pour les phases admissibles on peut toujours prendre ψ pluri-sous-harmonique dans (2) (même indépendante de w). Alors Λ_{ϕ} est $\Lambda_{-\psi}$ -pseudo-convexe. En général on peut seulement dire que $\Lambda_{\phi} \times \Lambda_{\psi}$ est N*($\{(\mathbf{x},\mathbf{y}) \in \Phi^{2n} : \mathbf{x} = \mathbf{y}\}$)-pseudo-convexe.

Désignons par $H_{\phi,(x_0,\theta)}$ l'espace des (germes) de fonctions holomorphes en (x,θ) ; $u(x,\theta,\lambda)$ définies dans $V \times \mathbb{R}_+$, où $V = V_u$ est un voisinage de (x_0,θ) et telles que pour tout $\varepsilon > 0$, $\exists \ C_{\varepsilon} > 0$ telle que :

$$|u(x,\theta,\lambda)| \leq c_{\varepsilon} e^{\lambda (\phi(x,\theta)+\varepsilon)}$$

On identifie $u_1, u_2 \in H_{\phi, (x_0, \theta_0)}$ s'il existe C > 0 telle que $|u_1(x, \theta, \lambda) - u_2(x, \theta, \lambda)|$ $\leq C e^{\lambda(\phi(x, \theta) - 1/C)}$ pour (x, θ) dans un voisinage de (x_c, θ_c) , $\lambda \geq C$.

Soit $I_{\mathfrak{C}}$ l'espace des chjets formels

$$u(x,\lambda) = \int a(x,\theta,\lambda)d\theta$$
, $a \in H_{\phi}(x_0,\theta_0)$.

Si $\psi(\mathbf{x},\mathbf{w})$ est comme dans (2) et on suppose que $\phi(\mathbf{x}_0,\theta_0)=\psi(\mathbf{x}_0,\mathbf{w}_0)=0$ pour normaliser, alors avec $\mathbf{v}(\mathbf{x},\lambda)=\int_{\mathbb{R}^n}\mathbf{b}(\mathbf{x},\mathbf{w},\lambda)d\mathbf{w}\in \mathbf{I}_{\psi}$ on peut définir (modulo un facteur ± 1 et un terme $\mathcal{O}(e^{-\lambda/C})$) le produit :

$$\langle u, v \rangle = \iiint a(x, \theta, \lambda)b(x, w, \lambda)dx d\theta dw$$

Il suffit en effet de choisir un contour d'intégration convenable, passant par $(\mathbf{x}_0,\theta_0,\mathbf{w}_0)$.

On a alors le théorème d'équivalence des phases :

Théorème 6 : Soit $\widetilde{\phi}$ une autre phase admissible définie près de $(x_0, \widetilde{\theta}_0) \in \mathbb{C}$ avec $\widetilde{\phi}(x_0, \widetilde{\theta}_0) = 0$ et $\Lambda_{\widetilde{\phi}} = \Lambda_{\widetilde{\phi}}$. Alors pour toute $u \in I_{\widetilde{\phi}}$ il existe $\widetilde{u} \in I_{\widetilde{\phi}}$ telle que modulo un terme à décroissance exponentielle :

$$\langle u, v \rangle \equiv \langle \tilde{u}, v \rangle$$

pour \forall $v \in I_{\psi}$ et \forall ψ comme dans (2) avec $\psi(x_0, w_0) = C$.

Dans la lumière de ce résultat on écrira $\mathbf{I}_{\phi}=\mathbf{I}_{\widetilde{\phi}}=\mathbf{I}_{\Lambda_0}$. Si $\Lambda_1\leq \Lambda_2$ alors $\mathbf{I}_{\Lambda_1}\subset \mathbf{I}_{\Lambda_2}$

Dans le même esprit on développe un calcul pour des opérateurs $A: I_{\bigwedge} \longrightarrow I_{\bigwedge} \text{ où } \stackrel{\sim}{\Lambda} \text{ est l'image de } \Lambda \text{ par une relation I-canonique associée à } A.$ L'espace I est essentiellement celui des hyperfonctions. $T^*\mathbb{R}^n$

C. Propagation des singularités analytiques

Soit P un opérateur différentiel à coefficients analytiques, Q = t P, $(x_{0}, \varepsilon_{0}) \in T^{*}\mathbb{R}^{n} \setminus 0$, $P(x_{0}, \varepsilon_{0}) = 0$. Ici p, q sont les symboles principaux de P,Q. On s'intéresse à la propagation des singularités analytiques en $(x_{0}, -\xi_{0})$ pour une distribution u vérifiant

(3)
$$(x_0, -\xi_0) \notin WF_a(Pu)$$
.

On se donne pour cela une variété I-lagrangienne $\Lambda \leqslant \mathtt{T*R}^n \setminus \mathtt{O}$, avec $(\mathtt{x}_{\mathtt{O}},\xi_{\mathtt{O}}) \in \Lambda_{\mathtt{I\!R}}$. (Par définition $\Lambda_{\mathtt{I\!R}}$ consiste des points de Λ \cap $\mathtt{T*R}^n$ correspondant au point où $\phi = \Phi$, si on fait une tranformation \mathtt{C} -canonique qui envoie $\mathtt{T*R}^n$ en $\Lambda_{\overline{\Phi}}$ et Λ en $\Lambda_{\overline{\Phi}}$ avec Φ . Soit $\mathtt{r}(\mathtt{x},\xi)$ une fonction analytique à valeurs réelles. On suppose

(H)
$$\begin{cases} \text{Il existe } \theta \in [0,\pi] \text{ , } \epsilon > 0 \text{ et un voisinage complexe V de } (x_0,\xi_0) \\ \text{tels que :} \\ q(\exp(\text{te}^i H_r)(x,\xi) + (y,\xi)) \neq 0 \text{ pour} \\ 0 < t \leq \epsilon \text{ , } (x,\xi) \in \Lambda \text{ for } V, \text{ } (y,\eta) \in \mathfrak{C}^{2n} \text{ , } |(y,\eta)| \leq \epsilon t \text{ .} \end{cases}$$

 $\frac{\text{Th\'eor\`eme 7}}{\{(\mathbf{x}, -\xi) \in \mathbf{T^*IR}^n \setminus \mathbf{0}; \ (\mathbf{x}, \xi) \in \mathbf{V} \cap \Lambda_{\mathbf{IR}} \ , \ \mathbf{r}(\mathbf{x}, \xi) > \mathbf{0}\} \cap \mathbf{WF}_a(\mathbf{u}) = \emptyset}$ alors $(\mathbf{x}_0, -\xi_0) \notin \mathbf{WF}_a(\mathbf{u})$.

Ce théorème généralise un résultat de Hanges-Sjöstrand (voir [4]) concernant le cas C-lagrangien et aussi un résultat de Kashiwara-Schapira [1] ainsi qu'un résultat plus récent de Schapira concernant le cas où $\Lambda = \tilde{V}$ comme dans l'exemple 2

Les résultats suivants se démontrent avec ce choix de Λ , et ils ont été obtenus en collaboration avec A. Grigis et P. Schapira . p désigne le symbole principal de l'opérateur P à coefficients analytiques.

Théorème 8 : Soit P un opérateur transversalement elliptique par rapport à la variété réelle analytique $\Sigma \subset T^*\mathbb{R}^n$ c.à.d. $|p| \sim d_{\Sigma}^k$ pour un certain entier $k \geq 1$. Soit V $\subset T^*\mathbb{R}^n$ une sous-variété analytique, involutive t.q. Σ soit invariante par le flot bicaractéristique de V. Soit $\Gamma \subset \Sigma$ une feuille bicaractéristique connexe de V, alors si $\Gamma \cap WF_a(Pu) = \emptyset$, ou bien $\Gamma \subset WF_a(u)$ ou bien $\Gamma \cap WF_a(u) = \emptyset$.

Théorème 9 : Soit $p = \sum_{1 \le j,k \le d} a_{jk}(x,\xi) p_{j}p_{k}$ où p_{1},\ldots,p_{α} sont réelles et analytiques et $(a_{jk}) > 0$. Soit Γ une feuille de Nagano (connexe) telle que pour l'algèbre de Lie engendrée par p_{1},\ldots,p_{α} pd p_{1} p_{2} p_{3} p_{4} p_{4} p_{5} p_{6} p_{7} p_{7} p_{8} p_{8} p_{7} p_{8} p_{8} p_{7} p_{8} p_{8} p

Ce théorème généralise un résultat de Hanges-Sjöstrand (voir [4]).

Théorème 10 : Soit $\Sigma \subset T^*\mathbb{R}^n \setminus O$ une sous variété analytique, $p \ge C$, $p \sim d_{\Sigma}^2$ localement. Soit $\Gamma \subset \Sigma$ une sous variété connexe telle que en tout point de $\Gamma : T(\Gamma) = \{t \in T(\Sigma); \ \sigma(t,s) = 0, \forall s \in T(\Sigma)\}$. Alors on a la même conclusion que dans le théorème 8.

REFERENCES

- [1] M. Kashiwara, P. Schapira : Microhyperbolic systems, Acta Math. 142 (1979), 1-55.
- [2] A. Melin, J. Sjöstrand: Fourier integral operators with complex valued phase functions. Springer Lecture Notes in Math. n°459.
- [3] P. Schapira : Conditions de positivité dans une variété symplectique complexe, applications à l'étude des microfonctions. Ann. Sci. Ecole Norm. Sup., 4e série t.14, 1-19.
- [4] J. Sjöstrand: Analytic singularities of solutions of boundary value problems, p.235-269 in "Singularités in boundary value problem" Reidel Publ. Co. Nato Adv. Study Series, 1981 (Ser. C).