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A TEST-SET FOR k-POWER-FREE BINARY MORPHISMS

F. Wlazinski
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Abstract. A morphism f is k-power-free if and only if f(w) is
k-power-free whenever w is a k-power-free word. A morphism f is
k-power-free up to m if and only if f(w) is k-power-free whenever w
is a k-power-free word of length at most m. Given an integer k ≥ 2,
we prove that a binary morphism is k-power-free if and only if it is
k-power-free up to k2. This bound becomes linear for primitive mor-
phisms: a binary primitive morphism is k-power-free if and only if it is
k-power-free up to 2k + 1

Mathematics Subject Classification. 68R15.

1. Introduction

Research on repetition in words has been initiated by Thue [19, 20] (see
also [1,2]). Thue has shown the existence of infinite words over a binary alphabet
without overlap, i.e., without factors of the form xuxux where x is a letter and u
is a word. Overlap is one of the elementary patterns with square (uu), cube (uuu)
or, more generally, k-power (uk). Research on avoidable patterns in words is still
active (see for instance [12]).

One way to show the avoidability of a pattern is to generate, by iterating a
morphism, an infinite word that do not contain this pattern. Thue obtained an in-
finite overlap-free word over a two-letter alphabet (called Thue–Morse word since
the works of Morse [14]) by iterating a morphism µ (µ(a) = ab and µ(b) = ba).
Séébold [18] has shown that the Thue–Morse sequence is the only infinite bi-
nary overlap-free sequence starting with a that can be generated by an iterated
morphism. Karhumäki [5] and Richomme and Wlazinski [17] have given charac-
terizations of endomorphisms defined on a binary alphabet that generate infinite
cube-free words.
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Two sufficient conditions for an endomorphism f to generate a k-power-free
word when iteratively applied from a letter x, are that f(x) starts with x and that
f is a k-power-free morphism, that is, the image by f of any k-power-free word is
also k-power-free. In the case of overlap-freeness, Berstel and Séébold [3, 18] have
shown that, on a two letter alphabet, endomorphisms that generate overlap-free
words and endomorphisms that preserve the property of overlap-freeness (called
overlap-free morphisms) are the same. This property is no longer true for the
k-power-free endomorphism with k at least 3. Richomme and Wlazinski [17] have
given an example of a morphism that is not cube-free but generates a cube-free
word. For k ≥ 4, one has just to consider the Fibonnaci word: it is 4-power-free
(see [5]) and thus k-power-free for any k > 4, but it is generated by the morphism
ϕ (ϕ(a) = ab and ϕ(b) = a) which is not k-power-free since ϕ(bk−1a) = akb.

Many papers deal with the characterization of k-power-free morphisms. For
instance, Crochemore [4] has shown that on a three-letter alphabet, a morphism
is square-free if and only if the images of all square-free words of length at most 5
are square-free. When k is greater than 3, the results are partial. The particular
case of the length-uniform morphisms has been treated by Keränen [6, 7]. Some
characterizations that depend on the length of morphisms have been given by
Leconte [8, 9].

In this paper, we are interested in test-sets for k-power-free morphisms. Such
a test-set is a set of words which has the particular property that a morphism is
k-power-free if and only if the image by this morphism of all the words in the set
are k-power-free. In the case of overlap-free endomorphisms on a binary alphabet,
a complete characterization of test-sets for such morphisms has been given by
Richomme and Séébold [15]. We already have test-sets for cube-free morphisms
when the starting alphabet only contains but 2 letters [9,16,17]. We also know [17]
that, given two alphabets A and B such that Card(A) ≥ 3 and Card(B) ≥ 2, and
given an integer k ≥ 3, there is no finite test-set for k-power-free morphisms from
A to B. But the question remained open when Card(A) is 2. We give a positive
answer here.

In our approach, we need to study the notion of primitiveness. Section 3 is
devoted to primitive morphisms with a particular attention to morphisms on bi-
nary alphabet. We revisit a result by Leconte who stated that a binary morphism
which is k-power-free up to k(k+1)

2 is primitive. We improve this bound by giving
an optimal one as well as morphisms which show this optimality (Prop. 3.1).

Section 4 contains results on words equations. The properties given in this sec-
tion have their own interest, but, we mainly use them in Section 5 to demonstrate
the main result of this paper (Th. 5.1) a binary primitive morphism is k-power-
free if and only if it is k-power-free up to 2k + 1. Using Proposition 3.1 and
Theorem 5.1, we obtain that a binary morphism is k-power-free if and only if it is
k-power-free up to k2.
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2. Definitions and notations

In this section, we recall and introduce some basic notions on words and mor-
phisms.

Let A be an alphabet, that is a finite non-empty set of abstract symbols called
letters. The Cardinal of A, i.e., the number of elements of A, is denoted by
Card(A). When Card(A) = 2, A is called a binary alphabet. A word over A is
a finite sequence of letters from A. We denote by ε the empty word. The set of
words over A equipped with the concatenation of words is a free monoid denoted
by A∗.

Let u = a1a2 . . . an be a non-empty word over A, with ai ∈ A (1 ≤ i ≤ n).
The number n of letters of u is called its length and is denoted by |u|. The length
of the empty word is |ε| = 0. The mirror image of u, denoted by ũ, is the word
an . . . a2a1. In the particular case of the empty word, ε̃ = ε.

A word u is a factor of a word v if v = v1uv2 for some words v1, v2. If v1 = ε, u
is a prefix of v. If v2 = ε, u is a suffix of v. If v1 6= ε and v2 6= ε, u is an internal
factor of v.

Let us consider a non-empty word w and its letter-decomposition x1 . . . xn. For
any integers i, j, 1 ≤ i ≤ j ≤ n, we denote by w[i . . . j] the factor xi . . . xj of w.
We extend this notation when i > j: in this case, w[i . . . j] = ε. We abbreviate
w[i . . . i] in w[i]. This notation denotes the ith letter of w. For an integer k ≥ 2,
we denote by uk the concatenation of k occurrences of the word u; u0 = ε and
u1 = u. A k-power is a word of the form uk with u 6= ε. A word w contains a
k-power if at least one of its factors is a k-power. A word is called k-power-free,
if it does not contain any k-power as a factor. A set of k-power-free words is said
k-power-free.

A word w is said primitive if, for any word z, the equality w = zn implies n = 1.
In particular, the empty word ε is not primitive.

The following proposition gives the well-known solutions (see [11]) to three
elementary equations in words and will be widely used in the following sections:

Proposition 2.1. Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v 6= ε then there exist two words r and s over A and an
integer n such that u = r(sr)n, v = rs and w = sr.

2. If vu = uv, then there exists a word w over A and two integers n and p such
that u = wn, v = wp.

3. If un = vm for two integers n and m such that (n,m) 6= (0, 0) then there
exist a word t and two integers p and q such that u = tp and v = tq.

4. Any non-empty word is a power of a unique primitive word.

We also need three other properties on words. The first one is an immediate
consequence of Proposition 2.1(2).

Lemma 2.2. [7, 9] If a non-empty word v is an internal factor of vv, i.e., if
there exist two non-empty words x and y such that vv = xvy then there exist a
non-empty word t and two integers i, j ≥ 1 such that x = ti, y = tj and v = ti+j .
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The following proposition is a well-known result on combinatorics on words:

Proposition 2.3 (Fine and Wilf). [11,12] Let x and y be two words. If a power
of x and a power of y have a common prefix of length at least equal to |x| + |y|
−gcd(|x|, |y|) then x and y are powers of the same word.

As a consequence of Proposition 2.3, we get:

Corollary 2.4 (Keränen). [7] Let x and y be two words. If a power of x and a
power of y have a common factor of length at least equal to |x|+ |y| − gcd(|x|, |y|)
then there exist two words t1 and t2 such that x is a power of t1t2 and y is a power
of t2t1 with t1t2 and t2t1 primitive words. Furthermore, if |x| > |y| then x is not
primitive.

A morphism f from an alphabet A to another alphabet B is a mapping from
A∗ to B∗ such that given any words u and v over A, we have f(uv) = f(u)f(v).
When B = A, f is called an endomorphism on A. When B has no importance,
we say that f is defined on A or that f is a morphism on A (in particular, this
does not mean that f is an endomorphism). A morphism defined on a binary
alphabet is said to be a binary morphism. Observe that for a morphism f on A,
we necessarily get f(ε) = ε, and f is uniquely defined by the values of f(x) for all
x in A. When A is a binary alphabet, say A = {a, b}, the Exchange endomorphism
E is defined by E(a) = b and E(b) = a. If X is a set of words, f(X) denotes the
set of all the images of words in X .

A morphism f on A is said k-power-free (resp. primitive) if for every k-power-
free (resp. primitive) word w over A, f(w) is k-power-free (resp. primitive). Given
a morphism f on A, the mirror morphism f̃ of f is defined for all words w over A,
by f̃(w) = f̃(w̃). In particular, f̃(a) = f̃(a), ∀a ∈ A. Note that f is k-power-free
if and only if f̃ is k-power-free. A morphism f is k-power-free up to m if and only
if f(w) is k-power-free whenever w is a k-power-free word of length at most m.

A morphism f is prefix (resp. suffix ) if for all letters x, y with x 6= y, f(x) is
not a prefix (resp. not a suffix) of f(y). A morphism both prefix and suffix is said
biprefix.

The property of being biprefix is a necessary condition for a morphism to be
k-power-free:

Lemma 2.5. [9] If a morphism is k-power-free up to k + 1, then it is a biprefix
morphism.

The proofs of the two following lemmas are left to the reader:

Lemma 2.6. Let f be a prefix morphism on an alphabet A, let u and v be words
over A and let p1 and p2 be prefixes of images by f of some letters in A. If p1

and p2 are non-empty or if p1 and p2 are not images of a letter then the equality
f(u)p1 = f(v)p2 implies u = v and p1 = p2.

Lemma 2.7. Let f be a suffix morphism on an alphabet A, let u and v be words
over A and let s1 and s2 be suffixes of images by f of some letters in A. If s1

and s2 are non-empty or if s1 and s2 are not images of a letter then the equality
s1f(u) = s2f(v) implies u = v and s1 = s2.
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3. Primitive morphisms

Let (tk)k≥2 be defined by t2 = 3, t3 = 4, tk = k2

2 if k ≥ 4 is even and tk

= k×(k−1)
2 + 2 if k ≥ 5 is odd. Note that, when k ≥ 4, we have tk = kbk2c +

2(k mod 2).
In this section, we prove:

Proposition 3.1. Let k ≥ 2 be an integer. If a binary morphism is k-power-free
up to tk then it is primitive.

This proposition improves the bound k×(k+1)
2 which was given by Leconte in his

Ph.D. Thesis [9] (however, the proof we make is similar to his proof). Moreover,
the bounds tk are optimal. Indeed, in what follows, we give for each integer k ≥ 2
a non-primitive morphism fk and a shortest k-power-free word u such that fk(u)
contains a k-power. In each case, we have |u| = tk.
• f2(a) = a,f2(b) = ε and u = aba.
• f3(a) = a,f3(b) = baab and u = baab.
• If k ≥ 4 and k even, fk(a) = a, fk(b) = bak−1b and u = (bak−1)k/2.
• If k ≥ 5 and k odd, fk(a) = aba, fk(b) = ba(aba)k−3ab

and u = (bak−1)(k−1)/2ba.
The proof of Proposition 3.1 is based on a previous result due to Lentin and
Schützenberger:
Lemma 3.2. [10] A morphism f on {a, b} is primitive if and only if f(w) is
primitive for all words w ∈ a∗b ∪ ab∗.

Proof of Proposition 3.1. For an integer k ≥ 2, let F1 be the set of all the k-power-
free words over {a, b} of length at most tk.

By contradiction, assume that f is not primitive. We are going to show that
the image of at least one word in F1 contains a k-power.

By Lemma 3.2, there exist a non-empty word u, an integer q ≥ 0 and an integer
n ≥ 2 such that f(aqb) = un or f(abq) = un.

But f(abq) is the mirror image of (f̃ ◦ E)(aqb) and (f̃ ◦ E)(F1) k-power-free is
equivalent to f(F1) k-power-free. So, f(abq) = un implies that f(F1) contains a
k-power is equivalent to f(aqb) = un implies f(F1) contains a k-power: we may
assume that f(aqb) = un without loss of generality.

If q = 0 or f(a) = ε, f(bd
k
2 e) contains a k-power and bd

k
2 e ∈ F1. Thus we may

assume q ≥ 1 and f(a) 6= ε.
Now, if |f(aq)| ≥ |f(a)| + |u| then, by Proposition 2.3, f(a) and u are powers

of the same word. This implies that f(a) and f(b) are powers of the same word:
f is not biprefix. Since F1 contains all the k-power-free words of length at most
k+ 1 and by Lemma 2.5, the image of at least one word in F1 contains a k-power.

Thus, we may assume |f(aq)| < |f(a)|+|u|. We get |f(aq−1)| < |u|, i.e., f(aq−1)
is a prefix of u. On the other hand, |un−1| = |f(aq)|+ |f(b)| − |u| < |f(ab)|. Thus
un−1 is a suffix of f(ab). Three different cases may occur:
Case 1. q > k

Since f(aq−1) is a factor of u itself a factor of f(ab), thus f(ab) contains f(a)k

as factor and ab ∈ F1.
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Case 2. q = k
Let us consider two cases |f(aq)| ≤ |u| and |f(aq)| > |u|. In the first case,

since f(aqb) = un, f(a)k is a factor of u itself a factor of f(ab) with ab ∈ F1.
In the second case, |f(ak−1)| < |u| < |f(ak)| and there exist three words v1,
v2 and v3 such that f(a) = v1v2, u = f(ak−1)v1 = v2v3 and f(b) = v3u

n−2.
Since k ≥ 2, we can define p as the prefix of v3 such that v1v2 = v2p. We get
f(aba) = v1v2v3(v2v3)n−2v1v2 = v1(v2v3)n−2v2v3v1v2 = v1u

n−2(f(a))k−1v1v2p
= v1u

n−2(f(a))kp with aba ∈ F1.

Case 3. q < k
Let us consider three subcases: k even, k odd with k ≥ 5 and k = 3. If k is

even f((aqb)
k
2 ) = u

nk
2 with nk

2 ≥ k and (aqb)
k
2 ∈ F1. If k is odd with k ≥ 5, let

us recall that un−1 is a suffix of f(ab). Thus f(ab(aqb)
k−1

2 )) contains un−1+n(k−1)
2

with n − 1 + n(k−1)
2 ≥ k and ab(aqb)

k−1
2 ∈ F1. If k = 3, let us recall that

f(aqb) = un with q ∈ {1, 2}, n ≥ 2 and |un−1| < |f(ab)|. If n ≥ 3, f(aqb) contains
a 3-power and aqb ∈ F1. If q = 1 and n = 2, f(abab) = u4 and abab ∈ F1. If
n = 2, q = 2 and |u| ≤ |f(b)|, f(b) ends with u, thus f(baab) ends with u3 with
baab ∈ F1. Thus it remains the case n = 2, q = 2 and |f(b)| < |u| < |f(ab)|.
There exist two words α1 and α2 such that f(a) = α1α2, u = α1α2α1 = α2f(b).
Let p be the prefix of f(b) such that α1α2 = α2p. We have f(b) = pα1 and
f(bab) = pα1α1α2pα1 = p(α1)3α2α1 with bab ∈ F1. �

4. Equations

In this section, we extend the result of Proposition 2.1(1) to an arbitrary number
of equations.

Proposition 4.1. Let x1, x2, · · · , xp, y1, y2, · · · , yp, α be 2p+1 words (p ≥ 2) such
that y1 = xp = ε and |α| > |yp| > |yp−1| > · · · > |y1|.

If x1αy1 = x2αy2 = · · · = xpαyp, then there exist two words r, s and two
integers m,n ≥ p− 1 such that rs 6= ε, x1 = (rs)m, yp = (sr)m and α = (rs)nr.

The situation described in this proposition can be summed up by Figure 1.

Proof. The proof of this proposition is done by induction.
If p = 2, we are in the situation of Proposition 2.1(1). So, we have m = 1 and

n ≥ 1 since |α| > |y2|. We also have rs 6= ε since |rs| = |y2| > |y1| = 0
Assume that this property is true up to an order p − 1 ≥ 2 and that x1αy1,

x2αy2, · · · , xpαyp are p equal words such that y1 = xp = ε and |α| > |yp|
> |yp−1| > · · · > |y1|. If we take out the common prefix xp−1 from each words
xqαyq, 1 ≤ q ≤ p − 1, we are in the situation of the hypotheses of the induction.
Thus there exist two words r and s and two integers m,n ≥ p− 2 ≥ 1 such that
rs 6= ε, yp−1 = (sr)m, α = (rs)nr and x = (rs)m where x is the word such that
x1 = xp−1x.

The equality xp−1αyp−1 = αyp implies that there exists a word y such that
yp = yyp−1 and xp−1α = αy. By Proposition 2.1(1), there exist two words u
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Figure 1. Induction cases.

and v and an integer l such that xp−1 = uv, y = vu and α = (uv)lu. Since
|α| > |xp−1| > |xp| = 0, we have l ≥ 1 and uv 6= ε.

An important fact is that α is a common prefix of (rs)n+1 and (uv)l+1 of length
greater than |uv|+ |rs|. Indeed |α| > |x1| = |xp−1x| = |uv(rs)m| > |uv|+ |rs|.

Thus, by Proposition 2.3, there exist a word t and two integers n1 and n2 such
that rs = tn1 and uv = tn2 . Since rs 6= ε and uv 6= ε, we have n1, n2 ≥ 1 and
t 6= ε.

Moreover α = (tn1)nr = (tn2)lu. Since r and u are both prefixes of a power of
t, there exist two words t1, t2 and two integers n3, n4 such that t = t1t2, r = tn3t1,
u = tn4t1. Consequently, s = t2t

n1−n3−1 and v = t2t
n2−n4−1. It follows that

x1 = xp−1x = uv(rs)m = (t1t2)n2+mn1 , yp = yyp−1 = vu(sr)m = (t2t1)n2+mn1

and α = (rs)nr = (t1t2)nn1+n3t1. Observe that |α| > |x1| implies nn1 + n3

≥ n2 +mn1. This ends the proof since n2 +mn1 ≥ m+ 1 ≥ p− 1. �

When we are working with equations on words, they are not necessarily ordered
by the length of some of their components. Consequently, the hypotheses and
conclusions of the previous proposition are not sufficient. So we generalize the
previous result by the two following corollaries. The proof of the first corollary is
an immediate consequence of Proposition 4.1: it is done by ordering the terms in
an increasing way.

Corollary 4.2. Let x1, x2, · · · , xp, y1, y2, · · · , yp, α be 2p + 1 words (p ≥ 2) veri-
fying |yi| 6= |yj | when i 6= j and |yi| < |α| (∀ 1 ≤ i, j ≤ p) and such that yi1 = ε
and xi2 = ε for some different integers i1 and i2 between 1 and p.

If x1αy1 = x2αy2 = · · · = xpαyp, then there exist two words r, s and two
integers m,n ≥ p− 1 such that rs 6= ε, xi1 = (rs)m, yi2 = (sr)m and α = (rs)nr.

Corollary 4.3. Let x1, x2, · · · , xp, y1, y2, · · · , yp, yp+1, α be 2p+ 2 words (p ≥ 2)
verifying |yi| 6= |yj | when i 6= j and |yi| < |α| (∀ 1 ≤ i, j ≤ p + 1) and such that
yi1 = ε and xi2 = ε for some different integers i1 and i2 between 1 and p. Let α0

be a suffix of α.
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If x1αy1 = x2αy2 = · · · = xpαyp = α0yp+1, then there exist two words r, s and
three integers n, q ≥ p and m ≥ p− 1 such that rs 6= ε, xi1 = (rs)m, yp+1 = (sr)q

and α = (rs)nr.

Proof. By Corollary 4.2, there exist two words r and s and two integersm,n ≥ p−1
such that rs 6= ε, xi1 = (rs)m, yi2 = (sr)m and α = r(sr)n.

By hypotheses, |α| > |α0| > |xi1 |. Thus we have α0 = v(sr)k where v is a suffix
of sr and k is an integer with p− 1 ≤ k ≤ n. We also have αyi2 = (rs)m+nr.

If v = r then k < n and r(sr)kyp+1 = α0yp+1 = αyi2 = r(sr)n+m. We have
yp+1 = (sr)n+m−k and n + m − k ≥ m + 1 ≥ p. Since |yp+1| < |α|, we also get
n ≥ p.

If |v| < |r| then r = uv for a non-empty word u. Using the prefix of length |rs|
of the word xi1α = α0yp+1, we obtain u(vs) = (vs)u. By Proposition 2.1(2), u and
vs are powers of the same word. If vs = ε, rkyp+1 = α0yp+1 = αyi2 = rn+m+1.
We have yp+1 = rn+m+1−k and n + m + 1 − k ≥ m + 1 ≥ p. Since |yp+1| < |α|,
we also get n ≥ p. Now, assume vs non-empty. Since u is non-empty, there exist
two words t1, t2 and three integers i, j ≥ 1 and l ≥ 0 such that u = (t1t2)i,
vs = (t1t2)j , rs = (t1t2)i+j and v = (t1t2)lt1, r = (t1t2)i+lt1, s = t2(t1t2)j−l−1.
Thus yp+1 = (t2t1)(m+n−k)(i+j)+i, xi1 = (t1t2)m(i+j), α = (t1t2)n(i+j)+i+lt1 and
each power is greater than p(≥ 2).

If |v| > |r| then k < n, v = ur and s = wu for some words u and w. From
xi1α = α0yp+1, we get (rw)u = rs = u(rw). This case can be solved as the
previous one. �

5. Test-sets

This section is devoted to the following theorem, its consequences and its proof:

Theorem 5.1. Let k ≥ 2 be an integer. A binary primitive morphism f is
k-power-free if and only if it is k-power-free up to 2k + 1.

The only seven square-free (i.e., 2-power-free) words over {a, b} are ε, a, b, ab,
ba, aba and bab, each length being at most 3. Thus actually, a binary morphism
(primitive or not) is square-free if and only if it is square-free up to 3.

The case k = 3 was already treated in [9, 16, 17]. Thus, we are only interested
in the case k ≥ 4 and our proof is given for this case.

The bound given in Theorem 5.1 is optimal for any integer k ≥ 3 as we can see
using the morphism fk defined by:{

fk(a) = x(zybk−1xybk−1x)k−1zy,
fk(b) = b.

In [17], it is shown that, for a word w, the word fk(w) contains a k-power if and
only if w contains abk−1abk−1a as a factor. Using Lemma 3.2, we can see that fk
is primitive.

As we have previously noticed when k = 2 and as an immediate consequence of
Proposition 3.1 and Theorem 5.1 when k ≥ 3, we get:
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Corollary 5.2. Let k ≥ 2 be an integer. A binary morphism is k-power-free if it
is k-power-free up to t′k with t′2 = 3, t′3 = 7, t′4 = 9 and t′k = tk when k ≥ 5.

If we want a more general bound, we can see for instance:

Corollary 5.3. Let k ≥ 2 be an integer and let f be a binary morphism. If f is
k-power-free up to k2 then f is k-power-free.

From an algorithmic point of view, Corollary 5.2 provides a method to verify the
k-power-freeness of a given binary morphism. This can also be done in an other
way. We can first establish whether the morphism is primitive (see [10,13]). After
that, we have to determine if it is k-power-free that is to verify the k-power-freeness
of the images of words whose lengths grow linearly with k.

Proof of Theorem 5.1. Let us first recall that the case k = 2 is trivial and that the
case k = 3 was already treated in [9, 16,17].

Let k ≥ 4 be an integer. By definition of k-power-free morphisms, we only have
to prove the “if” part of Theorem 5.1.

Let f be a primitive morphism on {a, b}. We assume:

Assumption 1. f is k-power-free up to 2k + 1
Assumption 2. f is not k-power-free.

Note that, by Lemma 2.5 and Assumption 1, since 2k + 1 > k + 1, we have f
biprefix.

We are going to show that the two assumptions above are contradictory. For
this, by successive contradictions, we will reduce the field of investigation. We
end by a final contradiction. We alternate steps of reduction and definitions that
describe the combinatoric situation in which we are.

Preliminary definitions
By Assumption 2, there exists a shortest k-power-free word w (not necessarily

unique) such that f(w) contains a k-power uk with u 6= ε. First, note that |w|
≥ 2k + 2 by Assumption 1. Moreover, since the length of w is minimal, we may
assume that f(w) = πukσ where π is a prefix of f(w[1]) different from f(w[1]) and
σ is a suffix of f(w[|w|]) different from f(w[|w|]).

Reduction 1. |u| > max{|f(a)|, |f(b)|}.
Since |w| ≥ 2k + 2, we have |w[2 . . . n− 1]| ≥ 2k. Since w is k-power-free, it

follows that w[2 . . . n− 1] contains at least two occurrences of the letter a. That
is w[2 . . . n− 1] contains a factor of the form abja for some integer j ≥ 0. Thus
f(abja) is a common factor of (f(abj))2 and of uk. If |f(a)| > |u|, |f(abja)|
= |f(abj)|+ |f(a)| > |f(abj)|+ |u|. By Corollary 2.4, f(abj) is not primitive, i.e.,
f is not primitive: a contradiction.

Thus |f(a)| ≤ |u|. Another consequence of |w[2 . . . n− 1]| ≥ 2k is that ab or
ba is a factor of w[2 . . . n− 1]. Consequently, f(ab) or f(ba) is a factor of uk. If
|f(a)| = |u|, there exist two words u1 and u2 such that u = u1u2 and f(a) = u2u1.
Moreover f(b) is a prefix of u2u

l or a suffix of ulu1 for an integer l ≥ 0. This
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implies that f is not a biprefix morphism: a contradiction. We get |f(a)| < |u|.
In the same way, we obtain |f(b)| < |u|.

Intermediate definitions
For each integer j with 0 ≤ j ≤ k, we define ij as the smallest integer such

that |f(w[1 . . . ij])| ≥ |πuj |. In particular, we have i0 = 1 and ik = |w|. By
Reduction 1, we have 1 = i0 < i1 < i2 < · · · < ik−1 < ik = |w|. For any integer q
with 0 ≤ q ≤ k, there exist some words pq and sq such that f(w[iq]) = pqsq and,
for all 1 ≤ q ≤ k, u = sq−1f(w[iq−1 + 1 . . . iq − 1])pq with pq 6= ε (by definition of
iq). Furthermore s0 6= ε, p0 = π and sk = σ.

The previous situation can be summed up by Figure 2.

=/ ε

uk

=/ ε =/ ε =/ ε =/ ε

f w(       )  [   ]i f w(       )  [   ]i f w(       )  [   ]if w(       )  [   ]i

sp

=f (   )w
0 0

u u u

p s
1 1

p s
2 2

p s
-1 -1k k

p s
k k

0 f i1 2 k -1 k[      ]w(          )  

Figure 2. Decomposition of a k-power.

Reduction 2. |pl| 6= |pm| for all integers 1 ≤ l < m ≤ k and |sl| 6= |sm| for all
integers 0 ≤ l < m ≤ k − 1.

Let us first remark that |sl| = |sm| for two integers 0 ≤ l,m ≤ k − 1 im-
plies that |pl+1| = |pm+1| (the converse also holds). Indeed, we know that u =
slf(w[il + 1 . . . il+1 − 1])pl+1 = smf(w[im + 1 . . . im+1 − 1])pm+1. Since f is
biprefix and by Lemma 2.6, we get that pl+1 = pm+1.

Thus, we only have to prove that |pl| 6= |pm| for all integers 1 ≤ l < m ≤ k.
By contradiction, assume that there exist two integers l and m such that 1 ≤ l <
m ≤ k and |pl| = |pm|, i.e., pl = pm.

We first show that we can assume m = l + 1.
Since il < im, w[il . . . im − 1] 6= ε. By Proposition 2.1(4), there exist a unique

primitive word z and an integer q0 ≥ 1 such that w[il . . . im − 1] = zq0 . Let v be
the word such that u = vpl. We have um−l = slf(w[il + 1 . . . im − 1])pm and so
(plv)m−l = f(w[il . . . im − 1]) = f(z)q0 with m − l ≥ 1. By Proposition 2.1(3),
f(z) and plv are powers of the same word. Since f is primitive, f(z) is a primitive
word. This implies that q0

m−l is an integer and plv = f(z)q0/m−l. Let us denote
t = zq0/m−l. We have f(w[il . . . il+1 − 1])pl+1 = plu = plvpl = f(t)pl. Since
pl+1 6= ε and pl 6= ε, by Lemma 2.6, pl+1 = pl.

Thus for an integer l, 1 ≤ l < k, pl = pl+1. We will now show that for any integer
r such that 1 ≤ r ≤ l, we necessarily have pr = pl. By contradiction, assume that
there exist an integer r verifying 1 ≤ r ≤ l and pr 6= pl. Since pl = pl+1,
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we can choose r such that pr+1 = pr+2 = pl. We get srf(w[ir + 1 . . . ir+1 − 1])
= sr+1f(w[ir+1 + 1 . . . ir+2 − 1]). Since sr 6= f(w[ir]) and sr+1 6= f(w[ir+1]), by
Lemma 2.7, we get sr = sr+1. But one of the two different words pr or pr+1 is a
suffix of the other. Thus one of the two different words f(w[ir]) or f(w[ir+1]) is a
suffix of the other: a contradiction with f biprefix.

In a similar way, we can prove that pr = pl for all integer r such that l + 1
≤ r ≤ k.

Thus we have pr = pl for all 1 ≤ r ≤ k. Since u = sq−1f(w[iq−1 + 1 . . . iq − 1])pq
for all 1 ≤ q ≤ k and f biprefix, by Lemma 2.7, we get that sq1−1 = sq2−1 and
w[iq1−1 + 1 . . . iq1 − 1] = w[iq2−1 + 1 . . . iq2 − 1] for all 1 ≤ q1, q2 ≤ k − 1.

It follows that w = w[i0](w[i0 + 1 . . . i1])k−1w[i0 + 1 . . . i1 − 1]w[ik]. Conse-
quently, since w is k-power-free, we have w[ik] 6= w[i1] and w[i0] 6= w[i1]. Thus the
word w[i0](w[i1])k−1w[ik] is k-power-free. But f(w[i0](w[i1])k−1w[ik])
= p0(s0p1)ksk with p1 6= ε and |w[i0](w[i1])k−1w[ik]| ≤ 2k + 1: a contradiction
with Assumption 1.

Intermediate definitions
Let us now consider two sets: Ia = {0 < r < k | w[ir ] = a} and Ib = {0 <

r < k | w[ir] = b}. We have max{Card(Ia),Card(Ib)} ≥ dk−1
2 e. Without loss of

generality, we may assume Card(Ia) ≥ Card(Ib). Indeed, the proof of the case
Card(Ib) ≥ Card(Ia) is obtained by exchanging the roles of a and b.

Reduction 3. Card(Ia) < k+3
3 .

Let r1 be the integer in Ia such that |sr1 | = max{|sr| | r ∈ Ia} and r2 be the
integer in Ia such that |pr2 | = max{|pr| | r ∈ Ia}. Let us remark that |sr1 | < |u|
and |pr2 | < |u|. For all 1 ≤ q ≤ k, we have u = sq−1f(w[iq−1 + 1 . . . iq − 1])pq.
Thus, for all j ∈ Ia, there exist two words xj and yj such that xjpj = pr2 and
sjyj = sr1 . We have yr1 = ε, xr2 = ε.

Since f(a) = pjsj , all the Card(Ia) (≥ 2) terms of the form xjf(a)yj are equal.
Moreover, they fulfill assumptions of Corollary 4.2 with α = f(a). Thus there exist
two words r, s and two integers m,n ≥ Card(Ia)−1 such that rs 6= ε, xr1 = (rs)m,
yr2 = (sr)m and f(a) = (rs)nr.

But xr1 is a suffix of sr1−1f(w[ir1−1 + 1 . . . ir1 − 1]) and we have |xr1 | < |f(a)|,
thus xr1 is a suffix of the image of a k-power-free word abl1 with 0 ≤ l1 < k.
In the same way, yr2 is a prefix of the image of a k-power-free word bl2a with
0 ≤ l2 < k. Thus |abl1abl2a| ≤ 2k + 1 and f(abl1abl2a) contains (rs)2m+n with
2m+n ≥ 3×Card(Ia)−3. When 3×Card(Ia)−3 ≥ k, we obtain a contradiction
with Assumption 1.

Reduction 4. k = 4 and Card(Ia) = 2.
Since Card(Ia) ≥ dk−1

2 e, Reduction 3 implies that only three cases are possible:
k = 7 with Card(Ia) = 3, k = 5 with Card(Ia) = 2 and k = 4 with Card(Ia) = 2.
We are going to show that the first two cases lead to a contradiction.

In these cases, we have Card(Ia) = Card(Ib) ≥ 2. Once again, a and b play
symmetrical roles. Without loss of generality, we may assume min{|pi| | i ∈ Ia}
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> min{|pi| | i ∈ Ib}. For i ∈ Ia, let Xi be the word such that Xipi is the suffix of
u of length M1 = max{|pi| | i ∈ Ia} and let Yi be the word such that siYi is the
prefix of u of length M2 = max{|si| | i ∈ Ia}. Of course, there are two different
integers j1 and j2 in Ia such that |pj1 | = M1 and |sj2 | = M2. That is Xj1 = ε and
Yj2 = ε.

Now, let j be the integer in Ib such that |pj | = min{|pi| | i ∈ Ib}. For any l
in Ib \ {j}, |pl| > |pj | and |sl| < |sj |. Since pl and f(w[ij − 1])pj are suffixes of
uu and since sj and sl are prefixes of u, if w[ij − 1] = b, then f(b) = plsl is an
internal factor of f(w[ij − 1])pjsj = f(bb). By Lemma 2.2, f(b) is not primitive:
a contradiction with f primitive.

Thus w[ij − 1] = a. Moreover, by definition of j, there exists a word α0 such
that α0pj is the suffix of u of length M1. Since |α0| < M1 < |f(a)|, α0 is a suffix
of f(a). The word α0pjsj2 equals any of the Card(Ia) words XipisiYi = Xif(a)Yi
where i ∈ Ia.

For i ∈ Ia, |si| ≤ |sj2 |. It follows that |pi| ≥ |pj2 |, i.e. |pj2 | = min{|pi| | i ∈ Ia}.
Consequently |Xi| ≤ |Xj2 | and |pjsj2 | < |pj2sj2 | = |f(a)|. By Corollary 4.3, there
exist two words r and s and three integers n, q ≥ Card(Ia) and m ≥ Card(Ia)− 1
such that rs 6= ε, Xj2 = (rs)m, pjsj2 = (sr)q and f(a) = (rs)nr.

The word Xj2 is a suffix of the k-power-free word f(w[1 . . . ij2 − 1]). Moreover
|Xj2 | < M1 < |f(a)|: there exists an integer n1 < k such that Xj2 is a suffix
of f(abn1). The word pjsj2 is a prefix of the k-power-free word f(w[ij . . . |w|]).
Since |pjsj2 | < |f(a)|, there exists an integer n2 < k such that pjsj2 is a prefix of
f(bn2a). Let x = abn1abn2a. We have |x| ≤ 2k + 1 and f(x) contains (rs)m+n+q .
Since m + n + q ≥ 3 × Card(Ia) − 1 ≥ 2 × Card(Ia) + 1 = k, f(x) contains a
k-power: a contradiction with Assumption 1.

Intermediate definitions
According to Reduction 4, k = 4 and Card(Ia) = 2. So Card(Ib) = 1. Let us

call j1, j2 and j3 the integers such that Ia = {j1, j2}, Ib = {j3} and |pj2 | > |pj1 |.
Since u = sq−1f(w[iq−1 + 1 . . . iq − 1])pq for all 1 ≤ q ≤ 4, we will work with

three equal terms of the form uu (see Fig. 3).
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Figure 3. Equations.

In what follows, we will very often have to use some of the prefixes of the equal-
ities u = sj1f(w[ij1 + 1 . . . ij1+1 − 1])pj1+1 = sj2f(w[ij2 + 1 . . . ij2+1 − 1])pj2+1 =
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sj3f(w[ij3 + 1 . . . ij3+1 − 1])pj3+1 as well as some of the suffixes of the equali-
ties u = sj1−1f(w[ij1−1 + 1 . . . ij1 − 1])pj1 = sj2−1f(w[ij2−1 + 1 . . . ij2 − 1])pj2 =
sj3−1f(w[ij3−1 + 1 . . . ij3 − 1])pj3 .

Since |pj2 | > |pj1 |, let x be the word such that xpj1 = pj2 . We know that x is
a suffix of sj1−1f(w[ij1−1 + 1 . . . ij1 − 1]) and |x| < |f(a)|, thus x is a suffix of the
image of a 4-power-free word of the form abl3 with 0 ≤ l3 < 4. In the same way,
let y be the word such that sj1 = sj2y: y is a prefix of the image of a 4-power-
free word of the form bl4a with 0 ≤ l4 < 4. Thus we have |abl3abl4a| ≤ 9 and
xf(a) = xpj1sj1 = pj2sj2y = f(a)y. Thus, by Proposition 2.1(1), there exist two
words r and s and an integer i such that rs 6= ε, x = rs, y = sr and f(a) = (rs)ir.
Since |x| < |pj2 | < |f(a)|, we have i ≥ 1.

Reduction 5. i = 1, r 6= ε and s 6= ε.
If i ≥ 2, we have |abl3abl4a| ≤ 9 and f(abl3abl4a) contains xf(a)y and thus

(rs)4: a contradiction with Assumption 1. Thus i = 1. Since f(a) = rsr, x = rs
and |x| < |f(a)|, we get r 6= ε. Since f is primitive, we have s 6= ε.

Reduction 6. rs (resp. sr) is not an internal factor of (rs)2 (resp. of (sr)2).
For instance, if rs is an internal factor of (rs)2, by Lemma 2.2, rs = ti0 for

a non-empty word t and an integer i0 ≥ 2. We have |abl3a| ≤ 9 and f(abl3a)
contains (rs)2 and thus t4: a contradiction with Assumption 1.

Reduction 7. w[ij1 − 1] = b and w[ij2 + 1] = b.
If w[ij1 − 1] = a or w[ij2 + 1] = a, f(a) is an internal factor of f(a)f(a). By

Lemma 2.2, f(a) is not primitive: a contradiction with f primitive.

Reduction 8. |f(b)| > |sr|.
In the case |f(b)| = |sr|, we have rs = x = f(b): a contradiction with f biprefix.
Let us assume that |f(b)| < |sr|. We have |sj1 | ≥ |y| = |sr| > |f(b)| > |sj3 |. Let

z be the word such that sj1 = sj3z: z is a prefix of f(w[ij3 + 1 . . . ij3+1 − 1])pj3+1.
Since |z| < |f(a)|, z is a prefix of a 4-power-free word of the form f(bl5a) for an
integer 0 ≤ l5 < 4.

If |sj3f(bl5)| ≥ |sj2f(b)|, sj2f(w[ij2 + 1]) = sj2f(b) is a prefix of sj3f(bl5). We
have |sj3 | < |f(b)| and sj3 6= sj2 . Two cases are possible: f(b) is a suffix of sj2
or f(b) is an internal factor of f(b)f(b). The first case is in contradiction with
f biprefix. By Lemma 2.2, the second case implies that f(b) is not primitive: a
contradiction with f primitive.

Thus |sj3f(bl5)| < |sj2f(b)|. Since |f(b)| < |sr|, |sj3f(bl5)| < |sj1 |. There
exists a prefix α′ of f(a) such that z = f(bl5)α′. Note that |sj1 | = |sj3f(bl5)α′|
< |sj2f(b)α′|, so |f(b)α′| > |sj1 | − |sj2 | = |rs|. Consequently, the suffix sr of sj1
is a suffix of f(b)α′. Since w[ij1 − 1] = b, f(b) is a suffix of x = rs. From α′

prefix of f(a) = rsr, it follows that sr is a factor of (rs)2r. If α′ 6= r, sr is an
internal factor of (sr)2: a contradiction with Reduction 6. Thus α′ = r. From
rsrsr = rsf(a) = xpj1sj1 = pj2sj3f(bl5)r, we get pj2sj3f(bl5) = rsrs. Moreover
pj2sj3f(bl5) is a suffix of w[1 . . . ij3 + l5] which is 4-power-free. We have w[ij3 ] = b
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and |pj2 | ≤ |f(a)|. Thus there exists an integer l6 ≥ 0 verifying l5 +l6 < 4 and such
that (rs)2 is a suffix of f(abl5+l6). We have |abl5+l6abl4a| ≤ 9 and f(abl5+l6abl4a)
contains (rs)4: a contradiction with Assumption 1.

Reduction 9. |sj3 | > |sj1 |.
By Reduction 2, |sj3 | 6= |sj1 |. Let us assume that |sj3 | < |sj1 |. Since w[ij1 − 1]

= b and |f(b)| > |rs|, the word x = rs is a suffix of f(b). Let z be the word such
that sj1 = sj3z. We have |z| ≤ |sj1 | < |f(a)| = |rsr|. The word rsz is a suffix of
f(b)z = pj3sj3z. Furthermore |pj2 | > |x| = |rs|. Since pj2 and pj3 are both suffixes
of u, rsz is a suffix of pj2sj3z = xpj1sj1 = xf(a) = (rs)2r.

If z 6= r, rs is an internal factor of (rs)2: a contradiction with Reduction 6.
If z = r, pj2sj3 = (rs)2 is a suffix of w[1 . . . ij3 ]. Since w[ij3 ] = b, |f(b)|

> |sr| and |f(a)| > |sr|, (rs)2 is a suffix of f(ab) or of f(bb). Thus f(bbabl4a) or
f(ababl4a) contains (rs)2f(a)y and so (rs)4. But |bbabl4a| ≤ 9 and |ababl4a| ≤ 9:
a contradiction with Assumption 1.

Reduction 10. |pj3 | > |pj2 |.
When |pj3 | < |pj2 |, beginning with w[ij2 + 1] = b and considering prefixes

instead of suffixes, by a proof similar to Reduction 9, we get that f(abl3aba) or
f(abl3abb) contains (sr)4 with |abl3aba| ≤ 9 and |abl3abb| ≤ 9.

Intermediate definitions
We have |f(b)| > |pj2sj1 | = |rsrsr|.
Let z1 be the word such that z1pj2 = pj3 . We have |z1| < |f(b)| and z1 is a

suffix of sj2−1f(w[ij2−1 + 1 . . . ij2 − 1]). Thus z1 is a suffix of a word of the form
f(bal7) for an integer 0 ≤ l7 < 3. Let z2 be the word such that sj1z2 = sj3 . We
have |z2| < |f(b)| and z2 is a prefix of f(w[ij1 + 1 . . . ij1+1 − 1])pj1+1. Thus z2 is
a prefix of a word of the form f(al8b) for an integer 0 ≤ l8 < 3.

Let β1 and β2 be the non-empty words such that sj2β1 = sj3 and pj3 = β2pj1 .
We have f(b) = β2pj1sj2β1. Since pj1sj2sr = pj1sj2y = pj1sj1 = f(a) = rsr,
we have pj1sj2 = r and f(b) = β2rβ1. Now, observe that β1 is a prefix of
f(w[ij2 + 1 . . . |w|]). Since w[ij2 + 1] = b, β1 is a prefix of f(b). In a similar
way, since β2 is a suffix of f(w[1 . . . ij1 − 1]) and since w[ij1 − 1] = b, β2 is a suffix
of f(b).

It follows that there exists a word β0 such that f(b) = β1β0β2.
Note that β1 = yz2 = srz2 and β2 = z1x = z1rs.

Reduction 11. |β1| < |r|+ |β2| and |β2| < |r| + |β1|.
If |β1| = |r| + |β2|, then β1 = β2r and f(b) = (β1)2: a contradiction with f

primitive.
If |β1| > |r| + |β2|, by Proposition 2.1(1), the equality (β2r)β1 = β1(β0β2)

implies that there exist two words v1, v2 and an integer j ≥ 1 such that β2r = v1v2,
β1 = (v1v2)jv1 and β0β2 = v2v1.
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We have |bal7ab| ≤ 9 and f(bal7ab) contains the word z1f(ab) = z1pj2sj2f(b)
= pj3sj2f(b) = β2pj1sj2f(b) = β2rβ1β0β2 = (v1v2)j+2. If j ≥ 2, we get a contra-
diction with Assumption 1. Thus we may assume j = 1.

Note that β1 starts with y = sr and with v1.
If |v1| < |sr|, v1 is a prefix of sr. We also have that rsr is a suffix of β2r = v1v2.

If v1 = s, v1v2v1 ends with (rs)2 and f(bab) contains (rs)4. If v1 6= s, since
β1 = v1v2v1 ends with rsrv1 and also with β2 thus with rs, we obtain that rs is
an internal factor of (rs)2: a contradiction with Reduction 6.

Thus |v1| ≥ |sr|. Since we have |u| > |f(b)|, we can consider the prefix v0 of
f(w[ij3 + 1 . . . ij3+1 − 1])pj3+1 of length |f(b)| − |sj3 |, i.e., sj3v0 is the prefix of
u of length |f(b)|. There exists an integer 0 ≤ l9 < 4 such that v0 is a prefix
of a word of the form f(al9b). Since sj3v0 is a prefix of sj2f(w[ij2+1]) = sj2f(b)
= sj2β1β0β2 = sj3β0β2, v0 is a prefix of β0β2 = v2v1. We have |f(b)| = |β2pj1sj2β1|
= |sj3v0| = |sj2β1v0|. Thus |v0| = |β2pj1 | = |β2pj1sj2 | − |sj2 | = |β2r| − |sj2 | =
|v1v2| − |sj2 | ≥ |sr| + |v2| − |sj2 | = |s| + |pj1 | + |v2| ≥ |v2|. So v0 starts with v2.
We have |bal7abal9b| ≤ 9 and f(bal7abal9b) contains z1f(ab)v0 = z1rsrf(b)v0 =
β2rf(b)v0 = (v1v2)3v1v0 which contains (v1v2)4: a contraction with Assumption 1.

The cases |β1| < |r| + |β2| and |β2| < |r| + |β1| are symmetrical. In the same
way that the case |β1| < |r| + |β2|, considering suffixes instead of prefixes and
prefixes instead of suffixes, the case |β2| < |r| + |β1| leads to a contradiction with
the assumptions.

Reduction 12. |β1| 6= |β2|.
If |β1| = |β2|, z1rs = β2 = β1 = srz2 and β0 = r that is f(b) = β1rβ2

= z1rsrz1rs. Let us recall that z1 is a suffix of a word of the form f(bal7) for an
integer 0 ≤ l7 < 3. Thus f(bal7ab) has (z1rsr)2rs as suffix. We have |u| > |f(b)|
> |β2|+ |sj3 | > |r|+ |sj3 | = |s2β1r|.

Since w[ij2 + 1] = b and since r is a prefix of f(b), sj2β1r is a prefix of u. Since
sj2β1r = sj2srz2r = sj1z2r, u = sj1f(w[ij1 + 1 . . . ij1+1 − 1])pj1+1 and w[ij1 ] = a,
z2r is a prefix of a word of the form f(al10b) for an integer 0 ≤ l10 < 3. It follows
that f(bal7abaal10b) contains (z1rsr)2z1rsrsrz2r = (z1rsr)4: a contradiction with
Assumption 1 since |bal7abaal10b| ≤ 9.

Final Contradiction
If |β2| < |β1| < |r| + |β2|, since β1β0β2 = β2rβ1, we have β1 = β2r

′ for a non-
empty prefix r′ of r different from r. Let us recall that rs is both a suffix of β2

and of β1. It follows that rsr′ has rs as a suffix, that is, rs is an internal factor of
(rs)2: a contradiction with Reduction 6.

The case |β1| < |β2| < |r| + |β1| is symmetrical to the case |β2| < |β1|
< |r|+|β2| and leads to a final contradiction considering suffixes instead of prefixes
and prefixes instead of suffixes.
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