JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

BERNARD HELFFER JEAN NOURRIGAT

Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs

Journées Équations aux dérivées partielles (1980), p. 1-2

http://www.numdam.org/item?id=JEDP_1980____A2_0

© Journées Équations aux dérivées partielles, 1980, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

HYPOELLIPTICITE MAXIMALE POUR DES OPERATEURS POLYNOMES DE CHAMPS DE VECTEURS

par B. HELFFER et J. NOURRIGAT

On considère, dans une variété réelle M, un système $x_1,...,x_p$ de champs de vecteurs réels, c^∞ , vérifiant la condition de Hörmander, à l'ordre r \geqslant 1.

On considère un opérateur différentiel P dans M de la forme

$$P = \sum_{|\alpha| \leq m} a_{\alpha} x^{\alpha}$$

où, pour toute suite finie $\alpha = (\alpha_1, \dots, \alpha_k)$ d'entiers compris entre 1 et p on pose $X^{\alpha} = X$... X et $|\alpha| = k$. Les coefficients α sont des fonctions α sur M à valeurs complexes.

On dit que P est hypoelliptique maximal dans un ouvert $\,\Omega$ de M si, pour tout compact K $\subset \Omega$, il existe C_K > O tel que l'on ait

$$\sum_{|\alpha| \leq m} \|x^{\alpha}u\|^{2} \leq C_{K}[\|Pu\|^{2} + \|u\|^{2}] \qquad \forall u \in C_{O}^{\infty}(K)$$

On sait, d'après une inégalité de Rothschild-Stein et un critère d'hypoellipticité de Trèves et Unterberger, que cette propriété implique bien l'hypoellipticité de P.

On va définir, en chaque point x_0 de M, un ensemble d'opérateurs différentiels à coefficients polynomiaux. Quand l'entier r est ≤ 2 , l'injectivité de ces opérateurs est équivalente à l'hypoellipticité maximale de P dans un voisinage de x_0 .

Soit $\mathcal G$ l'algèbre de Lie nilpotente libre, à p générateurs $Y_1,...,Y_p$, de rang de nilpotence r. Soit λ l'unique application linéaire de $\mathcal G$ dans l'espace des champs de vecteurs réels sur M, telle que

$$\lambda(Y_{j}) = X_{j}$$
 et $\lambda(Y_{I}) = X_{I}$ si $|I| \le r$

Si I = (i_1, \ldots, i_k) , on note X_I = ad $X_1 \ldots$ ad $X_1 X_1$ et |I| = k. Notons que λ n'est pas un homomorphisme d'algèbre de Lie, l'égalité $\lambda(Y_I) = X_I$ n'étant valable que si $|I| \leq r$.

<u>Définition</u>: Pour tout $x_0 \in M$, soit f_{x_0} l'ensemble des formes linéaires $\ell \in \mathcal{F}^*$ telles qu'il existe une suite $(x_n, \xi_n)_n \in \mathbb{N}$ dans T^*M et une suite $(t_n)_n \in \mathbb{N}$ de réels > O telles que

$$x_n \rightarrow x_0$$
, $|\xi_n| \rightarrow +\infty$, $t_n \rightarrow 0$

et, pour tout $|I| \le r$, $\ell(Y_I) = \lim_{n \to \infty} t_n^{|I|} X_I(x_n, \xi_n)$.

Pour tout $\ell \in \mathcal{J}^*$, désignons par π_{ℓ} la représentation unitaire irréductible du groupe exp q, correspondant à l'orbite de ℓ dans la représentation coadjointe de exp \mathcal{G} .

On démontre le

Théorème : Si l'entier r est \leq 2, pour tout $x \in M$, les deux propriétés suivantes sont équivalentes :

- Il existe un voisinage de x dans lequel P est hypoelliptique maximal.

Pour tout
$$\ell \in \Gamma_{x_{0}} = \{0\}$$
, l'opérateur différentiel
$$\sum_{\alpha = 0}^{\infty} a_{\alpha}(x_{0}) \pi_{\ell} (Y)^{\alpha}$$

est injectif dans l'espace $oldsymbol{3}_{\pi_{\mathfrak{g}}}$ des vecteurs C $^{\infty}$ de la représentation $^{\pi}$.

Remarque 1 : Si l'on désigne par $2k(\ell)$ le rang de la forme bilinéaire $X,Y \to \ell([X,Y])$ sur $\mathcal{J} \times \mathcal{J}$, alors \mathcal{S}_{π_0} peut s'identifier à $\mathcal{S}_{(R^{k(\ell)})}$, et π_{ℓ} (Y_j) est un opérateur différentiel dans $R^{k(l)}$ que l'on peut expliciter.

Remarque 2 : On peut conjecture que l'énoncé du théorème est peut être valable sans restriction sur l'entier r.

La démonstration utilise les techniques développées dans nos articles précédents [1],[2] et les techniques de microlocalisation de L. Hörmander [3].

- [1] B. Helffer et J. Nourrigat : Comm. in P. D. E., 3 (8), 1978 p.643-743 et 4, (8), 1979, p.899-958.
- [2] B. Helffer et J. Nourrigat : Hypoellipticité pour des opérateurs quasi-homogènes à coefficients polynomiaux (Actes du colloque de St Cast, 1979).
- [3] L. Hörmander : Ann. of Math., 83, 1966, p.129-269.
- [4] L. P. Rothschild, E. M. Stein : Acta Mathematica, 137, p.248-315.