JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JACQUES CHAZARAIN

Comportement semi classique du spectre d'un hamiltonien quantique

Journées Équations aux dérivées partielles (1979), p. 1-6

http://www.numdam.org/item?id=JEDP 1979 A17 0>

© Journées Équations aux dérivées partielles, 1979, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

COMPORTEMENT SEMI CLASSIQUE DU SPECTRE D'UN HAMILTONIEN QUANTIQUE

par J. CHAZARAIN

1. Introduction

On considère dans \mathbb{R}^n l'opérateur elliptique (hamiltonien quantique en physique) $Q = -\frac{h^2}{2} \triangle + V(x)$ dépendant du paramètre $h \in \cente{locality} 0,1$ (la constante de Planck en physique). On suppose que la fonction potentielle V est dans $\mathbb{C}^\infty(\mathbb{R}^n)$ à valeurs ≥ 0 et vérifie pour $|x| \to +\infty$ les conditions suivantes :

$$\partial_{\mathbf{x}}^{\alpha} V(\mathbf{x}) = \begin{cases} 0(|\mathbf{x}|^{2-|\alpha|}) & \text{pour } 0 \leq |\alpha| \leq 2 \\ 0(1) & \text{pour } |\alpha| \geq 2 \end{cases}$$

et

$$V(x) \ge c|x|^2$$
 avec $c > 0$.

L'exemple le plus simple est l'oscillateur harmonique $-\frac{h^2}{2}\Delta + |x|^2$. En utilisant les résultats de Beals [3] et Robert [17], on vérifie que l'on peut associer à Q un opérateur auto-adjoint positif dans $L^2({\bf R}^n)$; son spectre est constitué de valeurs propres $(\lambda_j)_{j\geq 1}$ telles que :

$$0 < \lambda_1 \le \lambda_2 \le \cdots$$
 avec $\lambda_j \xrightarrow{j^{\infty}} + \infty$.

Un problème constant en mécanique quantique est d'essayer d'exprimer le comportement asymptotique, quand $h \to 0$, des grandeurs liées à Q en fonction de grandeurs de la mécanique classique, c'est-à-dire définies à partir du champ hamiltonien $H_q(x,\xi) = \partial_{\xi}q(x,\xi)\partial_{x} - \partial_{x}q(x,\xi)\partial_{\xi}$ (ici $q(x,\xi) = \frac{|\xi|^2}{2} + V(x)$) (cf. Berry et Mount [4] et Voros [14]). Lorsque le champ H_q est complètement intégrable, on a de nombreux résultats sur l'expression asymptotique de familles de valeurs propres (Maslov [16], Duistermaat [12], Colin de Verdière [9], Leray [15],...).

Résultats

Soit Φ^t le flot du champ hamiltonien H_q , on note $\mathcal I$ l'ensemble des périodes des solutions périodiques des équations de Hamilton Jacobi

$$(x'(t), \xi'(t)) = H_q(x(t), \xi(t))$$

La mesure spectrale de Q est définie par

$$\sigma(\lambda) = \sum_{j \geq 1} \delta(\lambda - \lambda_j)$$
,

on lui associe, par transformation de Fourier, la distribution

$$S(t) = \sum_{j \geq 1} \exp(-ih^{-1}t \lambda_j) \in \mathcal{J}'(\mathbb{R}).$$

On a 1e

 $\begin{array}{lll} \underline{Th\acute{e}or\grave{e}me~1} & : & Soit~\tau_o \in R~et~\rho \in C_o^\infty(I\!\!R)~tel~que~supp~\rho \cap \pounds = \emptyset~.~Alors~la~\\ & I_h = \langle S_h(t), \rho(t)e^{-i~\tau_o}h^{-1}t \\ & > \\ & est~0(h^\infty),~c'est-\grave{a}-dire~que~pour~tout~N \in I\!\!N~il~existe~C_N~tel~que \end{array}$

$$I_h = \langle S_h(t), \rho(t) e^{-i \tau_0 h^{-1} t} \rangle$$

$$|I_h| \le C_N h^N, h \in [0,1]$$
.

On peut donner une formulation plus parlante de ce théorème en utilisant la notion d'ensemble de fréquence d'une distribution asymptotique au sens de Guillemin et Sternberg [14]. Ici, Sh(t) est une distribution de &'(R) qui dépend du paramètre h; on dit que le point (to, to) de T*Rn'est pas dans l'ensemble de fréquence de S (ensemble noté F[S]) s'il existe $\rho \in C_0^{\infty}(\mathbb{R})$ avec $\rho(t_0) \neq 0$ tel que

$$\langle S_h(t), \rho(t)e^{-i\tau h^{-1}t} \rangle = O(h^{\infty})$$
 pour τ voisin de τ_o .

Alors le théorème 1 permet de montrer l'inclusion

$$\pi(F[S]) \subset \mathcal{L}$$
, où $\pi : T*\mathbb{R} \to \mathbb{R}$.

Ce type d'inclusion ressemble au résultat concernant la formule de

Poisson pour un opérateur elliptique Q sur une variété <u>compacte</u> (cf. Chazarain [6], Duistermaat et Guillemin [13]). Mais l'analogie est purement formelle, car ici la géométrie dépend essentiellement de V alors que dans le cas de la formule de Poisson, c'est la partie principale de Q, à savoir $\frac{|\xi|^2}{2}$, qui intervenait.

En fait, ce théorème est plutôt à rapprocher des travaux de Balian et Bloch [2] et Berry et Tabor [5].

Dans le cas où le flot hamiltonien est complètement périodique, on a un phénomène de concentration des valeurs propres au voisinages d'une progression arithmétique, c'est à rapprocher des résultats de Duistermaat et Guillemin [13], Weinstein [19], Colin de Verdière [11] avec la différence qu'il s'agit ici d'un comportement quand h → 0.

Théorème 2 : On suppose Φ^t périodique et soit T la plus petite période positive. Alors, il existe $M \ge 0$ et $\alpha \in \mathbf{Z}$ tels que

spectre Q
$$\subset \bigcup_{k \in N} [\widetilde{\lambda}_k(h) - Mh^2, \widetilde{\lambda}_k(h) + Mh^2]$$

avec $\tilde{\lambda}_k(h) = \gamma + (\frac{2\pi}{T}k + \alpha \frac{\pi}{2T})h$ et où $\gamma = \frac{1}{T} \int_0^T L(x(s), x'(s)) ds$ désigne la moyenne du Lagrangien $L(x, x') = \frac{|x'|^2}{2} - V(x)$ sur une trajectoire de période T.

En plus de l'oscillateur harmonique, il y a de nombreux cas où les hypothèses du théorème 2 sont satisfaites. Voici une façon d'en construire quand n=1. Soit $\theta(X)$ une fonction $C^{\infty}(\mathbb{R})$, paire, bornée, à dérivée bornée par une constante k<1. Soit X(x) la fonction réciproque de la fonction strictement croissante $x=X+\theta(X)$. On pose $V(x)=\frac{1}{2}\left(X(x)\right)^2$, alors toutes les solutions de x''(t)+V'(x(t))=0 sont périodiques de période 2π . Si on suppose de plus que pour tout entier $j\geq 2$, on a $\theta^{(j)}(X)=0(\frac{1}{X})$, alors V(x) satisfait aux conditions de croissance à l'infini.

3. Esquisse de la démonstration du théorème 1

Il ne peut être question de donner en une conférence la démonstration de ces deux théorèmes, aussi on va seulement expliquer celle du premier théorème.

Soit $U(t) = \exp(-ih^{-1}tQ)$ le groupe unitaire solution de l'équa-

tion de Schrödinger

$$ih \partial_t U - Q \cdot U = 0$$
, $U(0) = 1$

Alors U est lié à la distribution S par la relation "S(t) = tr U(t)" qui signifie que pour tout $\theta \in \mathcal{S}(\mathbb{R})$ l'opérateur $U_{\theta} = \int U(t)\theta(t)dt$ est à trace et vérifie

$$\langle S(t), \theta(t) \rangle = tr (U_{\theta}).$$

Pour démontrer le théorème, il suffit de prouver que pour tout N = N = N = 0 (h on a I = 0); aussi on est conduit à construire une solution approchée E(t) de (*) modulo h avec N assez grand.

On commence par construire E(t) pour $|t| \le T$ avec T assez petit, ce qui permettra de démontrer le théorème pour $\sup \rho \subset 1-T, T[$. On construit E(t), au moins formellement, sous la forme

$$(E(t)u)(x) = (2\pi)^{-n} \iint_{\mathbb{R}^n \times \mathbb{R}^n} e^{+ih^{-1}(S(t,x,\eta)-y\cdot\eta)} a(t,x,\eta;h)u(y)dy d\eta$$

où la phase S(t,x,η) est solution de l'équation caractéristique

$$\partial_t S + q(x, \partial_x S) = 0$$
 $S|_{t=0} = x \cdot \eta$

et où l'amplitude $a(t,x,\eta;h) = h^{-n} \sum_{j=0}^{N} a_j(t,x,\eta)h^j$, avec a_j solution de l'équation de transport

$$\partial_{\mathbf{t}} \mathbf{a}_{\mathbf{j}} + \partial_{\mathbf{x}} \mathbf{S} \partial_{\mathbf{x}} \mathbf{a}_{\mathbf{j}} + \frac{\mathbf{t}}{2} \Delta \mathbf{S} \cdot \mathbf{a}_{\mathbf{j}} = -\frac{1}{2} \Delta \mathbf{a}_{\mathbf{j}-1}$$
 $\mathbf{j} \geq 0, \dots, N$

$$\mathbf{a}_{\mathbf{j}} \Big|_{\mathbf{t}=\mathbf{0}} = \delta_{\mathbf{0}, \mathbf{j}} \quad \text{et } \mathbf{a}_{-1} = 0.$$

Pour dépasser le stade formel, il faut préciser le comportement en t, x, η des fonctions S et a . Posons $\lambda(x,\eta) = (1+|x|^2+|\eta|^2)^{1/2}$, la partie technique consiste à démontrer la

 $\begin{array}{ll} \underline{\text{Proposition}} & : & \text{Il existe } T>0 \text{ et } c>0 \text{ tels que } S(t,x,\eta) \text{ est défini et} \\ \hline v\text{\'erifie} \left|\partial_{\boldsymbol{t}} S(t,x,\eta)\right| \geq c^2 \lambda^2(x,\eta), \quad \partial_{\boldsymbol{t}}^p \partial_{\boldsymbol{x},\eta}^\alpha S(t,x,\eta) = O(\lambda^p) \text{ pour } \left|\boldsymbol{t}\right| \leq T, \\ \hline (x,\eta) \in \mathbb{R}^{2n}, \quad p \geq 2, \quad \alpha \text{ multi-indice. De plus, on a } \partial_{\boldsymbol{t}}^p \partial_{\boldsymbol{x},\eta}^\alpha a_{\boldsymbol{j}}(t,x,\eta) = O(\lambda^p) \\ \hline \text{pour tout } p \geq 0 \text{ et } \alpha. \end{array}$

Cette proposition permet de montrer que, si on pose

$$J_{h} = \operatorname{trace}(\int \mathbf{E}(t)\rho(t)e^{-i\tau h^{-1}t}dt),$$

on a l'expression

$$J_{h} = (2\pi)^{-n} \iiint e^{ih^{-1}} (S(t,x,\eta)-x\cdot\eta) \rho(t) a(t,x,\eta;h) dt dx d\eta$$

et de plus, on peut appliquer le théorème de la phase non stationnaire, pour prouver que $J_h = O(h^\infty)$.

Ensuite, il faut vérifier que I_h a le même comportement asymptotique (modulo h^0) que J_h , c'est-à-dire que l'erreur I_h^0 I_h^0) à la trace. Pour cela, on utilise un théorème de Asada et Fujiwara I_h^0 qui permet de montrer que pour I_h^0 I_h^0 I_h^0 I_h^0 I_h^0 0 I_h^0 1 I_h^0 2 I_h^0 3 I_h^0 4 I_h^0 5 I_h^0 6 I_h^0 7 I_h^0 8 I_h^0 9 I_h^0 9 I

$$||\mathbf{F}(\mathbf{t})|| = 0(\mathbf{h}^{\mathbf{N}}).$$

Cette majoration, combinée avec le fait que l'opérateur Q^{-n} possède une trace telle que $|\operatorname{trace}(Q^{-n})| = O(h^{-2n})$, entraîne l'estimation :

trace(
$$\int F(t) \rho(t) e^{-i\tau h^{-1}t} dt$$
) = $O(h^{0})$

pour N assez grand vis à vis de $\rm N_{o}^{}$.

Enfin, quand ρ n'est pas à support dans]-T,T[on peut toujours supposer que son support est dans un intervalle du type]kT,(k+1)T[et on utilise dans cet intervalle l'opérateur $E(t-kT)\cdot (E(T))^k$ comme approximation de U(t).

Ces résultats ont été annoncés dans des notes aux C. R. Acad. Sc. [7] et [8].

^[1] K. Asada et D. Fujiwara : Jap. J. of Math. Vol. 4, n⁰2, 1978, p.299-361.

^[2] R. Balian et C. Bloch : Ann. of Physics, vol. 85, 2, 1974, p.514-545.

^[3] R. Beals : Duke Math. J. 42, 1, 1975, p.1-42.

- [4] M. V. Berry et K. E. Mount : Rep. Prog. Phys., 35, 1972, p.315-397.
- [5] M. V. Berry et M. Tabor, J. Phys. A, vol. 10, n^o 3, 1977, p. 371-374.
- [6] J. Chazarain: Inv. Math. 24, 1974, p.75-82.
- 1.7. J. Chazarain : Spectre d'un hamiltonien quantique et période des trajectoires classiques, C. R. Acad. Sc. (à paraître).
- [8] J. Chazarain: Comportement du spectre d'un hamiltonien quantique, C. R. Acad. Sc. (à paraître).
- [9] Y. Colin de Verdière : Inv. Math. 43, 1977, p.15-52.
- [10] Y. Colin de Verdière : Spectre joint d'opérateurs pseudo-différentiels I, le cas non intégrable (à paraître).
- [11] Y. Colin de Verdière : C. R. Acad. Sc. 286, 1978, p.1195-1197.
- [12] J. J. Duistermaat, Comm. Pure Appl. Math. 27, 1974, p.207-281.
- [13] J. J. Duistermaat et V. Guillemin, Inv. Math., 29, 1975, p.39-79.
- [14] V. Guillemin et S. Sternberg, Geometric Asymptotics A. M. S., 1977.
- [15] J. Leray : Analyse lagrangienne et mécanique quantique, Collège de France 1976-77.
- [16] V. P. Maslov: Théorie des perturbations et méthodes asymptotiques, Dunod, 1972.
- [17] D. Robert : Propriétés spectrales d'opérateurs différentiels, thèse, Nantes, 1977.
- [18] A. Voros : Développements semi-classiques, thèse, Orsay, 1977.
- [19] A. Weinstein : Duke Math. J. 44, 1977, p.883-892.