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CLOSURE UNDER UNION AND COMPOSITION
OF ITERATED RATIONAL TRANSDUCTIONS

D. SlMPLOT1 AND A. TERLUTTE1

Abstract . We proceed our work on iterated transductions by
studying the closure under union and composition of some classes of
iterated functions. We analyze this closure for the classes of length-
preserving rational functions, length-preserving subsequential functions
and length-preserving sequential functions wit h terminal states. All the
classes we obtain are equal. We also study the connection with deter-
ministic context-sensitive languages.

Resumé. Nous poursuivons notre étude des transductions itérées.
Dans cet article, nous étudions la clôture par union et composition de
quelques classes de fonctions itérées. Nous considérons les fonctions ra-
tionnelles, les fonctions sous-séquentielles et les fonctions séquentielles
avec états terminaux, et plus particulièrement, celles préservant les
longueurs. Toutes les classes de transductions obtenues sont égales et
sont en relation étroite avec les langages contextuels déterministes.

AMS Subject Classification. 68Q45, 68Q42, 68Q70.

1. INTRODUCTION

The class of rational transductions, introduced by Elgot and Mezei [4] and
mainly studied by Nivat, Eilenberg and Schiizenberger [3,7,8], certainly constitutes
the best known class of transformations of languages. This class has good closure
properties (composition, union, inversion,...) and the main families of languages
are closed under rational transductions.

In language theory, some tools are defined in terms of itérations of processes
(Chomsky grammars, Lindenmayer Systems,...). We can inquire about itérations

Keywords and phrases: Rational transductions, rational functions, itération of transductions,
context-sensitive languages.
1 URA 369 du CNRS, LIFL, Université de Lille I, bâtiment M3, Cité Scientifique, 59655
Villeneuve-d'Ascq Cedex, France; e-mail: {simplot,terlutte}Qlif 1 .fr

© EDP Sciences 2000



184 D. SIMPLOT AND A. TERLUTTE

of rational transductions. Iterating any kind of rational transductions is very
powerfuL We restrict our study to length-preserving (Lp.) rational transductions.

In [9], we have studied the smallest class of transductions containing Lp. ra-
tional transductions and closed under union, composition and itération (named
UCI-closure). We have found some equivalent représentations of this family. For
instance, the following classes are equal: UCI-closure of Lp. rational transductions
(UCI(T)), UCI-closure of Lp. rational fonctions (i7C/(ƒ*)), compositions using
one iterated Lp. rational transduction {TT+T) and compositions using itération
of two Lp. rational functions (T{ïF + T)+T).

In this paper, we study the class LrC(jT+) where T+ dénotes the class of iterated
length-preserving rational functions. We prove that TT+T is a représentation
for this class (Sect. 4). Then we study UC(C+) for some subclasses C of rational
functions: subsequential functions (Sect. 5) and sequential functions with terminal
states (Sect. 6). We can prove that these three classes are equal: UC{T+) =
UC(sS+) = UC(tsS+).

In [9], we have seen the connection between context-sensitive transductions and
the class UCI(T). This is due to the génération of context-sensitive languages by
itérations of Lp. rational transductions. We shall prove the same kind of properties
for deterministic context-sensitive languages: the class of deterministic context-
sensitive languages is equal to a*UC(T+) where a is a letter (Sect. 7) and the
class UC(J~+) is equal to the class of deterministic context-sensitive transductions
(Sect. 8).

A part of this work has been already published as extended abstract in [5].

2. PRELIMINARIES

We assume the reader to be familiar with basic formai language theory (see [2,3]
for more précisions). The goal of this section is to fix notations and terminology.

2.1 . WORDS AND LANGUAGES

For a finite alphabet E, we dénote by E* the free monoid generated by E. The
neutral element of this monoid is the empty word, which is denoted by e. The size
of the alphabet E is denoted by | |S| | and is equal to its number of letters. The
length of a word u is denoted by \u\. For a set S of words, alph(5) dénotes the
alphabet of 5, that is the set of letters which occur in S.

A language over E is a subset of E*. The classes of regular, deterministic
context-sensitive and context-sensitive languages over E are denoted respectively
by nec(Z*), CSdet(E*), C<S(S*).

Regular languages are recognized by finite states automata and context-sensitive
languages are recognized by linear-bounded automata (définition of LBA is given
in Sect. 7).
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Let S be an alphabet which is the Cartesian product of n alphabets, E =
Xx x X2 x .. . Xn (with n > 1). A word u belonging to S* = (Xi x X2 x ... x Xn)*
will be denoted by u = [ui,U2, -,Un] where u* is the i-th component and belongs
t o l * .

2.2. TRANSDUCTIONS

Now we give some basic définitions about transductions. A transduction is a
subset of X* x Y* where X and Y are two finite alphabets. For a word u, the set
of images of u by a transduction r is denoted by ur and is defined by:

ur — {v | (u,v) e r} •

This définition is extended in a canonical way to languages: Lr = {v \ 3u E L
such that (u,v) e r}.

For a transduction r, the domain of r, denoted by Dom(r), is the set of all
words which have an image by r. The set of images of r> denoted by Im(r), is the
language of words which have an antecedent by r.

Dom(r) = {u \ 3v such that (u,v) G r} ,
Im(r) = {v j 3n such that (U,Ï;) € r}-

A transduction r is called complete on X* if Dom(r) = X*.
The inverse of a transduction r is the transduction whose couples are the permu-

tation of first and second components of the couples belonging to r. It is denoted
by T" 1 = {(v,u) | ( U , V ) € T } .

The set of transductions has a structure of semigroup according to the compo-
sition opération:

Définition 2.1. Let r and a be two transductions. The composition of r and a
is the transduction defined by:

ra — {(u, w) | 3v such that (u, v) € r A (t>, w) € a} •

A transduction r from X* into Y* is rational if and only if it is a rational part
of I * x r - that is a part built of finite sets of X* x Y* and using union, usual
concaténation and star operator. It is also the class of transductions which can be
realized by a finite transducer — that is a finite automaton where edges are labeled
by an input and an output word.

Formally, a finite transducer T is a 6-uple (X, Y,Q}Ö} / , F) where X is a finite
alphabet called the input alphabet, Y is a finite alphabet called the output alpha-
bet, Q is a finite set of states, ö is the transition function from Q x {X U e} into
the finite parts of Q x Y*, I is the set of initial states included in Q and F is the
set of final states included in Q.

The transition function is extended to ö* defined on Q x X* in its entirety. First
J* contains ö. For each state q} we force (q, e)ö* to contain (ç, e). If (g, x)6* 3 (q\ y)
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and (q', xf)5 3 {qn\ yf) then (q, xxf)6* contains (qf/, yyf). For a given word u G X*,
we say that u is transformed in v G F* if there exist an initial state qi € I and
a final state qf G F such that (qf,v) G (<fe,u)£*. The transduction r associated
with T is defined by:

r= IJ {(u,v)eX*xY* | (g/^)Gfe^)^}-

The next theorem présents well-known closure properties of the class of rational
transductions (see [2] for detailed proofs of these properties).

Theorem 2.2. The class of rational transductions is closed under union, compo-
sition and inverse.

A transduction r is length-preserving if and only if for each couple (u, v) G r we
have |u| = \v\. In the remainder of the paper, we consider only length-preserving
transductions. The class of all length-preserving rational transductions is denoted
b y T .

A length-preserving transduction is letter-to-letter if and only if the transition
function 5 is defined from Q x X into the finite parts of Q x Y. A class of letter-
to-letter transductions is denoted by Ci\.

Let C and C' be two classes of transductions. We dénote by CCf the class of
transductions obtained by composition of a transduction of C with a transduction
ofC:

CC' = { T T ' I T E C A T e C f } >

Let C be a class of transductions. The class of all transductions whose inverses
belong to C is denoted by C~l:

C-1 = {f'1 \ f e C } .

2.3. FUNCTIONS

A transduction r is functional if for each word u in Dom(r). UT contains exactly
one word. When we deal with a function r we will write UT = v instead of
UT = {v}.

The class of length-preserving rational functions is denoted by T.
The intersection with a language could be considered as a transduction which

is the identity on this language. Let L be a language over X*.

This transduction is obviously a length-preserving function. It is a rational func-
tion if and only if the language L is rational.
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Let C be a class of languages. The class of functions which consist to an
intersection with a language of £, denoted by (fl£), is defined by:

(n£) = {r | r = (DA) for some A G £} •

There are no class of transducers associated to the class of rational functions.
Some restrictions can be made in order to introducé determinism in the transitions.
Subclasses of rational functions are thus defined.

In a left sequential transducer, the transition function ö is defined from Q x X
into Q x Y*. The usual présentation of left sequential transducers replaces the
transition function by a next state function JJ, and an output function À. Formally,
a left sequential transducer is a 6-uple (X, Y, Q, ÇO>MÎ ̂ 0 where X is the input
alphabet, Y is the output alphabet, Q is the set of states, including a unique
initial state qo, fji is the next state function included in (Q x X) x Q and À is the
output function included in (Q x X) x Y*.

The next state function and the output function can be extended to Q x X* by
setting, for q G Q, u G X* and x G l ,

For a given word u G X*, we say that u is transformed into t? G Y* if (go, ̂ )M* ¥" 0
and (ço,^)^* = w-

Let us remark that ail states are terminal.
A transduction is left sequential if there exists a left sequential transducer which

realizes it. The class of length-preserving sequential functions is denoted by S,
By the same way, right sequential transducers are defined. The input word is

then read from right to left (for more details, see [2,3]).
The is-sequential transducers (sequential with terminal states) are defined by

adding a set of terminal states to the définition of left sequential transducers.
A £s-sequential transducer is a 7-uple (X, Y, Q, ço> QF> MÎ X) where QF is the set

of final states. A word u G X* is transformed into v G Y* if (qo,u)fj,* G QF and
(ço,^)A* =v.

A transduction is is-sequential if there exists a £s-sequential transducer which
realizes it. The class of length-preserving £s-sequential functions is denoted by tsS.

Subsequential transducers are defined by adding a final state function p included
in Q x Y*. We don't need QF anymore; if a state is not final, its output will be
empty.

A subsequential transducer is a 7-uple (X, Y, Q, go? M: K P) where p is the final
state function. A word u G X* is transformed into vw G Y* if v G Y* if (go> u)fji* ̂
0) (<?o, u)X* — v and ((g0, U)M*)P = w-

A transduction is subsequential if there exists a subsequential transducer which
realizes it. The class of length-preserving subsequential functions is denoted by sS.



188 D. SIMPLOT AND A. TERLUTTE

2.4. MORPHISMS

A morphism (p is a rational function that satisfies the conditions etp ~ e and
(uv)(f — (u(p)(vip) for every words u,v. Hence, the morphism (p is completely
defined by the values cup of the letters a £ Alph(Dom((/?)). The morphism <p is
called letter-to-letter, if for each a e Alph(Dom(</?)) we have \a<p\ = 1. The class
of letter-to-letter morphisms is denoted by Tisa-

In our proofs, we shall use several particular kinds of morphisms. For an ar-
bitrary alphabet Ay the identity over A* is denoted by IA — notice that IA =
{(u,u) | u E A*} is equivalent to the intersection with A* which is denoted
by (HA*). When we consider an alphabet E which is the Cartesian product of n
alphabets, E = X\ x X2 x . . . Xn (with n > 1), the morphism 11̂ , with 1 < i < n
is the projection onto the ith component.

In our proofs, we shall also use:
• morphisms pn which transform any letter x in a Tvfold (x,x, ...,x);
• morphisms ^(^^2,...,^) which transform any n-fold (xi,X2, ...,xn) in a n-fold

(xi]Lïa;i2,...,a;in) with 1 < ij < n;
• morphisms KX which transform every letter a in a letter x.

We shall fit the domains of these morphisms for the contexts.

2.5. ITÉRATIONS OF RATIONAL TRANSDUCTIONS

First, we give a formai définition of iterated transductions.

Définition 2.3. Let r be a transduction. The itération of r, denoted by r+ , is
the transduction defined by:

where r% is defined inductively by r1 — r, r n + 1 — rnr for n > 0.

For a given class of transductions C, we dénote by C+ the class of itérations of
transductions of C:

C+={T+ I reC}-

Thus, 7I|_ dénotes the class of iterated length-preserving rational transductions and
J-+ dénotes the class of iterated length-preserving rational fonctions.

2.6. UCI-CLOSURE OF LENGTH-PRESERVING RATIONAL TRANSDUCTIONS

Définition 2.4. For a given class of transductions C, the class UCI{C) is the
smallest class of transductions which contains C and is closed under union, com-
position and itération.
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Définition 2.5. The class UC(C) is the smallest class of transductions which
contains C and is closed under union and composition.

It is well known that the class of (length-preserving) rational transductions is
closed under union and composition. Thus UC(T) = T. It is obvious that the
itération of a length-preserving rational transduction is not necessariiy a rational
transduction. Thus UC{T+) ^ T.

The UCI-closure of length-preserving rational transductions was studied in [9].
We obtain the following characterization:

Theorem 2.6 (Représentation theorem). Let r be a transduction, The following
properties are equivalent:

1. the transduction r can be defined by using union, composition and itération
of length-preserving rational transductions (r € UCI(T)),

2. there exist three length-preserving rational transductions a\, OI and o<$ such
that r = aia^as (r G TT+T),

3. there exist two length-preserving rational transductions ai and os and a one-
step transduction &2 such that r = aicr^a^ (r G Tö+T),

4. there exist two letter-to-letter morphisms (p and ijj and a context-sensitive
language A such that r = tp~1(r)A)ift (r E

5. there exists a recognizable picture language L such that r \ {(e, e)} — TL
(T e

6. the transduction r can be defined by using union, composition and itération
of letter-to-letter ts-sequential functions (r G UCI(tsSu+)),

7. there exist four letter-to-letter ts-sequential functions a\, o^, ^3 and o4 such
that r = o~i(a2 + cr3)

+a4 (r € tsSu(tsSu + tsSu)+tsSu).

In this paper, we shall study UC(C+) for different classes of length-preserving
rational functions.

3. SOME REMARKS

Remark 3.1. The classes of length-preserving transductions are included as fol-
ÏOWS H

Length-preserving sequential functions are letter-to-letter. Letter-to-letter sub-
sequential functions are £s-sequential.

In this work, we shall try to obtain the results for the smallest classes of trans-
ductions.

Remark 3.2. The class T is included in the class UC{T+) but not in T+.

Indeed, when the image of a transduction uses the same alphabet as the domain,
we cannot forbid the itération of the transduction. But, using disjoint alphabets,
we can use composition of two itérations in order to simulate a transduction. Thus
the class of length-preserving rational transductions is included 'm. T+T+. For
instance, let us take the transduction which transforms an into bn and transfcrms
bn into an. A single application changes an into bn and reversely. But a second
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application allows an to be the image of an. We can define a first transduction
which transforms an into 5™, bn into an and is undefined over {â,6} and a second
one which transforms b into bn, an into an and is undefined over {a,b}. The
itération of the first transduction followed by the itération of the second is equal
to the initial transduction.

This remark also holds for the class of rational (subsequential, ts-sequential or
sequential) functions.

The same remark makes also the equality UCI{T) — UC{T+) obvious.

Remark 3.3. If two length-preserving rational functions have disjoint domains,
their union is still a rational function.

The union of two length-preserving subsequential (is-sequential, sequential)
functions whose domains alphabets are disjoint, is a subsequential (ts-sequential,
sequential) function.

For instance, let f\ (resp. ƒ2) be the function which transforms a2n into b2n

(resp. a271"1 into c2n~l) for ail n > 1. These two functions are £s-sequential. The
union fi -h ƒ2 is a rational function but not a subsequential one.

Définition 3.4. A rational function ƒ is called complete on X* if Dom(/) = X*.

Remark 3.5. Let ƒ be a length-preserving rational function included in X* x Y*
and containing (e,e).

Let Z — X U Y U {o}, where o is a new special letter.
There exists a length-preserving rational function g, included in Z* x Z*} com-

plete on Z* such that ƒ = g(r\Y*) and ƒ+ = g+{HY*).

We just have to define g on Z* by ug = uf when u G Dom(/) and ug = o'ul
when u $ Dom(/).

Let us note that, for any u G Z* and ail n G N, u E Dom(#n).
Let us note also that, if u G Z* o Z* then ug = o^ and ug+ — o'uL
In order to have the same property (ƒ = g(C\Y*) and / + = g+(P\Y*))y we

could associate a complete length-preserving subsequential (resp. sequential) func-
tion g to a length-preserving subsequential (resp. sequential) function ƒ, but
not a complete length-preserving £s-sequential function to a length-preserving ts~
sequential function. When dealing with length-preserving transductions, complete
£s-sequential functions are sequential functions and length-preserving sequential
functions are letter-to-letter.

For instance, let ƒ be the function which transforms a2n into b2n for all n > 0.
This function is ts-sequential. We could define a complete subsequential g which
transforms a2n into b2n and a2n+1 into b2no for ail n > 0. Thus we have the
property ƒ = g(nb*). But we cannot define a complete length-preserving ts~
sequential function having the same property.

Let E be an alphabet which is the Cartesian product of n alphabets. We
shall define a function which will be equivalent to n functions working on each
component of n-folds. Let ƒ,, for 1 > i > n, be functions included in X* x Y*.
Then (ƒ1, ƒ2,..., fn)

 w n l dénote the function ƒ with Dom(/) = Dom(/i) x Dom(/2)
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x... x Dom(/n)n(Xi x X2 x ... x Xn)* defined by uf = [uifX:u2f2, ...,unfn], for
all u = [ui,u2,..., un] G Dom(/).

When the n functions are rational, the function thus defined is still rational.

Remark 3.6. Let r be a length-preserving rational transduction included in X* x
Y*. Let k = \\X\\. For all u e X*, we have uf+ = {uf1 | 0 < i < fcH}.

The set u / + is included int o X'u' which is a finite set having fe'u' éléments.
We often need to count the number of itérations in order to limit them to fc'w'.

We also need to enumerate all the words having a certain length. We can count
from 1 to /c'ln' by enumerating all the words of length |it| built from an alphabet
of k letters.

Let X be the alphabet {a?i, #2, ••-,#*:}•
We define the function Succ^ which transforms a word into its successor of same

length in the "mirror" lexicographical order. By "mirror" lexicographical order, we
mean that the words are ordered reading from right to left. For instance, using the
alphabet {£i,X2,#3}> the words are ordered as follows x\X\X\ <iex X2001X1 <iex
X3XiX! <iex X!X2X± <iex X2X2Xi <i€X X3X2XX <iex X\XzX\ <lex ••• <lex

The function Succx is defined by the following transducer.

' V for all 1 < j < k

for ail 1 < i < k.

ü
Xk/%1

The function Succ^ thus defined is a length-preserving sequential function. It is
complete on X*; in particular x£ Succx = x±.

We can easily prove that a classical class of rational transductions which are
not functions are obtained by itérations of functions.

Lemma 3.7 (Simplot and Terlutte [9]). The class Hj^ of inverses of letter-to-
letter morphisms is included in J7C(J-+). Moreover, it is included in the class
SS+S.

Proof. Let / i bea letter-to-letter morphism included in X* x Y*. Let Xh be the
alphabet defined by Xh = {{xh,x) \ x G X}. Let k = ||X||.

Let us consider a word u for which we want the images through /i"1. We shall
put u in the first component and enumerate all the words of X^ into the second
component in order to verify whether or not the couples belong to X£.

Let f2 = {IYi
Let /3 = (nX£)n2.

We verify that h^1 = fx /+ / 3 .
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For all u belonging to Y *, we have

— {[u,v] I v E X* and \u\ = \v\}f3

— {[u,v] | v £ X* and u = vh}U2

D

Aft er itérations of functions, we shall study itérations of subsequential and itéra-
tions of £s-sequential functions. The "décomposition theorem" [1,3,4,8], charac-
terizes rational functions by using sequential functions.

Theorem 3.8 (Décomposition Theorem). Let ip be a function including (e,e).
The function (p is equal to srsi where sr is a right sequential transduction and
si is a left sequential transduction.

Let us remark that the right sequential function can always be chosen length-
preserving (then letter-to-letter). When the function ip is length-preserving, the
left sequential function is then length-preserving for the words belonging to the
image of the right sequential function, but not necessarily for the whole domain.

It is known [3,6] that a length-preserving transduction is the composition of an
inverse of letter-to-letter morphism, an intersection with a rational language and
a letter-to-letter morphism. Using this property in the proof of [1], it is immédiate
that the left sequential function si can also be chosen letter-to-letter.

Theorem 3.9 (Décomposition Theorem for length-preserving functions). Let(p be
a length-preserving function including (e, e). The function ip is equal to srsi where
sr is a letter-to-letter right sequential function and si is a letter-to-letter left se-
quential function.

In the décomposition theorem, the first sequential function read the word from
right to left. We shall see that we can simulate a right sequential function with
itérations of £s-sequential functions.

4. USE OF ONE ITÉRATION OF A RATIONAL FUNCTION

We first study some properties of the class T T+ T in order to prove that this
class coïncides with the class

Lemma 4.1. Let r be a length-preserving transduction belonging to F T+ T',
included in A* x B* and containing (e,e).

There exist an alphabet Z including A, a function g included in Z* x Z* and
complete on Z* and a morphism h included in Z* x B* such that r = (nA*)g~*~h.

Proof. Let r = fif£fs with fo Ç A* x B*. We can suppose that A Ç Ai and
B Ç Bz. Let Zo = (U3

i=lAi) U (U?=1£i).
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The functions fi are included in ZQ X ZQ. Let Z = Z0Uo. Using Rernark 3.5, we
can define functions gi included in Z* x Z*, complete on Z*, such that fi =

Thus r is equal to hîïh = gi(nZS)g+(nZ£)g3(nZ*).
In the Remark 3.5, the functions are built in such manner that ugi = ufi G

Z$ C Z* ]£u e Dom(fi), UQi = oM il u & Dom(/i) and oH& = o K Thus we
have T = gig^gs(DZQ). The transduction gig^Qz is included in Z* x Z* and is
complete on Z*. Since Dom(r) is included in A*, the transduction r is also equal
to (nA*)9lg+g3(nZZ).

We define
> 919293}

We shall verify that r = (H/1*)#i#^33(0^0) is equal to
Let us first remark that the function c/?i is included in A* x (Z x Z)* and is

complete on A* and the function cp2 is included in (Z x Z)* x (Z x Z)* and is
complete on [Z x Z)*.

For all u E A*, for all n > 1, we have

The functions <£>i and v?2 have disjoint domains (excepted on e which is transformed
in e by both functions), thus the union (pi + <̂2 is a function.

The function (pi+(f2 is included in (AU(ZxZ))* x (ZxZ)*. Using Remark 3.5,
we can define <p, included in Z\ x Z*, complete on Z p ( i U ( Z x Z))*, such that

Thus r = (nA*)v?+^ where ^ - (n(Z x Z)*)n2(nZ*) - (n(Z x Z0)*)n2 is a
morphism on the alphabet Z x ZQ. •

Lemma 4.2. T/ie c/ass ƒ" ƒ+ J17 is closed under union.

Proof. Let T\ and r2 belonging to T T+ T. We shall first suppose that (e, e)
belongs to r± and r2. Let A* x Sjf and A2 x 5 2 be monoids in which the trans-
ductions T\ and r2 are respectively included, Then they are respectively included
in A* x B\ and A* x B | where A = A1D A2.

By Lemma 4.1, there exist an alphabet Zi 3 4 , a function 51 included in
Z* x Zj* and complete on Z^ and a morphism h\ included in Z\ x B\% such that
ri = (nA*)g*hi. Idem for r2.

Let us show the construction on a diagram. The Figure 1 shows (CïA*)g^hi
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Ui Ui Ui Ui

\ h2 \ h2
^ 2 2 ^23 ^24

FIGURE 1. Génération of images through (C\A*gfhi) +

In order to simulate T\ + r2 = (C\A*)(g^hi + g2h2), we shall use triplets.
The transduction 71 will act on the first component and r2 on the second. The
transductions r\ and r2 will act alternatively, according to the third component
as shown in Figure 2.

FIGURE 2. Génération of the same images through fg+h.

Let ƒ = (riil*)/?3</A,/A,«i>.
This ïunction replicates the initial word and transforms the third component

in 1 (infact lH) .
Let g - (n(Zi x Z2 x l)*)(5i, Jza,«2> + (n(Zi x Z2 x 2)*)(/Zl,52,«1)-
This function applies g\ to the first component when the third is 1; it applies

£2 to the second component when the third is 2. It also transforms 1 in 2, and
conversely 2 in 1 in the third component. The function g± being complete on Z\
and the function g2 being complete on Z| , the function g is included in ((Z± x
Z2 x 1)* x (Zi x Z2 x 2)*) U ((Zi xZ2x 2)* x (Zx xZ2x 1)*) and is always defmed
on (Zx x Z2 x 1)* U (Zi x Z2 x 2)*.

Let /i = (n(Zi x Z2 x 2)*)(IIift1) + (n(Zi x Z2 x l)*)(n2fe2).
This function selects the first component and applies h\ when the third is 2; it

selects the second and applies h2 when the third is 1.
We shall prove that 7*1 + r2 = fg~*~h.
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For all u G A*, for all n > 0, we have

ufg2n+1h = [u,u,lH}g2n+1h

For all u e A*, for all n > 1, we have

ufg2nh =

If (e, e) belongs neither to r± nor T2, it would be removed from the functions ƒ, g
or ft. D

Lemma 4.3. Tfte class T T+ T is closed under composition.

Proof. Let r\ and r2 belonging to T T+ T. We shall first suppose that (e, e)
belongs to the transductions T\ and T2. Let 4̂̂  x 5^ and A\ x 5^ be monoids in
which T\ and r2 are respectively included.

By Lemma 4.1, there exist an alphabet Zi 3 ^ i , a function g\ included in
Z\ x Z\ and complete on Z* and a morphism h\ included in Z\ x B\, such that
Ti = (C\A*)gfhi. Idem for r2.

Then TIT2 is equal to {f\A\)g^hi{r\Al)g^h2-
The transduction ft^n^)^^ belongs to ƒ" F+ T\ then we can apply

Lemma 4.1 again. The transduction h^nA^g^^ is included in Z\ x £?|. There
exist an alphabet Z3 D Zi, a function g% included in Z | x Z3 and complete on Z%
and a morphism ft3 included in Z | x B^ such that ^ ( n A ^ ) ^ ^ = {^Z{ )g%hz.

Then nr2 is equal to (nA\)gf(r\Zl)g+h3 = (nAî)gtg£hs.
We only have to prove that g^g£ belongs to T ÏF+ T.
Let us show the construction on diagrams. The Figure 3 shows how a word is

transformed through g*g£.
As noticed in the Remark 3.6, ug+ — {ug% \ 0 < i < k^} where k is the

size of the alphabet used in g. Hence, the length of an horizontal itération can be
bounded by &'UL We count from 1 to AJ'U' by enumerating all the words of length
\u\ built from an alphabet of k letters.

We shall use triplets. The function gx will act on the first component. For each
word in the first component, we shall generate its images by the itération of the
function g3 on the second component. The third component will count the number
of actions of #3 in order to know when we can generate a new image in the first
component. The Figure 4 shows how will act fg+h on these triplets.
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9i

9i

9i

9i

FIGURE 3. Génération of images through g^g3 •

Let ƒ = (nZï)P3(IZl,IZl7KZk).
This function triples the starting word if it belongs to Z*. Then it put Zk in the
third component.

Let g = (nrï)6ililiS)(gugig3yKZl) + (H^ \ Tf){IZl,gs, Succz3) where I \ =
Z\ x Z3 x {zfc} and T2 = Z± x Z3 x Z3.

When the third component belongs to #£, the function niakes a step in the itér-
ation of g\ (in the first component) and start that of g3 (in the second component).
The itération of g% will be repeated Ar'u' — 1 times. In order to count the itérations
of 03) we start with a word in z{ and we shall use the function Succ^3.

When the third component does not belong to z£ •> the function makes a step
in the itération of g3 in the second component and increases the third component.

Let h = ïl2-
We shall prove that g^g3 = fg+h.
For all u £ Z{, for all n > 1, we have

ufgnh = ug\ g{ with Î = ((n - l)div klu]) + 1 and j = ((n - l)mod k^) + 1.

If (e, e) did not belong to T\ or r2, it would be removed from the functions ƒ, g
or h. •
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, ̂ o, kl where l = \VQ\

FIGURE 4. Génération of the same images through fg+h.

Using these two lemmas, we can give a characterization of the class

Proposition 4.4. The class UC(!F+) is equal to the class F T+ ÏF. That means,
a transduction r belongs to UC{!F+) ij and only ij r — jij^J3 jor some ji, /2

and js in T.

Prooj. The class of length-preserving rational functions is included in F+ F+

(same arguments than in Rem. 3.2). Then we have T c UCiT^) and T ÏF+ T Ç

On the other hand, the class T T+ ÏF includes T+ and is closed by union and
composition (Lem. 4.2 and Lem. 4.3) then the class T J7^ J7 contains UC(F+). •
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5. SUBSEQUENTIAL FUNCTIONS

We shall improve the characterization of the class UC(!F+).

Proposition 5.1. The class UC(F+) is equal to the class sS s5+ Hsa — UC(sS+).
That means, a transduction r belongs to UC{F+) if and only if r — f\f2 fz for
some f\ and f2 in sS and ƒ3 in W5a-

More precisely, the proof shows that UC{F+) — sS tsS+ Hsa-

Proof. Obviously sS sS+ 7isa is included in UC(sS+) which is included in
In order to prove the reverse inclusion, let us assume that a transduction r G

UC{T+) contains [e^s). All subsequential fonctions we will deflne, will contain
(e, e).

We use the characterization of the Lemma 4.1: there exist an alphabet Z in-
cluding A, a function g included in Z* x Z* and complete on Z* and a morphism
h included in Z* x S* such that r = (nA*)g+h. We shall prove that (nA*)g+h is
equal to fif£h fc>r some ƒ1 G sS, f2 G tsS and f3 G Hsa.

The Figure 5 shows how a word is transformed through (nA*)g+'h.

\h \h \h |
W\

FIGURE 5. Génération of images through (nA*)g+h.

By the "Décomposition Theorem", we can find a letter-to-letter right sequential
function sr and a letter-to-letter left sequential function si such that the function
g is equal to srsi. Let (Z, Y, Q, /zr, Ar) be a right transducer which realizes sr. We
can suppose that the initial state go of that right transducer cannot be reached by
the other states. Thus, in a path, the state qo can only appear once, associated
with the rightmost letter.

A first subsequential function fi will mark the last letter of the words and will
associate to them the initial state of the right transducer. For all u G A* and all
y G A, uyfx =u(y,q0).

The second subsequential function is defined in such manner that its itération
realizes (s rs/)+ . The function ƒ2 simulâtes one transition of the right sequential
transducer, bringing the state on the left. When the state is on the first letter the
function ƒ2 applies the last transition of the right transducer and the left sequential
function. It is defined as follow:

for all (x, qo) E~Z xqo,_ (x, q0) f2 = (xsTsï, qo) = {x§> Qo),
for all uiz(x,qo) G Z+(Z x q0), Uiz(x,q0) ƒ2 = Ui(z,qf)xf

where x' = (qo,x)\r and qf = (qo,x)fir,
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for dl\uxz{x,q)u2y e Z+(Z x Q)Y*Y, uxz{x,q)u2y f2 = Ui(z, q')xfu2y
where xl = (q,x)\r and qf = (g,x)/ir,

for all (z, q)u2y G (Z x Q)y*F, (z, g)^2y /2 = v[ {y\ q0)
where v[y' = xfu2y si and xf = (q,x)\r.

The function /2 is is-sequential; it is sufïicient to delay the output of one letter and
to overtake the delay on the letter which brings the state. Let us note also that
a is-sequential function can associate the state qo to the rightmost letter because
this letter is marked.

Let us remark that vy = uxg implies v(y,qo) G u(x, qo) /2
+ and conversely

v(y>qo) ^ u(x,qo)f2 implies vy G uxg+. _
The last morphism ƒ3 is defined onZU(Zx q0) by xfz = xh and (x, go) ƒ3 = %h

for all x G Z.
The function f\ (resp. f2 and ƒ3) belongs to sS (resp. to tsS and to 7ïSa)-
The Figure 6 shows how a word is transformed through f\f2f%.
We can verify that r = (C\A*)g+h = hf2 h>
The following properties are equivalent:

wz G ux(nA*)g+h\
ux £ A+ and 3vy G Z+ such that vy G uxg+ = ux (srsi)+ and vyh = wz\
ux G A+ and 3vy G Z+ such that v(y, qo) G u(x, qo) f2 and v(y, qo) ƒ3 = wz;
wz G uxfif£f3.

If (e, e) does not belong to the transduction r, we can remove (e, e) from the
function ƒ1. D

In the previous proof, only the first function f± which marks the last letter,
is really subsequential. When the last letters of words are marked, we can use
ts-sequential functions rather than subsequential functions. We could easily prove
that (nx*x) sS = (nx*Jc).t8S.

In order to obtain a marked word, we can iterate £s-sequential functions. The
function which transforms ux G X+ into wï G 1 * 1 belongs to tsS tsS+ tsS, Then,
we could easily verify that UC{J:+) = tsS tsS+ tsS tsS+ Hsa- But we cannot
apply the techniques used in the proof of Lemma 4.3 to show that tsS+ tsS ts<S+ Ç
tsS tsS+ tsS. Nevertheless, we can prove the equality of the families UC(T+) and
UC{tsS+) as done in the next section.

6. TS-SEQUENTIAL FUNCTIONS

The Décomposition Theorem characterizes a function <p as the composition of
a right sequential function sr followed by a left sequential one si. Moreover, if tp
is included in Z* x Z* and complete on Z*, then each word (and thus any prefix
of any word) on Z* has an image through (srsj)n, for any n > 1.

We shall use this property in the proof of the following result. Instead of
marking the last letter of a word, we shall work on all his préfixes.
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UiU2..Un

h

In horizontal transitions, f2 simulâtes Àr and fir.
In vertical transitions, f2 simulâtes Àr and fir, followed by 5;.

u1u2..un-1(un,qQ) u1u2.-{un-Uq1)u
/
n

i/3

V21-V2n-l(V2n,qo) -J-L V2iV22--(.V2n-l, qi»)v'2n

1/3 1/3
w2 0

-u'

{v2i,qn-\

"u\n

FIGURE 6. Génération of the same images through

Proposition 6.1. The class UC(J7+) is equal to the class tsS tsS+ TLSa- That
means, a transduction r belongs to UC^J^) ij and only ij r — fif£ f3 for some
fi and ƒ2 in tsS and ƒ3 in TCSa -
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Proof. Obviously tsS tsS+ 7iSa is included in UC(tsS+) which is included in
UC(T+).

In order to prove the reverse inclusion, let us assume that a transduction r G
£/C(Jr

+) contains (e, e). All deterministic fonctions we will define, will contain
(e, e).

We use the characterization of the Lemma 4.1: there exist an alphabet Z =
{zi, Z2) •••) %k} including A, a fonction g included in Z* x Z* and complete on Z*
and a morphism h included in Z* x B* such that r = (C\A*)g+h. We shall prove
that (P\A*)g+h is equal to fif^fz for some / i € tsS> ƒ2 G tsS and ƒ3 £ 7^sa.

By the "Décomposition Theorem", we can find a letter-to-letter right sequential
fonction sr and a letter-to-letter left sequential fonction si such that the fonction
g is equal to srsi. Let (Z7 Y, Q, /xr, Ar) be a right transducer which realizes sr.

In order to realize #+, we shall work on 7-folds

The first component will memorize the initial word and will never be modified. In
the second one, we will make #+ as the itération (s rsj)+. But this itération will
act on the préfixes of u of length p 4-1 where p will grow from 0 to \u\ — 1. In the
third component, a word lp0 r will store the length p which is completely treated.
The fourth component stores the same information shifted to ]L?>+10r~1; it will be
used to define the domain of the final morphism (not defined on 0). The fifth
component contains the number of itérations of g which are done for the actual
length p-\-l. The sixth component will be used to the transmission of informations
such that the state reached in the right sequential transducer or the result of the
control of the counter... The seventh one will store the action in process. It will
be usefol to détermine from the first letter what kind of action is actually made:
simulation of the left sequential transduction or control of the counter...

We shall prove that, for all u in A*, ug+ is equal to uf1{f2i
Jr ƒ22 + ƒ23 + ƒ24)"1" ƒ3.

The fonction h is defined by ufx = [U,IA,0H, ÏO1"1"1,^1"1, Öo$H~~l, ÖoH] for
all u G A+. It is a length-preserving £s-sequential fonction.

The morphism / 3 is defined by (n(Z x Z x {1,0} x {1} x Z x
{$?})*)II2/i.

The fonctions f2i are defined below.
The transformation realized by the fonction ƒ21:

r] ƒ21

The fonction ƒ21 associâtes the state qo to the first letter which contains a 0 in the
third component. In parallel, it put the symbol sr in every seventh component of
the letters. The fonction ƒ21 is ts-sequential.
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The transformation realized by the function ƒ22 (which simulâtes the transitions
of the right sequential transducer sr):

with pi > 0, P2 > 0 and p = pi +
vPl G Z*1 and

1, ™, g p ^ " 1 , 5?+r] ƒ22

with p > 0 and up+r-i G YpZr~l.
The first case concerns the transitions (except the last) of the right sequential
transducer. The function ƒ22 simulâtes one transition: image of a letter, moving
of the state, on the left.

The second case concerns the last transition of the right sequential transducer
(image of the first letter); since the right sequential transducer has fmished, it also
put the symbol si in every seventh component of the letters. The function ƒ22 is
ts-sequential; it is sumcient to delay the output of one letter and to overtake the
delay on the letter which brings the state.

The transformation realized by the function ƒ23 (which simulâtes the transitions
of the left sequential transducer si):

= [u,
In the second component, the function ƒ23 stores the image of vp+i by the left
sequential transducer. In the fifth one, the counter is increased by one. In the
sixth one of the first letter, it put the $? ; this symbol will carry the information
of the counter check. In parallel, it put the symbol $? in every seventh component
of the letters.

The transformation realized by the function ƒ24 (which controls whether the
counter has reached the bound kp+1 and prépares the word for a new itération
of ff):

+ 1 ƒ24

with pi > 0, P2 > 0 and p = pi +P2 and wi G Zl

= [u,v, W . l ^ O ' 1 , zf ZiiiW-i. F 1 + 1 $> 2 + r 2 , hP, hP+r]
with

[u, v, F(T, V>+10r-\ >

[U, V, 1PÖP, lp + 1û r-1 , %ZkWr-l, ttP $Tf "S $?P+r]/24
= [u,v, F0 r , F+ 1 0 ' - 1 , zjzfciiv-i, ptrf ~\ $?

p+r]
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With Zi + Zk

= [u, V, lp0rj iî?~l~1Or~1, WpZWr—ij tt^$nttr~1) $? ]

[u, «, P(T, F + V - 1 , ™p+r, ttCttj, $?P+1 ƒ24

rJ
i$ rÖ^$?

P+r]/24

hp

[«, «, FOr, F+1O^-1, u;p+r, $ n f + - 1 , $ ?
p + r] /2 4

—- (7/ 7J 1 Pf]r

[u, v, iPOr,F+1or-\wp+r, f4p+r~\ hp+r] ƒ24

The first three transformations concern a symbol $ in the sixth component asso-
ciated to a symbol 1 in the third. In these case, the symbol $ is shifted on the
right. It keeps the mark ? while symbols Zk are in the fifth component; the mark
becomes n when a symbol is lower than zfc. The mark n means that the counter
has not reached the bound fcp+1.

The next three transformations concern a symbol $ associated to the first 0
in the third component. If the symbol $ is still marked by ? and if the symbol
Zk is in the fifth component, the counter has reached the bound &p+1. Then this
length of préfixes is completely treated and it must start the length p + 2. If the
counter has not reached the bound fcp+1, it must go on with the itération of g on
the second component. In the two cases the symbol $ must be brought back to
the first letter with the information "reset" or "next".

The next two transformations bring the symbol $r or the symbol 1^ back to
the first letter.

The last two transformations put the symbol ~qo for a new application of sr and
si. If the counter had reached the bound, the word u must be duplicate from the
first to the second component and the first 0 in the third and fourth component
must be changed into 1 to indicate the new length of préfixes to treat (it is not
necessary to put the counter to 0, remember that 0 = z£).

The function ƒ24 is ts-sequential; it is sufficient to delay the output of one
letter and to overtake the delay on the letter which brings the symbol $ in sixth
component.
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Now let us analyze the transduction A (ƒ21 + ƒ22 + ƒ23 + ƒ24)4h-
Using the définition of ƒ3, it is equal to

By studying the évolution of the third and fourth component which have the form
lp0 r and P + 1 0 r ~ \ we verify that it is equal to

/i(/2i + ƒ22 + ƒ23 + /24)+(n z* x z* x 1*0 x r x z* x {K, K, $y x $?)n2/i.

In the sixth component, when the symbol $ has appeared, it is only brought back
to the first letter. Thus it is equal to

A(ƒ21 + ƒ22 + ƒ23 + /24)+(n z* x z* x i*o x 1* x z* x {£;, t}f x $ï)n2/i.

The seventh component is different for each function. lts value is go'u' after f\.
Then we can only apply ƒ21 and its value will be Sr ,... The sixth component
needs the application of ƒ24 to belong to {$n, $r}(t*. Then the transduction is
equal to

A(/2iJ2+
2 /23/2

+
4)+(n z*xz*x 1*0 x r x z* x {KXW x $ ? ) I I 2 J » .

Now let us see some properties of the itération (ƒ21 ƒ22ƒ23ƒ24)"1"- We can verify
that, for any p > 0 and for any value of the counter cpt,

1 , c p W B H - 1 ^ M ] / 2 i
= [u, Vp+iWr-i, lP0r,lp+10r-1,cpt, f q0f-\ si"1]

(Let us remark that f^v+1 Iets the seventh component unchanged at sr and
Ï22V+1 is impossible since the seventh component has become si. Remember also
that Vp+\Sr is always defined)

= K (vp+l3r3i)Vr-U VO^l^O^^Cpt + 1,

where $a G { }
(Let us remark that f^ p + does not give a sixth component belonging to {$^, $r }fj*
and that vp+\srsi is always defined.)
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And the cycle can start again with the last application of ƒ24.
If the counter (cpt+1) is lower than | |Z| |P + 1

[U, Vp+xVr-uVO^ l^O'"1, Cpt, # ~ \ ÖOM] hx fU1 /23 fit2

K - i , lp0r. F + 1 0 r - \ cpt -f 1, ̂ tt1"1"1, 5oN]-

If the counter (cpt+1) is equal to

- [U) u, F + 1 0 - 1 , l*+ 2 0 r - 2 , 0 ,
So we have for all 0 < p < \u\ and for all 0 < i <

[u, «, P O - , F + V - \ 0, ̂ f l l - l-1 , g?l«l](/2i /2
P

2
+1 ƒ23 /2

24P+2)* ƒ21 /2°2
+1 ƒ23 /2

2!+ 1/ 2 !

where$Q G { C K

and, for all 0 < p < \u\ — 1

= [«, u, lP+iO*-1, F+ 2 0 r - 2 , 0 , ^Jt '" '-1 , ^ |

To sum up these properties and conclude, we have the following équivalences:

• v belongs to ufi(ƒ21 4- ƒ22 + ƒ23 + /24)+ƒ3

• v belongs to [u,u, 0^, ÏOH"1^, qS^~\ ^ M ] ( / 2 i f ^ z f ^ ^ R)U2h

where i2 = Z* x Z* x 1*0 x 1* x Z* x

• v belongs to

[«, u, l M - ^ , lH, 0, gffjl'""-1, ^W](/2i 421 ƒ23 / 2 t ' ) 2 ƒ21 /22
! ƒ23 / ^ '

w i t h 0 < i <

• v belongs to u(srsi)^h — ug+h.

We have proved that (C\A*)g+h is equal to ƒ1 (ƒ21 + ƒ22 + ƒ23 + Î2A)+h- Since the
alphabets of the domains are différents (due to the seventh component) and since
(e, s) belongs to each fonction, (ƒ21 + ƒ22 + ƒ23 + ƒ24) is a £s-sequential function.

If (e, e) does not belong to the transduction r, we can remove (e, e) from the
fonctions fu f2i and ƒ3. •

Using marked alphabet, we obtain:

Proposition 6.2. The class UC(T+) is equal to the class (f)X*) tsS+ HSa- That
means a transduction r belongs to UC(T+) if and only if r = (nX*)/+ / i for some
ƒ in tsS and h in 7ïsa.

Remark 6.3. The class (C\X*) tsS+ Hsa strictly contains the class (C\X*) ts<S+
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7. DETERMINISTIC CONTEXT-SENSITÏVE LANGUAGES

The context-sensitive languages are recognized by linear-bounded automata. A
linear-bounded automaton is sextuple M = (Q,X, Y, <$, ÇO^QF) where Q is the
set of states, X is the input alphabet, Y D X is the working alphabet, Ö is the
transition map included in (Q x Y) x (Q x Y x { — 1,0,1})} #o is the initial state
and QF is the set of final states.

A step in the récognition of a word is given by Ö:

• ubqav f—» uq'ba'v if (</, a', —1) E (#, a)<5, u, u G F*, a, 6 G Y;
-> uqfo!v if (ç^a'jO) € {q,a)S, uy v G Y*, a G Y;
> ua'q'v if (g', a', 1) G (ç,a)5, w, v G Y*, a G Y.

The language recognized by M is defined by itération of 8

L(M) = {u | qou i—> wqj for some w G Y* and g/ G Q F } •

A LBA is said to be deterministic if ||(#, a)S\\ < 1 for ail q in Q and a in Y.
We shall now establish a new characterization of the class of deterministic

context-sensitive languages in terms of itérations of functions.
Proposition 7.1. The class of deterministic context-sensitive languages is equal
to a*C/C(^r

+) where a is a letter.

Proof. We prove the equality by two inclusions: Proposition 7.3 and Lemma 7.5.
D

Lemma 7.2. Let g be a length-preserving rational function included in X* x Y*.
The language {[u,v] \ u G X*, v G ug+} belongs to CSdet-

Proof. Let X and X be marked alphabets built from alphabet X. These alphabets
will be used to distinguish the first and the last letters. In a fîrst time, we omit
the words having less than two letters.

We transform g into gm in such way that gm acts only on marked words and
preserves the marks.

We shall verify that L — {[u,v] u G XX*X, v G ug+} belongs to CS^et*
We shall define the transitions of a LBA which recognizes L. Starting from

a word [u, u], the LBA will iterate the function g on the first component. After
each application of g, the LBA will check up the contingent equality of the two
component s; when they are equal, the LBA goes into a final state and the word
[ii, v] is recognized.

Using the "décomposition theorem", a length-preserving rational function in-
cluding (ey e) is the composition of a letter-to-letter right sequential transduction
followed by a letter-to-letter left sequential transduction.

Since L contains only words having more than two letters, we may suppose that
(e,£) belongs to the function gm.

Sequential transductions being ts-sequential, a letter-to-letter transition is eas-
ily changed into a transition of deterministic linear bounded acceptor.
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We build the set of transitions of a LBA which recognizes L.
Transitions to go to the last letter: Va, f3 G X

Transitions for the right sequential transducer: Va G X

(çio, (a, a)) - • (g H , (y ,â ) , - l ) if (go,z)Ar = y and (qo,x)fiT = $*
(gli; (x, a)) -> (gxj-, (y, a), -1) if (g;, x)Xr = y and ($*, x)/j,r = qj
{qiù{x,à)) -> (<?20,(y,â),0) if (g;,z)Ar = y.

Transitions for the left sequential transducer: Va G X

($20, (à, à)) -> (g2*, (y, à), 1) if (g0, x)k = 2/ and (ç0, ̂ ) ^ = ^
(q2i,(x,a)) -> (g2j,(y,a),l) if (g^^A; = y and (qux)fii = qó

(q2iA%,à)) -> ($3o,(Ö,a),0) if (g^x)^ = ?/.

Transitions to return on the first letter: Va, j3 £ X

(930, (a,/3)) -*• (g30,(ût,y3),-l)i

Test of contingent equality, transition to the state qio in case of inequality: Va,

pex
(ç4o, (x> x)) -^ ($40, (i , i ) , 1)
($4o,(2c,ic)) -> ($40,(a;îa;),l)
($40, (i,*)) -^ (gF,(x,x),l)
(«40,(^0)) -*• 075o,(£,y),l) if a? ̂ 2/
(g40,(a:,y)) -^ ($50,(^,2/),!) if z ^ y
($40, (s, y)) -* ($io, (i,2/), 0) if x / y

It is easy to verify that
çoofa, v] - ^ [u\ v']qio(xf,y') iff w = u'x' and t; = v;y;.

K ^]gio(x', y') - ^ K , t/]$3o(ö"> Ö') iff «'i^m = u"^ '

and u'âi' e Î I * Ï .

K , ^]$3o(^, y") - ^ K*", « " Ö ' ^ F iff « " ^ = ^ y " .
Wfyf]q30(x",y") - ^ K ^ ' i f t o ^ ' . y " ) iff «"S" ^ t / ' i T

Thus the couple [u,v] is recognized if and only if there exists i > 1 such that
v = ugln. The language L belongs to C<Sdet-

The language {[?x, v] | v G ug+} also belongs to CSdeù we obtain it from the
language L by erasing the marks and adding the finite language {[u, v] | u G
X^1 andv eug+}. D

Proposition 7.3. The class CSdet is closed under C/C(Jr+).

Proof. The class C<Sdet is closed under length-preserving rational function; we
prove that it is also closed under iterated length-preserving rational function.
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Let L b e a language belonging to CSdet- Let g be length-preserving rational
function.

We have Lg+ — LIL^1(n{[u1v] \ v G ug+})Ü2- The language {[u,v] \ v G
ug+} belongs to CS det (Lem. 7.2). The class CS^et is closed under inverse of letter-
to-letter morphism, intersection and letter-to-letter morphism. Then the language
Lg+ belongs to C<Sdet- Û

When we want to produce context-sensitive languages, we can iterate a ts-
sequential function to simulate the deterministic LBA.

Proposition 7.4. For each deterministic context-sensitive language L Ç X*,
there exists a length-preserving ts-sequential function cp such that L — 2CV

Proof. Let L Ç X+ be an £-free context-sensitive language. There exists a deter-
ministic LBA — (Q} X, Y", ö, qo, Qf) which recognizes L.

Our purpose is to check whether a word u is in the language L. We shall
start from a word u and the itération of the ts-sequential functions shall check his
préfixes. For each prefix u\x of u there will exist some r € M such that

U\xu2
ifr ~ ^iML2iPr — U\XU.2 üuix € L

= ~u~ïxu2 if u\X $ L.

Let us remark that the récognition of a word (or a prefix of a word) by a LBA is
realized with a finite number of steps depending on the length of the word (the
prefix) which is treated, on the number of letters in the working alphabet and
on the number of states. Like in other proofs, we shail count by enumerating
all words written with an alphabet having enough letters to ensure us that all
reachable configurations in the LBA have been obtained.

The algorithm of récognition of the word u will be the following
s t a r t with xu2

while i t remains underlined l e t t e r s do
* prépare U±XU2 or üïxug i n order to t rea t the prefix u\x
* while not enough i t é ra t ions do
* * apply °ne t r ans i t ion of the LBA and increase the counter
* * control the counter of i té ra t ions
* check if the prefix i s recognized
* output the resu l t of the récognition u\xu2 or U\XU2 •

We shall use 5-folds [uixu^, V\yv2, counter, transmission, action).
The first component is the word u we want to test the récognition by testing the

récognition of the préfixes u\x. The second component will be the working memory
of the LBA using a fc-letters alphabet Z = Y U (Q x Y) U (Q x Y) U (Y x Q). The
words U\X and v\y_ have the same length. Thus the first underlined letter in the
second component points out the last letter of the prefix which is actually treated
and V2 will always be equal to u2- This underlined letter serves for end-marking
and allows the transducers to take one letter delay.
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The third component is the counter of itérations using the alphabet Z, the
fourth one carries informations like control of the counter or control of récognition
and the fifth one stores the action to do.

A first function g\ prépares the 5-fold. The value 0 of the counter is the

4|

xuggi = [zuixug, (go, z)mxu2,0, ^ , Z>l]

A second function Ç2 applies one transition of the LBA to the actually treated
prefix.

We use a slight modification in our notation. The transition function S is applied
in a context. The configuration ubqacvw is denoted by ub(q,a)cvw and can give
through 6 one of the following images: u(qf, b)a!cvw_, ub(q'', af)cvw_ or ubaf(q'', c)vw.
The letter c could be underlined, v being e. The rightmost application of ö on a
word u(q, a)w can also give a word u(q', af)w or u(af, qf)w if the transition indicates
a right move.

The LBA being deterministic, there is at most one transition to apply at any
time. The function 5 is completed in order to be the identity in all cases not
defined in the LBA.

The third function 53 controls the counter to know whether the LBA must go
on (counter < ||Z||lUlXl) or whether the récognition of the word has to be tested
(counter = I I

»2,«i|^,qrf,|lH,CFH]53 = W1XU2, v1yv1,cpt,
if cpt 6 Z<u^ZiZ* with z* ̂  zk.

The function g4 brings the result of this control back to the first letter.
u2,v1yv2,cpt,ft*$j,B\u\}gA = [u1xuï,v1yv1,cpt, f - 1 t « ^ + 1 , £H]

with i > 1 and 1^ e
, cpt, Ktful-\BM]g4 = [ulXU2,viyv2,cpt,^,L^]

^ | | 1 | | 2, cpt, j jM^M].

The function g^ tests whether u\x is recognized.

if

else.
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The fonction g^ brings back the information. If the prefix is not recognized, it
outputs the prefix wit h marked letters.

where % > 0 and a G {r,f}.
pt,r|tlul"1,Olul]g6 = mxug

[U1XU2, Viyv2, cpt, rtfM"1, O^]g6

Due to the sixth component which is different in each function, we could
verify that

X+(9l + g2 + g3 + 34 + <?5 + 96)+(nX+) = X+(g1(g2g3gi)+g5g+)+(nX+).

More precisely, for all u = Uixu2 G X*X_~*~ or u = ûîxu2 G X X + , we have

x| -

if z ^ K z | or j / ||Z|||U1XI or k ^ \mx\.

Then, starting with u} it suffices to use \u\ times this cycle and we obtain u if
u E L and ûiiu^ L. Thus L is equal to X+(<?i + g2 + 53 + 54 + #5 + #e)+(nX+).
If e belongs to L, we can add the couple (e, e) to the functions g{.

All functions are ts-sequential and the alphabets of their domains are distinct.
We can defïne the £s-sequential function tp = g\ + g2 + gs + g A + Qb + 96 • d

Lemma 7.5. For each deterministic context-sensitive language L} there exist a
length-preserving rational function g and a morphisrn h such that L — a*

Proof. Let L be a deterministic context-sensitive language included in X*. The
Proposition 7.4 shows that L = X* #+(nX*).

It is obvious that X* — a*^XlSuccJ^ = a*(na*)/^a;iSuccJ. Then L = a*T2 where
r2 = ( n a * ) / ^ ^ ^

The transduction T<Z belongs to UC{Jr+) — T F+ T and is included in {a}*xl*.
By Lemma 4.1, there exist a function g' and a morphism /i', such that r2 =
(na*)s'+/i ;. Thus L = a*gf+h'. D

8. DETERMINISTIC CONTEXT-SENSITIVE TRANSDUCTIONS

We define deterministic context-sensitive transductions as we have defined context-
sensitive transductions [9].

Définition 8.1. Let r be a transduction. The transduction r is a determin-
istic context-sensitive transduction if and only if there exist two letter-to-letter
morphisms (py ip and a deterministic context-sensitive language A such that r =
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In other words, the class of deterministic context-sensitive transductions is

Since the class of deterministic context-sensitive languages is defined in terms
of itérations of fonctions, we can easily prove the equality between the class of
deterministic context-sensitive transductions and the class UC{T+).

Proposition 8.2. The class of deterministic context-sensitive transductions is
equal to the class UC{F+). That means UC(T+) = H~J;{r\CSdet) Hsa.

Proof The equality is proved by two inclusions: Lemmas 8.3 and 8.4. •

Lemma 8.3. The class UC(F+) is included in 7i~a(nCSdet) 'Hsa-

Proof. Let o = fg+h e UC(F+). Let us suppose that a Ç X* x Y*.
The transduction r == p2{Ix, f)(Ix,g)+(Ix, h) belongs to UC(J:+).
The language X*r = {[u,t>] | v G ua} is a deterministic context-sensitive

language (Prop. 7.3).
The transduction a is equal to ü^ 1 (n X*T) II2 and belongs to Hj* (nCSdet) ^sa-

•
Lemma 8.4. The class TCj^(nCSdet) TLsa is included in UC(F+).

Proof. We mainly have to prove that intersection with a deterministic context-
sensitive language Ld X* belongs to UG{JF+).

By Lemma 7.5, we know that there exist a letter a and two functions f\ and ƒ2
such that L = a*/i~/2- Then the intersection with the language L is realized by
P2(Ix,Ka)(IxJi)+(Ixj2)(n({(x,x) | x G X})*)IIi which belongs to UC{T+).

A letter-1 o-letter morphism is a lengt h-preserving rational function and then
belongs to I7C(J7+); the inverse of a letter-to-letter morphism also belongs to
i7C(.7r+) (Lem. 3.7). Since UC{T+) is closed by composition, every deterministic
context-sensitive transduction belongs to [/C(^7+). •

We deduce from the Proposition 8.2 the following corollary:

Corollary 8.5. The class UC{T+) is closed by inverse.

The closure properties of the class CSdet allows us to state the next corollary.

Corollary 8.6. The class LrC(^r
+) is closed by intersection and différence.

9. CONCLUSION

We have studied the UC-closure of some classes of iterated functions. This study
states the kind of transductions we can obtain by iterating rational transductions.
It also gives characterizations of the family of context-sensitive languages and of
deterministic context-sensitive languages.

If a language L belongs to CS, there exist two letter-to-letter ts-sequential
functions gx and g2 and an alphabet Y such that L = a*(g\ + </2)+(ny*).
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If a language L belongs to CSdet, there exist a length-preserving ts-sequential
function g and a letter-to-letter morphism h such that L = a*g+h.

But the well-known problem of the equality between context-sensitive languages
and deterministic context-sensitive languages remains open.

We would like to thank Michel Latteux for supervising this work and his constant encour-
agements and help during the rédaction. We also thank Jacques Sakarovitch for useful
remarks on a previous version of this paper.
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