JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

CLAUDE ZUILY

Unicité du problème de Cauchy pour une classe d'opérateurs différentiels à caractéristiques de multiplicité constante

Journées Équations aux dérivées partielles (1979), p. 1-5

http://www.numdam.org/item?id=JEDP_1979____A12_0

© Journées Équations aux dérivées partielles, 1979, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

UNICITE DU PROBLEME DE CAUCHY POUR UNE CLASSE D'OPERATEURS DIFFERENTIELS A CARACTERISTIQUES DE MULTIPLICITE CONSTANTE

par C. ZUILY

On se propose de donner ici des conditions suffisantes portant sur les symboles principal et sous-principal d'un opérateur différentiel P, pour avoir l'unicité du problème de Cauchy à partir d'une surface non caractéristique. Cela généralise les résultats obtenus par W. Matsumoto dans [3]. Les détails seront publiés ultérieurement.

Soit S une hypersurface de ${I\!\!R}^n$, $x_{_{\scriptstyle O}}$ un point de S, $^\phi$ une fonction $C^{^\infty}$ telle que

$$S = \{x : \varphi(x) = 0\}: \varphi(x) = 0\}$$
, $d\varphi \neq 0$ sur S .

On se donne un opérateur différentiel P d'ordre m, dans un voisinage V_{x_0} de x_0 , tel que p_m et p'_{m-1} (symboles principal et sous-principal) soient à coefficients C^∞ dans V_{x_0} et les termes d'ordre \leq m-2 dans $L^\infty(V_{x_0})$. On considère les solutions classiques du problème

(*)
$$\begin{cases} Pu = 0 & \text{dans } V \\ & v \\ (\frac{\partial}{\partial v})^{j} u |_{S} = 0 & 0 \le j \le m-1 \end{cases}$$

où $\frac{\partial}{\partial v}$ est la dérivée normale à la surface S supposée non caractéristique pour P au voisinage de x_0 .

Nous noterons ${\bf H}_\phi$ le hamiltonien de la fonction $^\phi,$ i.e.

$$H_{\varphi} = \sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}} \cdot \frac{\partial}{\partial \xi_{i}}$$

On a alors le :

Théorème 1 : On suppose que l'opérateur P est elliptique dans V_{x} et que

Pour tout
$$\boldsymbol{\xi} \in \mathbb{R}^n$$
 non parallèle à $N = \operatorname{grad} \varphi(x)$, $x \in S$ on a
$$\begin{cases} p_m(x, \xi + \tau N) = \prod_{j=1}^k (\tau - \lambda_j(x, \xi; N))^m j, & m_j \ge 2, \tau \in \boldsymbol{C}, \text{ avec} \\ |\lambda_j(x, \xi, N) - \lambda_j, (x, \xi, N)| \ge C_0 > 0, \Psi(x, \xi) \in V_x \times S^{n-1}, \Psi j \ne j' \end{cases}$$

$$\begin{cases} |\lambda_{j}(x,\xi,N) - \lambda_{j}, (x,\xi,N)| \geq c_{o} > 0, \Psi(x,\xi) \in V_{x,\xi} \times S^{n-1}, \Psi_{j} \neq j \end{cases}$$

Il existe des entiers k_1 , k_2 , $0 \le k_1 \le k_2 \le k$ tels que

(i)
$$p'_{m-1}(x,\xi+\tau N)|_{\tau=\lambda_{j}} \neq 0 \quad \Psi(x,\xi) \in V_{x_{0}} \times S^{n-1} \quad 1 \leq j \leq k_{1}$$

(ii)
$$p'_{m-1}(x,\xi+\tau N)|_{\tau=\lambda_{j}} \equiv 0 \text{ et } H_{\phi}(p'_{m-1})(x,\xi+\tau N)|_{\tau=\lambda_{j}} \neq 0$$

$$\Psi(x,\xi) \in V_{x_{0}} \times S^{n-1}, k_{1} + 1 \leq j \leq k_{2}$$

$$\begin{array}{ll} \text{(iii)} & \left. p_{m-1}'(x,\xi+\tau N) \right|_{\tau=\lambda_{j}} = \left. H_{\phi}(p_{m-1}')(x,\xi+\tau N) \right|_{\tau=\lambda_{j}} \equiv 0, \\ \\ \left. H_{\phi}^{2}(p_{m-1}')(x,\xi+\tau N) \right|_{\tau=\lambda_{j}} \neq 0, \quad \Psi(x,\xi) \in V_{\mathbf{x}_{0}} \times S^{n-1}, k_{2}+1 \leq j \leq k. \end{array}$$

Il existe alors un voisinage $\mathbf{W}_{\mathbf{x}}$ de $\mathbf{x}_{\mathbf{0}}$ tel que toute solution du problème (*) s'annule identiquement dans $\mathbf{W}_{\mathbf{x}}$.

Théorème 2 : Supposons que la partie principale de P soit réelle et que

(H.1) identique à celle du théorème 1

(H.2)' Si une racine λ (x, ξ ,N) est réelle en un point, elle est réelle pour tout (x, ξ) \in V $_{\mathbf{x}_0} \times$ S $^{n-1}$.

(H.3)' Il existe un entier k_1 , $0 \le k_1 \le k$ tel que

(i)
$$|\text{Im p}_{m-1}'(x,\xi+\tau N)|_{\tau=\lambda_{j}} \neq 0 \quad \forall (x,\xi) \in V_{x_{0}} \times S^{n-1}, \quad 1 \leq j \leq k_{1}$$

$$\begin{array}{ll} \text{(ii)} & p_{m-1}'(x,\xi+\tau N)\big|_{\tau=\lambda_{\hat{\mathbf{j}}}} \equiv 0 \quad \text{et} \quad \operatorname{Im} H_{\phi}(p_{m-1}')(x,\xi+\tau N)\big|_{\tau=\lambda_{\hat{\mathbf{j}}}} \neq 0 \; , \\ & \Psi(x,\xi) \in V_{\mathbf{x}_{\hat{\mathbf{0}}}} \times \; S^{n-1}, \; k_1+1 \leq \; \mathbf{j} \leq k \; . \end{array}$$

Il existe un voisinage W_{x_0} de x_0 tel que toute solution du problème (*) s'annule identiquement dans $\mathbf{W}_{\mathbf{x}_0}$.

Exemples et remarques

1) Lorsque la partie principale p_m contient des facteurs réels (th.2) on

ne peut pas se permettre de faire l'hypothèse (iii) du théorème 1. En effet d'après L. Hörmander [1] il existe $a \in C^{\infty}(\mathbb{R}^2)$ et $u \in C^{\infty}$, supp $u = \{(x,t): t \geq 0\}$ et

Pu =
$$(\partial_t^3 + \alpha \partial_t^2 + a(x,t)\partial_x)u = 0$$
; $(\alpha \in \mathbb{C})$

2) Par contre le théorème 2 fournit l'unicité pour

$$p = \partial_{t}^{3} + a \partial_{x} \partial_{t} + b \partial_{t} + c \partial_{x} + d$$

$$Im a \neq 0, \quad a \in C^{\infty}, \quad b, \quad c, \quad d \in L^{\infty}.$$

3) Soit dans \mathbb{R}^2 l'opérateur

$$P_0 = (\partial_t - i\partial_x)^6 + a\partial_t^j (\partial_t - i\partial_x)^k$$

j + k = 5, $k \le 2$. Si $a(x,t) \ne 0$ il y a unicité pour l'opérateur

$$P = P_0 + \sum_{j+k\leq 4} a_{jk}(x,t) \partial_t^j \partial_x^k$$

et $S = \{(x,t) \in \mathbb{R}^2 : t = 0\}$.

Nous allons donner les principales étapes de la preuve . Nous nous bornerons pour simplifier aux cas (i). Par changement de coordonnées on peut se ramener au cas où

$$\operatorname{supp} \mathbf{u} \subset \{(\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n} \times \mathbb{R}^{+} \colon \mathbf{t} \geq A |\mathbf{x}|^{2}\}$$

en gardant les hypothèses. On commence par prouver le

<u>Lemme 3</u>: ([2], [3]) Sous les conditions des théorèmes 1 et 2, il existe R > 0 tel que

$$(p_m + p'_{m-1})(x,t;\xi,\tau) = \prod_{p=1}^{k} \prod_{j=1}^{m} (\tau - \lambda_p^{(j)}), |\xi| \ge R$$

où pour $p = 1, \ldots, k$

$$\lambda_{p}^{(j)} = \lambda_{p} + \sum_{q=1}^{\infty} \nu_{p,q}^{(j)}(x,t;\xi) |\xi|^{1-k/m} p, |\xi| \geq R, \quad 1 \leq j \leq m_{p},$$

où les $v_{p,q}^{(j)}$ sont des symboles d'ordre zéro et

$$v_{\mathbf{p},\mathbf{1}}^{(\mathbf{j})}(\mathbf{x},\mathbf{t};\boldsymbol{\xi}) = \left(\frac{-\widetilde{p}_{\mathbf{m}-\mathbf{1}}|_{\tau=\lambda_{\mathbf{p}}}}{\prod_{\mathbf{j}\neq\mathbf{p}}(\widetilde{\lambda}_{\mathbf{p}}-\widetilde{\lambda}_{\mathbf{j}})^{\mathbf{m}}\mathbf{j}}\right)^{1/\mathbf{m}}\mathbf{p}$$

$$\operatorname{où} \widetilde{\mathbf{a}}(\mathbf{x}, \xi) = \mathbf{a}(\mathbf{x}, \frac{\xi}{|\xi|}).$$

Introduisons quelques notations

$$\partial_p^{(j)} = D_t - \Lambda_p^{(j)}(x,t;D_x) \quad \text{où } \sigma(\Lambda_p^{(j)}) = \lambda_p^{(j)}$$

On notera OPT^S les op.d en x à symboles $a(x,t;\xi)$ dépendant de manière C^{∞} de t et ayant un développement asymptotique $a \sim \Sigma a_j$, a_j homogène de degré $s - r_j$, $r_j \in \mathbb{R}^+$. Si $I = (i_1, \dots, i_q)$ on notera q = |I| et

$$9_{\mathbf{I}}^{\mathbf{p}} = 9_{\mathbf{p}}^{\mathbf{p}} \cdots 9_{\mathbf{q}}^{\mathbf{p}}$$

 P_p^I désignera l'opd de symbole $(\tau - \lambda_p^{(i_1)}) \cdots (\tau - \lambda_p^{(i_q)})$ et si A et B sont deux opd on notera $A \otimes B$ l'opd de symbole a.b.

On a alors la :

 $\frac{\text{Proposition 4}}{\text{Alors}} \quad \text{Soient I}_j \ \text{des permutations de } \big\{1,2,\ldots,\mathtt{m}_j\big\}, \ 1 \leq j \leq k.$

$$\partial_{1}^{\mathbf{I}_{1}} \bullet \cdots \bullet \partial_{p}^{\mathbf{I}_{p}} = P_{1}^{\mathbf{I}_{1}} \otimes \cdots \otimes P_{p}^{\mathbf{I}_{p}} + \frac{1}{2i} \sum_{j=1}^{n} (\frac{\partial^{2}}{\partial x_{j} \partial \xi_{j}} P_{m}) (x, p) + \sum_{1} a_{J_{1}} \cdots J_{p} \partial_{1}^{J_{1}} \cdots \bullet \partial_{p}^{J_{p}} + \sum_{j=1}^{m-2} b_{s} D_{t}^{s}$$

où la somme Σ_1 porte sur les J_q tels que $J_q \subset I_q$ avec $\sum\limits_{1}^{p} \left|J_q\right| \leq \sum\limits_{1}^{p} m_q - 1$,

$$a_{J_1 \cdots J_p} \in OPT^{\sigma}, \quad \sigma = \sum_{1}^{p} m_q - \sum_{1}^{p} |J_q| - 1 - \max_{1 \le q \le p} (\frac{(m_q - |J_q| - 1)^+}{m_q}), \quad a^+ = \sup(a, 0)$$

et
$$\mathbf{b_S} \in \mathtt{OPT}^{\mathtt{m-2-s}}$$

Corollaire 5:

$$P_{m}(x,D) + P_{m-1}(x,D) = \partial_{1}^{1} \circ \cdots \circ \partial_{k}^{1} + \Sigma_{1}^{a} J_{1} \cdots J_{k} \partial_{1}^{1} \circ \cdots \circ \partial_{k}^{1} + \sum_{s=0}^{m-2} b_{s} \circ D_{t}^{s}.$$

Le corollaire montre que si on a une bonne inégalité de Carleman pour I_1 I_k $\partial_1 \cdots \partial_k$ on en déduira une pour $P_m + P_{m-1}$ et ensuite pour P_m En effet l'étape suivante consiste à prouver le résultat suivant : posons

$$\|\mathbf{u}\| \stackrel{2}{(\mathbf{r},\mathbf{s})} = \int_{\mathbf{0}}^{\mathbf{T}} \sum_{\mathbf{j}=\mathbf{0}}^{\mathbf{r}} e^{\hat{\mathcal{L}}(\mathbf{t}-\mathbf{T})^2} \|\mathbf{D}_{\mathbf{t}}^{\mathbf{j}}\mathbf{u}\| \stackrel{2}{\mathbf{s}} d\mathbf{t}$$

on a alors la :

 $\begin{array}{ll} \underline{Proposition~6} & : & Soient~I_1, \dots, I_k ~des~permutations~de~\{1, \dots, m_1\}, \dots, \{1, \dots m_k\}, \\ Il~existe~des~constantes~positives~C,~k_o,~\tau_o, r_o, R~telles~que~pour\\ \ell \geq k_o,~T \leq T_o,~pour~tout~u \in C^{\infty}~avec~supp~u \subset \left\{0 \leq t \leq T, \left|x\right| \leq r_o\right\},\\ supp~\hat{u}(\xi,t) \subset \left\{\left|\xi\right| \geq R\right\}~on~ait \end{array}$

$$\sum_{\substack{J_q \ j}} \sum_{i=1}^{J_1} \|\partial_1^{J_1} \cdots \partial_k^{J_k} \mathbf{u}\| \|_{(\sigma-j,j)}^2 \leq \frac{C}{\ell} \|\partial_1^{J_1} \cdots \partial_k^{J_k} \mathbf{u}\| \|_{(0,0)}^2$$

où
$$J_q \subset I_q$$
, $\sum_{1}^{k} |J_q| \le \sum_{1}^{k} m_q - 1$; $0 \le j \le \sum_{1}^{k} m_q - \sum_{1}^{k} |J_q| - 1$;

$$\sigma = m - \sum_{1}^{k} |J_{q}| - 1 - \max_{1 \le q \le k} (\frac{(m_{q} - |J_{q}| - 1)^{+}}{m_{q}}).$$

Corollaire 7 : Avec les mêmes notations que dans la proposition 6

La preuve des théorèmes 1 et 2 à partir d'une telle inégalité est classique.

- [1] L. Hörmander : Lecture Notes no 459.
- [2] S. Mizohata, Ohya: Japan Journ. Math. 40 (1971) p.63-104.
- [3] W. Matsumoto: Journ. Math. Kyoto Univ. 15-3 (1975) p.479-525.