JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ALAIN GRIGIS

Propagation des singularités sur des groupes de Lie nilpotents

Journées Équations aux dérivées partielles (1980), p. 1-3

http://www.numdam.org/item?id=JEDP 1980 A18 0>

© Journées Équations aux dérivées partielles, 1980, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PROPAGATION DES SINGULARITES SUR DES GROUPES DE LIE NILPOTENTS

par A. GRIGIS

1. Le groupe

Soit q une algèbre de Lie nilpotente de rang de nilpotence 2. On la décompose en

$$g = g_1 \oplus g_2$$

en imposant à $\,g_{2}\,$ d'être contenu dans le centre et de contenir $[\,g_{1}^{},\,g_{1}^{}]\,$.

On choisit des bases x_1,\dots,x_{p_1} de g_1 et g_2,\dots,g_{p_2} de g_2 , et on a les relations :

$$[x_{i},x_{j}] = \sum_{k=1}^{p_{2}} A_{ij}^{k} y_{k} \qquad 1 \leq i,j \leq p_{1}.$$

Pour chaque k, la matrice (A_{ij}^k) est réelle antisymétrique.

On munit $\mathbb{R}_{(x,y)}^{p_1+p_2}$ d'une loi de groupe pour en faire un groupe de Lie G, d'algèbre de Lie g, et on identifie g avec l'algèbre de Lie des champs de vecteurs invariants sur G. On pose donc :

$$X_{i} = \frac{\partial}{\partial x_{i}} + \frac{1}{2} \sum_{j,k} A_{ji}^{k} x_{j} \frac{\partial}{\partial y_{k}}$$

$$1 \le i \le p_{1}$$

$$Y_{k} = \frac{\partial}{\partial y_{k}}$$

$$1 \le k \le p_{2}$$

 $\text{Comme}[Q_1,Q_1]\subset Q_2 \quad \text{on peut considérer pour } \eta\in Q_2^*\backslash\{0\} \quad \text{la forme bilinéaire antisymétrique sur } Q_1:$

$$B_{\eta}(X,X') = \eta([X,X']).$$

On obtient facilement la matrice de B $_{\eta}$ dans la base des X $_{\mathbf{i}}$:

(Mat
$$B_{\eta}$$
)_{i,j} = $\sum_{k=1}^{p_2} A_{ij}^k \eta_k$

 $\frac{\text{Hypothèse}}{\eta \in \P_2^*} : \text{ On suppose que le rang de B}_{\eta} \quad \text{est non maximal et indépendant de } \eta \in \P_2^* \setminus \{0\}. \text{ On le note 2r et on pose d} = p_1^* - 2r > 0.$

On montre alors que , pour chaque $\,\eta\,,$ les éléments du radical R $_{\eta}\,$ de B commutent entre eux, si bien que $\exp(R_{\eta})\,$ est un sous-groupe commutatif de G, de dimension d .

2. L'opérateur

On considère, comme dans [8], l'opérateur invariant à gauche sur G

$$P = \sum_{i=1}^{p_1} x_i^2 + \frac{1}{i} \sum_{k=1}^{p_2} b_k Y_k , \qquad b_k \in \mathbb{R} .$$

Cet opérateur est à caractéristiques doubles sur la sous-variété conique de T G, notée $\,\Sigma\,$ et définie par les équations :

$$\sigma(x_i) = \xi_i + \frac{1}{2} \sum_{j,k} A_{j,i}^k \eta_k = 0$$
 $i = 1,...,p_1$

Le rang de la 2-forme canonique restreinte à Σ est égal à 2r, donc il est constant sur Σ . D'après [4] , Σ admet un feuilletage canonique dont les feuilles, de dimension d, se projettent sur les sous-variétés de G de la forme :

$$g \exp (R_{\eta})$$
 $g \in G$.

Remarquons que les invariants de P, symbole sous-principal et valeurs propres de la matrice fondamentale ([3]), sont constants le long de chacune des feuilles canoniques de Σ .

On sait ([1],[5]) que P est hypoelliptique si et seulement si $\pi(P)$ l'est pour toute représentation irréductible π de G. Une représentation π , telle que $\pi(P)$ ne soit pas hypoelliptique - appelons-là caractéristique pour P - correspond à un couple (η,ζ) , $\eta\in \mathcal{J}^*_{2}\setminus\{0\}$, $\zeta\in\mathbb{R}^*_{\eta}$ tel qu'il existe un multiindice $\alpha\in\mathbb{N}^r$ vérifiant :

$$\mathcal{M}_{\alpha}(\eta,\zeta) = \sum_{j=1}^{r} (2 \alpha_{j} + 1) \lambda_{j}(\eta) + \sum_{k=1}^{p_{2}} b_{k} \eta_{k} + \zeta^{2} = 0$$

(les $\lambda_{\dot{1}}(\eta)$ sont des invariants de P et sont réels positifs).

3. Propagation des singularités

A une représentation caractéristique pour P, $^\pi_{~\eta,\zeta}~$, on associe un sousgroupe de G, noté b($\eta,\zeta)~$:

- $b(\eta, 0) = \exp(R_{\eta})$
- si $\zeta \neq 0$, b(η , ζ) est un certain sous-groupe de dimension 1 de $\exp(R_{\eta})$.

On appelle bicaractéristique de P toute sous-variété de G qui s'écrit $gb(\eta,\zeta) \text{ pour un } g \in G \text{ et une } \pi_{\eta,\zeta} \quad \text{caractéristique. Si } g \in G \text{, on note B}_g \text{ la fermeture de l'ensemble des bicaractéristiques de P contenant } g.$

On montre (en notant SS le support singulier)

Théorème : (énoncé local) Soit X ouvert de G, u $\in \mathfrak{D}'(X)$, Pu $\in \mathfrak{E}^{\infty}(X)$. Si g \in SSu, alors il existe au moins un b \in B tel que la composante connexe de X \cap b contenant g soit contenue dans SSu .

Remarque 1 : Si G est commutatif on déduit ce résultat du théorème 1.5.1 de [6].

Remarque 2 : On microlocalise ce résultat en utilisant une notion de "front d'onde spécial" inspirée de [6] § 1.6 (voir aussi [5]).

Remarque 3 : Pour la démonstration on utilise les techniques de [2],[7], [9].

Références

- [1] R. Beals : Conférence à St Jean-de-Monts (1977).
- [2] L. Boutet de Monvel : Lecture Notes 459 (1974), 1-14.
- [3] A. Grigis : Astérisque 34-35 (1976), 183-205.
- [4] A. Grigis: Communications in P. D. E. 4-11 (1979), 1233-1262.
- [5] B. Helffer et J. Nourrigat : Conférences à St Cast (1979) et à St-Jean-de-Monts (1978).
- [6] L. Hörmander : L'enseignement mathématique XVII (1971), 99-163.
- [7] R. Lascar : Communications in P. D. E. 3(3) (1978), 201-247.
- [8] L. Rothschild, E. M. Stein : Acta Matematica 137 (1976), 247-320.
- [9] J. Sjöstrand: Annales de l'Institut Fourier, Grenoble 26-1 (1978) 141-155.