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CLOSURE UNDER UNION AND COMPOSITION
OF ITERATED RATIONAL TRANSDUCTIONS

D. StmproT! AND A. TERLUTTE!

Abstract. We proceed our work on iterated transductions by
studying the closure under union and composition of some classes of
iterated functions. We analyze this closure for the classes of length-
preserving rational functions, length-preserving subsequential functions
and length-preserving sequential functions with terminal states. All the
classes we obtain are equal. We also study the connection with deter-
ministic context-sensitive languages.

Résumé. Nous poursuivons notre étude des transductions itérées.
Dans cet article, nous étudions la cloture par union et composition de
quelques classes de fonctions itérées. Nous considérons les fonctions ra-
tionnelles, les fonctions sous-séquentielles et les fonctions séquentielles
avec états terminaux, et plus particulierement, celles préservant les
longueurs. Toutes les classes de transductions obtenues sont égales et
sont en relation étroite avec les langages contextuels déterministes.

AMS Subject Classification. 68Q45, 68Q42, 68Q70.

1. INTRODUCTION

The class of rational transductions, introduced by Elgot and Mezei [4] and
mainly studied by Nivat, Eilenberg and Schiizenberger [3,7,8], certainly constitutes
the best known class of transformations of languages. This class has good closure
properties (composition, union, inversion,...) and the main families of languages
are closed under rational transductions.

In language theory, some tools are defined in terms of iterations of processes
(Chomsky grammars, Lindenmayer systems,...). We can inquire about iterations
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of rational transductions. Iterating any kind of rational transductions is very
powerful. We restrict our study to length-preserving (1.p.) rational transductions.

In [9], we have studied the smallest class of transductions containing l.p. ra-
tional transductions and closed under union, composition and iteration (named
UClI-closure). We have found some equivalent representations of this family. For
instance, the following classes are equal: UCI-closure of l.p. rational transductions
(UCI(T)), UClI-closure of l.p. rational functions (UCI(F)), compositions using
one iterated l.p. rational transduction (77,7) and compositions using iteration
of two L.p. rational functions (F(F + F)+F).

In this paper, we study the class UC(F,) where F, denotes the class of iterated
length-preserving rational functions. We prove that FF,F is a representation
for this class (Sect. 4). Then we study UC(C,) for some subclasses C of rational
functions: subsequential functions (Sect. 5) and sequential functions with terminal
states (Sect. 6). We can prove that these three classes are equal: UC(F;) =
UC(SS+) = UC(tsS+).

In [9], we have seen the connection between context-sensitive transductions and
the class UCI(7). This is due to the generation of context-sensitive languages by
iterations of 1.p. rational transductions. We shall prove the same kind of properties
for deterministic context-sensitive languages: the class of deterministic context-
sensitive languages is equal to a*UC(F,) where a is a letter (Sect. 7) and the
class UC(F.) is equal to the class of deterministic context-sensitive transductions
(Sect. 8).

A part of this work has been already published as extended abstract in [5].

2. PRELIMINARIES

We assume the reader to be familiar with basic formal language theory (see [2,3]
for more precisions). The goal of this section is to fix notations and terminology.

2.1. WORDS AND LANGUAGES

For a finite alphabet X, we denote by ¥* the free monoid generated by X. The
neutral element of this monoid is the empty word, which is denoted by €. The size
of the alphabet ¥ is denoted by ||X|| and is equal to its number of letters. The
length of a word u is denoted by |u|. For a set S of words, alph(S) denotes the
alphabet of S, that is the set of letters which occur in S.

A language over ¥ is a subset of ¥*. The classes of regular, deterministic
context-sensitive and context-sensitive languages over 3 are denoted respectively
by Rec(E*), CSqes(E*), CS(Z¥).

Regular languages are recognized by finite states automata and context-sensitive
languages are recognized by linear-bounded automata (definition of LBA is given
in Sect. 7).
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Let ¥ be an alphabet which is the Cartesian product of n alphabets, ¥ =
X1 x Xax...X, (withn >1). A word u belonging to ©* = (X; x X2 X ... x X,,)*
will be denoted by u = [uy,ug, ..., us] where u; is the i-th component and belongs
to X7.

2.2. TRANSDUCTIONS

Now we give some basic definitions about transductions. A transduction is a
subset of X* x Y* where X and Y are two finite alphabets. For a word u, the set
of images of u by a transduction 7 is denoted by w7 and is defined by:

ur ={v | (u,v) €7}"

This definition is extended in a canonical way to languages: LT = {v | Ju € L
such that (u,v) € 7}.

For a transduction 7, the domain of 7, denoted by Dom(7), is the set of all
words which have an image by 7. The set of images of 7, denoted by Im(7), is the
language of words which have an antecedent by 7.

Dom(r) {u | 3v such that (u,v) € 7},
Im(r) = {v | 3u such that (u,v) € 7}-

A transduction T is called complete on X* if Dom(7) = X*.

The inverse of a transduction 7 is the transduction whose couples are the permu-
tation of first and second components of the couples belonging to 7. It is denoted
by 77t = {(v,u) | (u,v) € 7}.

The set of transductions has a structure of semigroup according to the compo-
sition operation:

Definition 2.1. Let 7 and ¢ be two transductions. The composition of 7 and o
is the transduction defined by:

7o = {(u,w) | Jv such that (u,v) € 7 A (v,w) € o} -

A transduction 7 from X* into Y* is rational if and only if it is a rational part
of X* x Y™ - that is a part built of finite sets of X* x Y* and using union, usual
concatenation and star operator. It is also the class of transductions which can be
realized by a finite transducer — that is a finite automaton where edges are labeled
by an input and an output word.

Formally, a finite transducer T' is a 6-uple (X,Y, @, 6, I, F) where X is a finite
alphabet called the input alphabet, Y is a finite alphabet called the output alpha-
bet, @ is a finite set of states, § is the transition function from @ x {X Ue} into
the finite parts of Q@ x Y*, I is the set of initial states included in Q and F is the
set of final states included in Q.

The transition function is extended to d. defined on @ X X* in its entirety. First
0. contains §. For each state g, we force (g, £)d, to contain (g, ). If (¢, z)d« > (¢, y)
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and (¢’,z')6 3 (¢, y’) then (g, zz')d, contains (¢”,yy’). For a given word u € X,
we say that u is transformed in v € Y™* if there exist an initial state g¢; € I and
a final state g5 € F such that (gy,v) € (g:,u)d«. The transduction 7 associated
with T is defined by:

r= U {wo)eX xY" | (g,9) € @,u)d}-

g €1, QfGF

The next theorem presents well-known closure properties of the class of rational
transductions (see [2] for detailed proofs of these properties).

Theorem 2.2. The class of rational transductions is closed under union, compo-
sition and inverse.

A transduction 7 is length-preserving if and only if for each couple (u,v) € T we
have |u| = |v|. In the remainder of the paper, we consider only length-preserving
transductions. The class of all length-preserving rational transductions is denoted
by 7.

A length-preserving transduction is letter-to-letter if and only if the transition
function ¢ is defined from @ x X into the finite parts of Q x Y. A class of letter-
to-letter transductions is denoted by Cy.

Let C and C’ be two classes of transductions. We denote by CC’ the class of
transductions obtained by composition of a transduction of C with a transduction
of C':

CC'={rr" | TeCAnT €C}:

Let C be a class of transductions. The class of all transductions whose inverses
belong to C is denoted by C~1:

Cl={f" | fecy

2.3. FUNCTIONS

A transduction 7 is functional if for each word « in Dom(7), ur contains exactly
one word. When we deal with a function 7 we will write ur = v instead of
ur = {v}.

The class of length-preserving rational functions is denoted by F.

The intersection with a language could be considered as a transduction which
is the identity on this language. Let L be a language over X*.

(ML) = {(u,u) | we L}

This transduction is obviously a length-preserving function. It is a rational func-
tion if and only if the language L is rational.
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Let £ be a class of languages. The class of functions which consist to an
intersection with a language of £, denoted by (NL), is defined by:

(NLy={r | 7= (NA) for some A€ L}-

There are no class of transducers associated to the class of rational functions.
Some restrictions can be made in order to introduce determinism in the transitions.
Subclasses of rational functions are thus defined.

In a left sequential transducer, the transition function ¢ is defined from @ x X
into @ X Y*. The usual presentation of left sequential transducers replaces the
transition function by a next state function g and an output function A. Formally,
a left sequential transducer is a 6-uple (X,Y,Q,qo, 1, A) where X is the input
alphabet, Y is the output alphabet, @ is the set of states, including a unique
initial state go, p is the next state function included in (@ x X) x @ and X is the
output function included in (@ x X) x Y*.

The next state function and the output function can be extended to @ x X* by
setting, for g € Q, v € X* and z € X,

(q7 8)/"’* =4q, (Q7 ux)l“"* = ((q’ ’U,),U,*), $)[1,,
(@) M =€, (g uz)A = (g w)A((g: w)pa), D).

For a given word u € X*, we say that u is transformed into v € Y* if (o, u) s« # 0
and (go, u)As = v.

Let us remark that all states are terminal.

A transduction is left sequential if there exists a left sequential transducer which
realizes it. The class of length-preserving sequential functions is denoted by S.

By the same way, right sequential transducers are defined. The input word is
then read from right to left (for more details, see [2,3]).

The ts-sequential transducers (sequential with terminal states) are defined by
adding a set of terminal states to the definition of left sequential transducers.

A ts-sequential transducer is a 7-uple (X, Y, Q, g0, QF, i, A) where QF is the set
of final states. A word u € X* is transformed into v € Y* if (go, u)u« € Qr and
(g0, u)As = v.

A transduction is ts-sequential if there exists a ts-sequential transducer which
realizes it. The class of length-preserving ts-sequential functions is denoted by tsS.

Subsequential transducers are defined by adding a final state function p included
in @ x Y*. We don’t need QF anymore; if a state is not final, its output will be
empty.

A subsequential transducer is a 7-uple (X, Y, @, qo, i, A, p) where p is the final
state function. A word u € X* is transformed into vw € Y* if v € Y* if (qo, u) s #
0, (g0, u)Ae = v and ((go, u)ps)p = w.

A transduction is subsequential if there exists a subsequential transducer which
realizes it. The class of length-preserving subsequential functions is denoted by sS.
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2.4. MORPHISMS

A morphism ¢ is a rational function that satisfies the conditions e = € and
(uv)p = (up)(vy) for every words u,v. Hence, the morphism ¢ is completely
defined by the values ap of the letters a € Alph(Dom(y)). The morphism ¢ is
called letter-to-letter, if for each a € Alph(Dom(y)) we have |ap| = 1. The class
of letter-to-letter morphisms is denoted by Hs,.

In our proofs, we shall use several particular kinds of morphisms. For an ar-
bitrary alphabet A, the identity over A* is denoted by I4 — notice that Iy =
{(u,u) | u € A*} is equivalent to the intersection with A* which is denoted
by (NA*). When we consider an alphabet ¥ which is the Cartesian product of n
alphabets, ¥ = X; x X3 X ... X, (with n > 1), the morphism II;, with 1 <7 <n
is the projection onto the ith component.

In our proofs, we shall also use:

e morphisms p, which transform any letter z in a n-fold (z,z, ..., x);

e morphisms d(;, 4,,...,i,) Which transform any n-fold (z1,x2, ..., z,) in a n-fold
(@iy s Tigy s Ty ) With 1 <45 <y

e morphisms x, which transform every letter a in a letter z.

We shall fit the domains of these morphisms for the contexts.

2.5. ITERATIONS OF RATIONAL TRANSDUCTIONS

First, we give a formal definition of iterated transductions.

Definition 2.3. Let 7 be a transduction. The iteration of 7, denoted by 77, is
the transduction defined by:

= Uri,

where 7° is defined inductively by 7! = 7, 7"t = 777 for n > 0.

For a given class of transductions C, we denote by C; the class of iterations of
transductions of C:

Cy={rt | T€C}

Thus, 7, denotes the class of iterated length-preserving rational transductions and
F. denotes the class of iterated length-preserving rational functions.

2.6. UCI-CLOSURE OF LENGTH-PRESERVING RATIONAL TRANSDUCTIONS

Definition 2.4. For a given class of transductions C, the class UCI(C) is the
smallest class of transductions which contains C and is closed under union, com-
position and iteration.
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Definition 2.5. The class UC(C) is the smallest class of transductions which
contains C and is closed under union and composition.

It is well known that the class of (length-preserving) rational transductions is
closed under union and composition. Thus UC(7) = 7. It is obvious that the
iteration of a length-preserving rational transduction is not necessarily a rational
transduction. Thus UC(7,) # 7.

The UCI-closure of length-preserving rational transductions was studied in [9].

We obtain the following characterization:

Theorem 2.6 (Representation theorem). Let T be a transduction. The following
properties are equivalent:

1. the transduction T can be defined by using union, composition and iteration

of length-preserving rational transductions (re UCI{T)),
2. there exist three length-preserving rational transductions o1, oo and o3 such
that T = 0104 03 (reTTyT),
3. there exist two length-preserving rational transductions o1 and o3 and a one-
step transduction oy such that T = 0105 03 (reTOLT),
4. there exist two letter-to-letter morphisms ¢ and 1 and a context-sensitive
language A such that 7 = p~1(NA)Y (r € Tes),

5. there exists a recognizable picture language L such that 7\ {{e,e)} = 71,

(T S TR&C(LF)):
6. the transduction T can be defined by using union, composition and iteration

of letter-to-letter ts-sequential functions (T € UCI(:sSu+)),
7. there exist four letter-to-letter ts-sequential functions o1, o2, 03 and o4 such
that 7 = o1 (0'2 -+ 0’3)+J4 (7‘ € tsSll(tsSu -+ tsSll)+tsSll).

In this paper, we shall study UC(C4) for different classes of length-preserving
rational functions.

3. SOME REMARKS

Remark 3.1. The classes of length-preserving transductions are included as fol-
lows Hsa gsgtsSll gtssgssgng

Length-preserving sequential functions are letter-to-letter. Letter-to-letter sub-
sequential functions are ts-sequential.

In this work, we shall try to obtain the results for the smallest classes of trans-
ductions.

Remark 3.2. The class 7 is included in the class UC(7}) but not in 7.

Indeed, when the image of a transduction uses the same alphabet as the domain,
we cannot forbid the iteration of the transduction. But, using disjoint alphabets,
we can use composition of two iterations in order to simulate a transduction. Thus
the class of length-preserving rational transductions is included in 7;7,. For
instance, let us take the transduction which transforms a™ into b" and transforms
b™ into a™. A single application changes a™ into 6™ and reversely. But a second
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application allows a™ to be the image of a™. We can define a first transduction
which transforms a™ into b, b™ into @* and is undefined over {@,b} and a second
one which transforms b~ into b™, @ into a™ and is undefined over {a,b}. The
iteration of the first transduction followed by the iteration of the second is equal
to the initial transduction.

This remark also holds for the class of rational (subsequential, ts-sequential or
sequential) functions.

The same remark makes also the equality UCI(7T) = UC(T;) obvious.

Remark 3.3. If two length-preserving rational functions have disjoint domains,
their union is still a rational function.

The union of two length-preserving subsequential (¢s-sequential, sequential)
functions whose domains alphabets are disjoint, is a subsequential (ts-sequential,
sequential) function.

For instance, let fi (resp. f2) be the function which transforms a?” into 52"
(resp. a®* ! into ¢®™~1) for all n > 1. These two functions are ts-sequential. The
union f; + fo is a rational function but not a subsequential one.

Definition 3.4. A rational function f is called complete on X* if Dom(f) = X*.

Remark 3.5. Let f be a length-preserving rational function included in X* x Y*
and containing (e, €).

Let Z = X UY U {o}, where ¢ is a new special letter.

There exists a length-preserving rational function g, included in Z* x Z*, com-
plete on Z* such that f = g(NY™*) and f* = gt (NY™).

We just have to define g on Z* by ug = uf when u € Dom(f) and ug = o/
when u ¢ Dom(f).

Let us note that, for any v € Z* and all n € N, u € Dom(g").

Let us note also that, if u € Z* o Z* then ug = o/l and ugt = ol¥l.

In order to have the same property (f = g(NY™*) and f* = gt (NY™*)), we
could associate a complete length-preserving subsequential (resp. sequential) func-
tion ¢ to a length-preserving subsequential (resp. sequential) function f, but
not a complete length-preserving ts-sequential function to a length-preserving ts-
sequential function. When dealing with length-preserving transductions, complete
ts-sequential functions are sequential functions and length-preserving sequential
functions are letter-to-letter.

For instance, let f be the function which transforms a?” into 52" for all n > 0.
This function is ts-sequential. We could define a complete subsequential g which
transforms a®” into 52" and a?*! into b*"o for all n > 0. Thus we have the
property f = g(Nb*). But we cannot define a complete length-preserving ts-
sequential function having the same property.

Let ¥ be an alphabet which is the Cartesian product of n alphabets. We
shall define a function which will be equivalent to n functions working on each
component of n-folds. Let f;, for 1 > i > n, be functions included in X} x Y;*.
Then (fi1, f2, ..., fr) will denote the function f with Dom(f) = Dom(f;) x Dom(f2)
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X... X Dom(fr) N (X3 x Xo X ... x X,,)* defined by uf = [u1f1,u2f2, ..., Unfn], for
all u = [ug, U, ..., un] € Dom(f).
When the n functions are rational, the function thus defined is still rational.

Remark 3.6. Let 7 be a length-preserving rational transduction included in X* x
Y*. Let k = || X||. For all u € X*, we have uft = {uf® | 0 <i < kl“}.

The set uf™ is included into X!l which is a finite set having k*| elements.

We often need to count the number of iterations in order to limit them to k!“l.
We also need to enumerate all the words having a certain length. We can count
from 1 to k'l by enumerating all the words of length |u| built from an alphabet
of k letters.

Let X be the alphabet {z1, %2, ..., 21 }.

We define the function Succy which transforms a word into its successor of same
length in the “mirror” lexicographical order. By “mirror” lexicographical order, we
mean that the words are ordered reading from right to left. For instance, using the
alphabet {21, 2, z3}, the words are ordered as follows 12121 <jezx T2Z1Z1 <iex
T3T1Z1 <lex T1T2T1 <lez T2TL2X1 <lex T3T2T1 Kiex T1T3T1 <lez - <lex T3T3T3

The function Succx is defined by the following transducer.

xj/xj+1
4 & forall 1 <j <k
9 U foralll <i<k.

Tr /%1 T/

The function Succx thus defined is a length-preserving sequential function. It is
complete on X*; in particular 27 Succx = z7.

We can easily prove that a classical class of rational transductions which are
not functions are obtained by iterations of functions.

Lemma 3.7 (Simplot and Terlutte [9]). The class H;, of inverses of letter-to-
letter morphisms is included in UC(Fy). Moreover, it is included in the class
§8:S.

Proof. Let h be a letter-to-letter morphism included in X* x Y*. Let X}, be the
alphabet defined by X}, = {(zh,z) | z € X}. Let k= || X]|.

Let us consider a word u for which we want the images through h~!. We shall
put v in the first component and enumerate all the words of X!*! into the second
component in order to verify whether or not the couples belong to X;.

Let f1 = (NY*)pa(ly, kzy)-

Let f = (Iy,Succx).

Let f3 = (NX})1,.

We verify that h=! = f1 £, f5.
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For all u belonging to Y*, we have

ufifffs = [wal)f5 s
= A{[u,v] | ve X" and |u| =|v|}fs
= {Ju,v] | ve X" and u=vh}ll,
= wuhl

]

After iterations of functions, we shall study iterations of subsequential and itera-
tions of ts-sequential functions. The “decomposition theorem” [1,3,4, 8], charac-
terizes rational functions by using sequential functions.

Theorem 3.8 (Decomposition Theorem). Let ¢ be a function including (e,¢).
The function ¢ is equal to s,.s; where s, is a right sequential transduction and
s1 is a left sequential transduction.

Let us remark that the right sequential function can always be chosen length-
preserving (then letter-to-letter). When the function ¢ is length-preserving, the
left sequential function is then length-preserving for the words belonging to the
image of the right sequential function, but not necessarily for the whole domain.

It is known [3,6] that a length-preserving transduction is the composition of an
inverse of letter-to-letter morphism, an intersection with a rational language and
a letter-to-letter morphism. Using this property in the proof of [1], it is immediate
that the left sequential function s; can also be chosen letter-to-letter.

Theorem 3.9 (Decomposition Theorem for length-preserving functions). Let ¢ be
a length-preserving function including (,€). The function ¢ is equal to s,s; where
sr 18 a letter-to-letter right sequential function and sy is a letter-to-letter left se-
quential function.

In the decomposition theorem, the first sequential function read the word from
right to left. We shall see that we can simulate a right sequential function with
iterations of ts-sequential functions.

4. USE OF ONE ITERATION OF A RATIONAL FUNCTION

We first study some properties of the class 7 F4 F in order to prove that this
class coincides with the class UC(Fy).

Lemma 4.1. Let 7 be a length-preserving transduction belonging to F Fi F,
included in A* x B* and containing (e, ¢).

There exist an alphabet Z including A, a function g included in Z* X Z* and
complete on Z* and a morphism h included in Z* x B* such that T = (NA*)g*h.

Proof. Let 7 = fiff fs with f; C A} x Bf. We can suppose that A C A; and
B C Bs. Let Zy = (U;»g:lAi) U (nglBi)-
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The functions f; are included in Z§ x Z§. Let Z = ZyUo. Using Remark 3.5, we
can define functions g; included in Z* x Z*, complete on Z*, such that f; = g;(NZY)
and f;" = gf(nZg).

Thus 7 is equal to f1f5 f3 = g1(NZg) g3 (NZ3)gs(NZg).

In the Remark 3.5, the functions are built in such manner that ug; = uf; €
Z§ C Z* if w € Dom(fy), ug; = o if u & Dom(f;) and ol*lg; = ol*l. Thus we
have 7 = g194 g3(NZg). The transduction g;g5 g3 is included in Z* x Z* and is
complete on Z*. Since Dom(7) is included in A*, the transduction 7 is also equal
to (NA*)g195 95(NZg).

We define

1 = (NA%)p2(9192, 919293)

w2 = (N(Z x Z)*)6(1,1)(92, 9293)

W = (NZ2).

We shall verify that 7 = (NA*)g194 93(NZY) is equal to (NA*) (1 + w2) T 1.

Let us first remark that the function ¢ is included in A* x (Z x Z)* and is
complete on A* and the function s is included in (Z x Z)* x (Z x Z)* and is
complete on (Z x Z)*.

For all uw € A*, for all n > 1, we have

u(pr +2)" 1 = uprph
= [ug192,ug19293)(6(1,1)(92, 9293))" T2 (NZ§)
= [ugr93,ug195 93] T12(NZ5)
= ug1g393(NZ3).

The functions ¢; and ¢, have disjoint domains (excepted on £ which is transformed
in £ by both functions), thus the union ¢; + 2 is a function.

The function ¢ +¢s2 is included in (AU(Z x Z))* x (Z x Z)*. Using Remark 3.5,
we can define ¢, included in Z7 x Z7, complete on Z7 O (AU(Z x Z))*, such that
(p1 +w2)t = *(N(Z x 2)").

Thus 7 = (NA*)pty where ¢ = (N(Z x Z))12(NZ§) = (N(Z x Zo)*)1; is a
morphism on the alphabet Z x Zj. Od

Lemma 4.2. The class F F F is closed under union.

Proof. Let 71 and 75 belonging to F F, F. We shall first suppose that (e, ¢)
belongs to 71 and 7. Let A} x B and A% x B3 be monoids in which the trans-
ductions 7; and 79 are respectively included. Then they are respectively included
in A* x B} and A* x B; where A = A; U As.

By Lemma 4.1, there exist an alphabet Z; D A, a function g; included in
Z¥ x Z{ and complete on Z7 and a morphism h; included in Z7 x Bf, such that
T = (ﬂA*)gfhl‘ Idem for 75.

Let us show the construction on a diagram. The Figure 1 shows (NA*)g; h1
+(NA*) g3 ha.
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( A ) V11 g1 V12 g1 V13 9 V14 91
nA* g1
l h1 l h1 1 hl l hl
U w11 w12 w13 w14
(NA*)g2
V21 92 V22 92 V23 92 V24 g2
1 ho 1 ha 1 ha l ha
w21 w22 we3 w24

FIGURE 1. Generation of images through (NA*gi h1) + (NA*gs hs).

In order to simulate 71 + 72 = (NA*)(g; k1 + g5 h2), we shall use triplets.
The transduction 7 will act on the first component and 75 on the second. The
transductions 7 and 79 will act alternatively, according to the third component
as shown in Figure 2.

u

U, U, 1 _g» V11, U, 2 _g* 11, V21, 1 _g, V19, V21, 2 __g_. Vi2,V22,1 o ...

lh lh lh lh

w11 w21 wi2 W22

FIGURE 2. Generation of the same images through fg+h.

Let f = (NA*)ps(la, 14, K1).

This function replicates the initial word and transforms the third component
in 1 (in fact 1/%1).

Let g = (O(Zl X Zy X 1)*)<g1,fzz,f€2> + (ﬂ(Zl X Zog X 2)*)<Izl,gz,1€1>.

This function applies g; to the first component when the third is 1; it applies
g2 to the second component when the third is 2. It also transforms 1 in 2, and
conversely 2 in 1 in the third component. The function g; being complete on Z7
and the function go being complete on Z3, the function g is included in ((Z; x
Zo X 1)* X (21 x Za x 2)* YU ((Z1 x Z3 x 2)* x (Z1 X Z3 x 1)*) and is always defined
on (Zy x Za x 1)* U (Zy X Zy x 2)*.

Let h = (ﬂ(Zl X g X 2)*)(H1h1) + (O(Zl X Zo X 1)*)(1-[2}7,2).

This function selects the first component and applies h; when the third is 2; it
selects the second and applies Ay when the third is 1.

We shall prove that 71 + 72 = fgTh.
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For all v € A*, for all n > 0, we have
) 3

wfg?tth = [u,u, 1] g?1p
= [ugF,ugz,1™gh
— ugl ™ ugf, 2

= ug?‘th.
For all u € A*, for all n > 1, we have

ufg®*h = [u,u, 1'“1] g*"h
= [ug},ugy*,2"gh
= {ug?,ug;‘,llul]h

= ugghg

If (e, €) belongs neither to 7 nor 72, it would be removed from the functions f, g
or h. O

Lemma 4.3. The class F F4 F is closed under composition.

Proof. Let 71 and 7o belonging to F F; F. We shall first suppose that (e,¢)
belongs to the transductions 73 and 75. Let A} x Bf and A3 x B3 be monoids in
which 7 and 7o are respectively included.

By Lemma 4.1, there exist an alphabet Z; D A;, a function g; included in
Zt x ZF and complete on Z7 and a morphism h; included in Z} x B7, such that
71 = (NA})g; hy1. Idem for 7o.

Then 7172 is equal to (NA})gy h1(NA3) g he.

The transduction hy(NA%)gs he belongs to F F, F, then we can apply
Lemma, 4.1 again. The transduction h;(NA%)gs hs is included in Z7 x Bj. There
exist an alphabet Z3 O Z;, a function g3 included in Z3 x Z3 and complete on Z3
and a morphism hj3 included in Z§ x B3, such that hi(NAS)gs he = (NZ])g3 hs.

Then 7172 is equal to (NA})gy (NZ)gF hs = (NAT) gy g5 ha.

We only have to prove that g7 g[{ belongs to F Fy F.

Let us show the construction on diagrams. The Figure 3 shows how a word is
transformed through g7 g5 .

As noticed in the Remark 3.6, ug® = {ug* | 0 < i < kl“I} where k is the
size of the alphabet used in g. Hence, the length of an horizontal iteration can be
bounded by kI*!. We count from 1 to k'*! by enumerating all the words of length
|| built from an alphabet of k letters.

We shall use triplets. The function ¢g; will act on the first component. For each
word in the first component, we shall generate its images by the iteration of the
function g3 on the second component. The third component will count the number
of actions of g3 in order to know when we can generate a new image in the first
component. The Figure 4 shows how will act fgTh on these triplets.
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Vo
g1

U1 93 W11 93 Wiz ﬁ» w13 —gi>

g1

ve B we 93, woy _ 93, wys 93

9
vs3 g3 ws, 93 was 93 wag 93
g1
FIGURE 3. Generation of images through g; g1 .
Let k = “Z3“

Let f = (mZT)p3<IZ1 ) IZl ) nzk)'

This function triples the starting word if it belongs to Z;. Then it put z; in the
third component.

Let g = (NI1)d(1,1,3)(91,9193, Kz,) + (M03 \ T7)(Iz,, 93, Succz,) where Ty =
Zl X Z3 X {Zk} and FQ = Zl X Z3 X Z3.

When the third component belongs to zj, the function makes a step in the iter-
ation of g1 (in the first component) and start that of g3 (in the second component).
The iteration of g3 will be repeated k*l — 1 times. In order to count the iterations
of g3, we start with a word in 2] and we shall use the function Succz,.

When the third component does not belong to z,’j, the function makes a step
in the iteration of g3 in the second component and increases the third component.

Let h = Hg.

We shall prove that g;" g5 = fg™h.

For all uw € Z7, for all n > 1, we have

ufg™h = ugt g} with i = (n — 1)div k™) + 1 and j = ((n — 1)mod kI*!) + 1.

If (e,¢e) did not belong to 71 or 7o, it would be removed from the functions f, g
or h. 0
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Vo ‘f

Vo, Vo, k' where | = ||

v1, W11, 1 _9., VU1, W12, 2 9. V1, Wis, 3 9.

| | I

w11 w12 w13

va,war, 1 9, wo,we2,2 9, wg,was,

I lh lh lh

Wa1 w22 w23 Wapt

3 _‘g, .......... _‘g vg,w%z,k‘l

FIGURE 4. Generation of the same images through fg*h.

Using these two lemmas, we can give a characterization of the class UC(Fy).

Proposition 4.4. The class UC(F..) is equal to the class F F4 F. That means,

a transduction T belongs to UC(Fy) if and only if 7 = f1f5 fs for some fi, fo
and fs in F.

Proof. The class of length-preserving rational functions is included in Fy F,
(same arguments than in Rem. 3.2). Then we have 7 C UC(F) and F Fy F C
UC(Fy).

On the other hand, the class 7 F; F includes F; and is closed by union and
composition (Lem. 4.2 and Lem. 4.3) then the class F F F contains UC(Fy). O
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5. SUBSEQUENTIAL FUNCTIONS

We shall improve the characterization of the class UC(F,.).

Proposition 5.1. The class UC(F,) is equal to the class sS S+ Hso = UC(sS4).
That means, a transduction T belongs to UC(Fy) if and only if 7 = f1fS f3 for
some f1 and fa in sS and fs in Hsq.

More precisely, the proof shows that UC(F1) = sS tsSy Hsa.

Proof. Obviously sS sSy Hsq is included in UC (sS4 ) which is included in UC(Fy.).

In order to prove the reverse inclusion, let us assume that a transduction 7 €
UC(F,) contains (g,e). All subsequential functions we will define, will contain
(g,€).

We use the characterization of the Lemma 4.1: there exist an alphabet Z in-
cluding A, a function g included in Z* x Z* and complete on Z* and a morphism
h included in Z* x B* such that 7 = (NA*)g+h. We shall prove that (NA*)g*h is
equal to f1f; f3 for some fi1 € S, fa € tsS and f3 € Hsq.

The Figure 5 shows how a word is transformed through (NA*)g*h.

WOAY 9 9 9y, 9
h lh lh lh
w1 wa w3 Wy

FIGURE 5. Generation of images through (NA*)g™ h.

By the “Decomposition Theorem”, we can find a letter-to-letter right sequential
function s, and a letter-to-letter left sequential function s; such that the function
g is equal to s,s1. Let (Z,Y,Q, ur, \r) be a right transducer which realizes s,. We
can suppose that the initial state gg of that right transducer cannot be reached by
the other states. Thus, in a path, the state gy can only appear once, associated
with the rightmost letter.

A first subsequential function f; will mark the last letter of the words and will
associate to them the initial state of the right transducer. For all w € A* and all
ye A> ny1 = u(@)QO)‘

The second subsequential function is defined in such manner that its iteration
realizes (s,s;)*. The function f, simulates one transition of the right sequential
transducer, bringing the state on the left. When the state is on the first letter the
function fo applies the last transition of the right transducer and the left sequential
function. It is defined as follow:

for all (Z,q0) € Z x qo, (T, q0) f2 = (331, 90) = (TG, qo0),

for all u12(Z,q0) € ZT(Z % qo), u12(T, qo) fo = u1(z,¢ )T

where ' = (go, )\ and ¢’ = (qo, Z)r,
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for all u1z(x, q)usy € Z+(Z x Q)Y*Y, u12(z, QJuay fo = u1(z, ¢’ )z u2y
_ where 2’ = (¢, )\, and ¢’ = (q,2) i,
for all (z,q)u7 € (Z x Q)Y*Y, (z,Qu2y f2 = v{(¥', q0)

where vy’ = 2'usy s; and 2’ = (g, z)A,.

The function f; is ts-sequential; it is sufficient to delay the output of one letter and
to overtake the delay on the letter which brings the state. Let us note also that
a ts-sequential function can associate the state go to the rightmost letter because
this letter is marked.

Let us remark that vy = uxg implies v(¥,q) € u(Z,q) f and conversely
(9, 90) € w(T,qo) f implies vy € uz g™

The last morphism f3 is defined on ZU (Z x qo) by xf3 = xh and (T, qo) fa = zh
forallz € Z.

The function f; (resp. f2 and f3) belongs to sS (resp. to ¢S and to Hs,).

The Figure 6 shows how a word is transformed through f; f2+ f3-

We can verify that 7 = (NA*)gth = f1 £ fa.

The following properties are equivalent:

wz € uz (NA*)g™h;
uz € AT and vy € Z* such that vy € uz gt = uz (sr5;)" and vy h = wez;
uz € AT and Juy € Z* such that v(7, g0) € u(T, ) fof and v(T, qo) f3 = wz;
wz € uz fify fa.
If (e,e) does not belong to the transducmon T, we can remove (g,¢) from the
function fi. O

In the previous proof, only the first function f; which marks the last letter,
is really subsequential. When the last letters of words are marked, we can use
ts-sequential functions rather than subsequential functions. We could easily prove
that (NX*X) sS = (NX*X) tsS.

In order to obtain a marked word, we can iterate ts-sequential functions. The
function which transforms uz € X7 into uZ € X*X belongs to ¢sS sS4 tsS. Then,
we could easily verify that UC(F;) = ¢S sS4 tsS tsS+ Hse. But we cannot
apply the techniques used in the proof of Lemma 4.3 to show that sS4 ¢sS tsS4 C
tsS tsS4 tsS. Nevertheless, we can prove the equality of the families UC(F,.) and
UC(1sS4) as done in the next section.

6. TS-SEQUENTIAL FUNCTIONS

The Decomposition Theorem characterizes a function ¢ as the composition of
a right sequential function s, followed by a left sequential one s;. Moreover, if ¢
is included in Z* x Z* and complete on Z*, then each word (and thus any prefix
of any word) on Z* has an image through (s,s;)™, for any n > 1.

We shall use this property in the proof of the following result. Instead of
marking the last letter of a word, we shall work on all his prefixes.
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ULUS.. Uy, In horizontal transitions, fo simulates A, and p..
A In vertical transitions, fo simulates A, and u,., followed by s;.
UIU2. . Un—1(Un, Qo) i, U U2 (Un—1, Q1) U, _ff ..... _J_c.z (u1, Gr—-1)uy..ul,
l ! l f3
) ¢
fe
Ul1~-v1n—1(Uln,QO) —f2> U117)12--(v1n—1,(I1')U{n—f>2 ----- __ff (1111,%—1')1)12--113”
l f3 l f3 l f3
wy 0 (Z)
fa
U21~-’U2n—1(vzn,QO) -—f2> U211)22~~(U2n—1aQ1")U§n —f% __fz (U21aQn—1”)Ul22--U§n
l f3 l f3 l f3
w2 0 0
f2

FIGURE 6. Generation of the same images through f1 f5 fs.

Proposition 6.1. The class UC(Fy) is equal to the class tsS tsSy Hso. That
means, a transduction T belongs to UC(Fy) if and only if T = f1f f3 for some
f1 and fa in tsS and f3 in Hsg.
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Proof. Obviously ¢sS tsS+ Hse is included in UC(:sSy+) which is included in
UC(F,).

In order to prove the reverse inclusion, let us assume that a transduction 7 €
UC(F4) contains (g,e). All deterministic functions we will define, will contain
(e,€).

We use the characterization of the Lemma 4.1: there exist an alphabet Z =
{#1, 22, .-., 2k} including A, a function g included in Z* x Z* and complete on Z*
and a morphism A included in Z* x B* such that 7 = (NA*)g*h. We shall prove
that (NA*)gth is equal to f1f5 f3 for some fi € tsS, fo € tsS and f3 € Hsq.

By the “Decomposition Theorem”, we can find a letter-to-letter right sequential
function s, and a letter-to-letter left sequential function s; such that the function
g is equal to srs;. Let (Z,Y,Q, ur, Ar) be a right transducer which realizes s,.

In order to realize g%, we shall work on 7-folds

[u7 'Up-l—l'U’r‘—la 1p0r’ lp+lQT_17 Cpt7 w, 05]

The first component will memorize the initial word and will never be modified. In
the second one, we will make g* as the iteration (s.s;)™. But this iteration will
act on the prefixes of u of length p + 1 where p will grow from 0 to |u| — 1. In the
third component, a word 1P0" will store the length p which is completely treated.
The fourth component stores the same information shifted to 170" 1; it will be
used to define the domain of the final morphism (not defined on 0). The fifth
component contains the number of iterations of g which are done for the actual
length p+1. The sixth component will be used to the transmission of informations
such that the state reached in the right sequential transducer or the result of the
control of the counter... The seventh one will store the action in process. It will
be useful to determine from the first letter what kind of action is actually made:
simulation of the left sequential transduction or control of the counter...

We shall prove that, for all u in A*, ug™ is equal to wfi(f21+ foz + foz + faa) ¥ f3.

The function f; is defined by ufy = [u,u, 04, 101 2z, lul ggglul-1, %""'] for
all u € A*. It is a length-preserving ts-sequential function.

The morphism f3 is defined by (N(Z x Z x {1,0} x {1} x Z x {E,(ﬁ,ﬂ} X
{$2))")Ilzh.

The functions fa, are defined below.

The transformation realized by the function fo;:

[U’a v, 1p0r’ lp—l—lgr—l, w, %ﬂp+r_17 —q—0>p+'r]f21
= [u,v, 1707, 1PF10" ", w, fPqofi™~t, s27].

The function fo; associates the state gg to the first letter which contains a 0 in the
third component. In parallel, it put the symbol s, in every seventh component of
the letters. The function fo; is ts-sequential.
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The transformation realized by the function fa; (which simulates the transitions
of the right sequential transducer s,):

[, Vpy 2Upy -1, 1P07, 1PHIQ7 7 ap, fP1 gffP2 71 54T o
= [U, 'Um ((Q1 Z),u"l‘)’UP2+'I‘—1a 1;707" lp+lg7‘—1, wi ﬂpl_l((q) z))\r)ﬂp2+r, S$+T]
with p; >0, p2 > 0 and p = p1 + p2,
Up, € ZP' and vp,4r—1 € YP2Z771

[u, 20p4r—1, 1707, IPTHO" 1, w, gfPH7 1, S2HT) oo
= [t (@) 2)par)Upr1, 1707, 171071 0y, 447, 5247,
with p > 0 and vp4r-1 € yrzr1,
The first case concerns the transitions (except the last) of the right sequential

transducer. The function fps simulates one transition: image of a letter, moving
of the state on the left.

The second case concerns the last transition of the right sequential transducer
(image of the first letter); since the right sequential transducer has finished, it also
put the symbol s; in every seventh component of the letters. The function fos is
ts-sequential; it is sufficient to delay the output of one letter and to overtake the
delay on the letter which brings the state.

The transformation realized by the function fa3 (which simulates the transitions
of the left sequential transducer s;):

1nr—1 p+7
[u’ Up4+1Ur—1, 1p0r$ lp+ Qr s Wy ﬂp+ra 5 ]f23

= [u, (Vp+181)vr-1, 1707, 1PT10" "1 wSuccz, $p 1, $,7*7].
In the second component, the function fa3 stores the image of vpy1 by the left
sequential transducer. In the fifth one, the counter is increased by one. In the
sixth one of the first letter, it put the 7$_?>; this symbol will carry the information

of the counter check. In parallel, it put the symbol $7 in every seventh component
of the letters.

The transformation realized by the function fo4 (which controls whether the
counter has reached the bound kP! and prepares the word for a new iteration
of g):

[ua v, 1707, lPJ’_lQT-l? zil RkWpy+r—1; ﬂm Ts;’)ﬁpz-iw—l’ $?p+r]f24 —

= [u) v, 1707, lp-“Qr_l) zlzl ZkWpy+r—1, ﬁp1+l $? Hp2+'r—2, $?p+7‘]
with p; >0, p2 > 0 and p = p; + p2 and w; € Z*
['U,, v, 1})07‘7 lp+lg'r—1, Zzl Ziwpz—{-'r—l, ﬂpl g;ﬂp2+7‘—1’ $7P+T]f24 —
= [u’ v, 1p0’r’ lp+l-QT—1’ zil ziwpz-i-"‘—l’ ﬂp1+1 $nﬂp2+r_27 $?-p+"‘]
with z; # zg
N
[ua v, 1p0'r‘, lp-f—lg’r—l’ wpl ZWpy+r—1, ﬁpl $nﬁp2+r—1, $?p+7“]f24 —
= [ua v, lpo'r, lp+lg‘r‘—1’ Wpy 2Wpy+r—1, ﬂp1+1 $nﬁp2+r—2’ $?p+7‘]

- = e -+
[U,'U, 1p0’r,lp+lg'r 1,z£zkwr_1,ﬁp$7 ﬁr 1’$?p T]f24 —
= [u, v, 1707, 1PT107 1, 2P 25w, 1, P8, 471, $27 7]
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[u) v, 1p0’r’ lp—f—lg’r—l, z[{:z’iwr—-l) ﬂpgﬁr_l, $?P+T]f24
= [u,v,1P07,1P*10" 1, 2P zw,_y, ﬂpgnﬂr'lﬁ?p”] with z; # 2z

[u,,1P07, 1773074 wy 2w, 28087, 80777 fau
= [u,v, 1707, 17107\ wpzw, 1, 178,171, §,7 1]

[, 0, 1P07, 1PH107 1 o #8089, 8,717 fog
= [u, v, 1P07, 1PT207 1 18, 19+ 8P with 1 < i < p

fu,v, 1707, 174107, 478,47, 82777 faa -
— [u’ v, lpor’lp+lg'r—1, Wpers ui—l $7‘ ﬁj+1, $?P+r]

[’LL, v, 1p0r, lp+lg1"—1, wp+7‘a Eﬁp+’r—l, $?p+7‘]f24
= [’LL, v, IPOT, lp+lg‘r—1’ Wp+r, %)ﬁp-{-r—l, aap—i-r]

[U, v, 1p0r, .];p+1Qr—1a Wptr, ($_rﬁp+T_1, $?p+r]f24
= [ua u, 1p+10‘r‘—1’ lp+2g’r—2’ wp+7‘v %)ﬁp+r_17 %)p—i—T].
The first three transformations concern a symbol $ in the sixth component asso-
ciated to a symbol 1 in the third. In these case, the symbol $ is shifted on the
right. It keeps the mark » while symbols zx are in the fifth component; the mark
becomes , when a symbol is lower than zx. The mark ,, means that the counter
has not reached the bound kP*1. -

The next three transformations concern a symbol $ associated to the first 0
in the third component. If the symbol $ is still marked by 7 and if the symbol
2z is in the fifth component, the counter has reached the bound 4P*!. Then this
length of prefixes is completely treated and it must start the length p + 2. If the
counter has not reached the bound kP*!, it must go on with the iteration of g on
the second component. In the two cases the symbol $ must be brought back to
the first letter with the information “reset” or “next(”_.

The next two transformations bring the symbol $, or the symbol fn back to
the first letter.

The last two transformations put the symbol gg for a new application of s, and
s;. If the counter had reached the bound, the word v must be duplicate from the
first to the second component and the first 0 in the third and fourth component
must be changed into 1 to indicate the new length of prefixes to treat (it is not
necessary to put the counter to 0, remember that 0 = 27).

The function fos is ts-sequential; it is sufficient to delay the output of one
letter and to overtake the delay on the letter which brings the symbol $ in sixth
component.
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Now let us analyze the transduction fi(fa1 + fo2 + f23 + foa) ™ f3-
Using the definition of f3, it is equal to

5,

F1(for+ foot fas+f20) T (N(Z x Zx{1,0} x{l}xe{E, s B} x{82})*)Izh.

By studying the evolution of the third and fourth component which have the form
170" and 17! Qr_l, we verify that it is equal to

F1(for + faz + faz + foa)F(O0 Z* x Z* x 1°0 x 1* x Z* x {8, 8, ,41* x $3)Izh.

In the sixth component, when the symbol ‘§ has appeared, it is only brought back
to the first letter. Thus it is equal to

Fi(for + faz + fas + foa) TN Z* x Z* x 1°0 x 1* x Z* x {8, §, }* x $3)[zh.

The seventh component is different for each function. Its value is %ﬂul after fi.
Then we can only apply f21 and its value will be slrul,... The sixth component

needs the application of fay4 to belong to {<$_n, <$_T}ﬁ*. Then the transduction is
equal to

F(fa fhfaafi) (N Z* x Z* x 170 x 1* x Z* x {$,, 8, H* x $3)ILsh.

Now let us see some properties of the iteration (f21fs5f23f5;)T. We can verify
that, for any p > 0 and for any value of the counter cpt,
['LL, vp-i-lv’l‘—l ) 1p01‘7 lp+1QT_1) Cpt, q_O)ﬁlul.—l) qa)lu|]f21
= [U, ’Up-i-l'vr—lr 1p0r’ lp—i—lgr—l, Cpt) ﬂPQOﬁT_ly Sl‘ul]

[, vp41vr—1, 1707, 1PH107, ept, M2, @B 1) for 57
| = [u, (Ups187)0r-1, 1707, 17107 cpt, gl s]*1).
(Let us remark that fi5°'' lets the seventh component unchanged at s, and

1>P*1 is impossible since the seventh component has become s;. Remember also

that vpy18, is always defined)
[, Vpy10r—1, 1707, 171071 ept, gt =1, Gt for £25 fas L
= ['LL, (Up-i-lsrsl)v’l‘—la 11)07" l.p+1QT_la Cpt + 17 $?ﬂ|u|A17 $'l7u|]

[ty Vp1vr—1, 1707, 1PT10" 1 ept, o™=, G5 1¥1] for f25" fos aptl
= [’U,, (vp+15r5l )'U'r—la lpOT’ .];p+19r_17 Cpt + 1, gﬁlul_ly $‘I?UI]
hd
where $,, € {fn, $.}

(Let us remark that fz5?*! does not give a sixth component belonging to {fn, g}ﬂ*
and that vp415r5; is always defined.)
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And the cycle can start again with the last application of fa4.
If the counter (cpt+1) is lower than ||Z||P*

[, Up410r—1,1P07, 1PH207 Y ept, G, G 1) for £33 fas g T
= [u’ (UP+1S7"SZ)UT—1a lpor,lp+19'r 13 Cpt + 1) qOﬁlul_la %)Iul]

If the counter (cpt+1) is equal to ||Z||PT!
[u, Vpg10r—1, 1707, 1PY107 Y, ept, gotl“I =1, g3 11] faor erlJ‘és]ﬂwz

= [u,u,v’“or L, 17420772, 0, gogl =, g i),
So we have for all 0 < p < |u| and for all 0 <4 < || Z]|P*!

[u, 24,1707, 17207 0, @111, @1 (for £55 fos far P2)! for fR5 ! foa ol T
Byt (5r) iy, 1907, 10 1, S, 8]
where $,, € {5$—n, 3}
and, forall 0 <p < |u| -1

[u, u, 1P0r’_1_p+1QT—l’O’ —q—0>ﬂ‘u|—1 Iul](f2l p+1 f23 f2p+2) [|Z|)P+?
[u, u, 1p+10'r 1 lp+2gr 2 ,0, q0ﬁ|u|—1’ -q—0>|u|]_
To sum up these properties and conclude, we have the following equivalences:

e v belongs to ufi(fo1 + foz + faz + foa)" f3
e v belongs to [u,wu, 0™, 101710, ot —1, @1 (far foh fos o) TN R)Ozh
where R =27* x Z* x 1*0 x 1* x Z* x {ﬁi_n,($_r}ﬁ* x $3
e v belongs to
[, u, 11=20, 114, 0, gt =1, G5 1#1] (far fly' fos Fab")' for iy fos fog" T Mo
with 0 <4 < || Z}|!“

e v belongs to u(s,s1)Th =ug™h.

We have proved that (NA*)gTh is equal to fi(f21 + fa2 + fo3 + f24)T f3. Since the
alphabets of the domains are differents (due to the seventh component) and since
(g,€) belongs to each function, (f21 + f22 + f23 + f2a) is a ts-sequential function.

If (e,€) does not belong to the transduction 7, we can remove (g,€) from the
functions fi, fo; and fs. O

Using marked alphabet, we obtain:

Proposition 6.2. The class UC(F,) is equal to the class (NX*) tsSy Hsq. That
means a transduction T belongs to UC(F ) if and only if 7 = (NX*)f*h for some
f intsS and h in Hgg.

Remark 6.3. The class (NX*) sS4 Hs, strictly contains the class (NX™) tsSy
(NY*) evenif X NY = 0.
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7. DETERMINISTIC CONTEXT-SENSITIVE LANGUAGES

The context-sensitive languages are recognized by linear-bounded automata. A
linear-bounded automaton is sextuple M = (Q,X,Y,4,qo, Qr) where Q is the
set of states, X is the input alphabet, Y D X is the working alphabet, ¢ is the
transition map included in (Q X Y) x (@ x Y x {—1,0,1}), qo is the initial state
and Qr is the set of final states.

A step in the recognition of a word is given by §:

o ubgav — ug'ba’v if (¢/,a’,—1) € (¢,a)d, u,vEY* a,beY;

e ugav — ug'a'v if (¢',a’,0) € (g,a)d, u, v € Y*, a €Y

e ugav — ua’'q'v if (¢’,a’,1) € (g,0)d, u, v €Y*, a €Y.

The language recognized by M is defined by iteration of §

L(M) = {u | gou~— wgq; for some w € Y* and g5 € Qr} -

A LBA is said to be deterministic if ||(g,a)d|| <1 forallgin @ and a in Y.
We shall now establish a new characterization of the class of deterministic
context-sensitive languages in terms of iterations of functions.

Proposition 7.1. The class of deterministic context-sensitive languages is equal
to a*UC(F4) where a is a letter.

Proof. We prove the equality by two inclusions: Proposition 7.3 and Lemma 7.5.
O

Lemma 7.2. Let g be a length-preserving rational function included in X* x Y*.
The language {[u,v] | u € X™*, v € ugt} belongs to CSqet.

Proof. Let X and X be marked alphabets built from alphabet X. These alphabets
will be used to distinguish the first and the last letters. In a first time, we omit
the words having less than two letters.

We transform g into g,, in such way that g,, acts only on marked words and
preserves the marks.

We shall verify that L = {[u,v] | u € XX*X, v € ug}} belongs to CSqes.

We shall define the transitions of a LBA which recognizes L. Starting from
a word [u,v], the LBA will iterate the function g on the first component. After
each application of g, the LBA will check up the contingent equality of the two
components; when they are equal, the LBA goes into a final state and the word
[u, v] is recognized.

Using the “decomposition theorem”, a length-preserving rational function in-
cluding (e, €) is the composition of a letter-to-letter right sequential transduction
followed by a letter-to-letter left sequential transduction.

Since L contains only words having more than two letters, we may suppose that
(g,€) belongs to the function g,.

Sequential transductions being ts-sequential, a letter-to-letter transition is eas-
ily changed into a transition of deterministic linear bounded acceptor.
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We build the set of transitions of a LBA which recognizes L.
Transitions to go to the last letter: Vo, 8 € X

(900, (&, B)) — (oo, (&, B8), 1)

(900, (@, 8)) = (00, (o, 8),1)

(200, (&, 8)) — (10, (&, 8),0).

Transitions for the right sequential transducer: Voo € X

(Q10, (.’13,0()) — (qli, (3};01), _1) if (QO7$))‘T =Y and (QOw’E),U'T =q;
(q1i; (=, @) = (qu5, (y, @), —1) if (¢5,2)A\r =y and (¢i, T)pr = q;
(Qh'a (j;a a)) - (Q20v (ya d)’ 0) if (Qia x)/\r =Y.

Transitions for the left sequential transducer: Va € X
(920, (%, &) — (gas, (¥, @), 1) if (g0, )\ = y and (go, ) = g
(g2, (z, @) = (25, (y, @), 1) if (g5, x)\ =y and (gi, x) = g;
(q2i: (:Z?, Ol)) - (q307 (3/, O(), 0) if (Qi; m))‘l =Y.

Transitions to return on the first letter: Vo, 8 € X

(g30, (&, B)) — (g30, (&, B), —1);

(QSO: (a’ ﬁ)) - (‘I307 (O(, :3)1 _1);

(930, (&, B8)) — (ga0, (&, 8),0).
Test of contingent equality, transition to the state gio in case of inequality: Ve,
geX

(qao, (,%)) — (gao, (2,2),1)

(940, (2, 7)) — (ga0, (z,7),1)

(a0, (£, %)) — (gr, (&, 2),1)

((L;(),([if,'f/)) - (Q5Oa(i’y)’1) lfl'?éy
((140,(517,21)) - (QS07(x7y)) 1) lf$ # y
((I40a(£)'y)) - (QIO)(:i’?j))O) lf.’l’;#y

(250, (@, B)) — (gs0, (2, B), 1)
(gs0, (&, B)) — (qu0, (&, B),0).
It is-easy to verify that

qoolw, v] — [u',v')qi0(&', ") iff u =% and v ="2"7'.
(v, 'lg10 (&, §') = [u”,v']gso(&", i) iff 0/& g = u"E"

and v'i’ € XX*X.
[u//, ’U”]qgo (fi‘”, y//) _*_) [u”:’z}”, ’U”:UH]QF iff W3 = ’U"y”.

[,u’”, ,Ul/]q30 (jll, QII) _i_) [ull’ ,Ull]qlo('x‘/l, g/l) iﬁ’ u"il/ # /U”:y'”.
Thus the couple [u,v] is recognized if and only if there exists ¢ > 1 such that
v = ug’,. The language L belongs to CSqet.
The language {[u,v] | v € ug"} also belongs to CS4et; we obtain it from the
language L by erasing the marks and adding the finite language {[u,v] | u €
X='andwv € ugt}. 0

Proposition 7.3. The class CSqey is closed under UC(Fy.).

Proof. The class CSqet is closed under length-preserving rational function; we
prove that it is also closed under iterated length-preserving rational function.
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Let L be a language belonging to CSget- Let g be length-preserving rational
function.

We have Lgt = LI (N{[u,v] | v € ug*})Ily. The language {[u,v] | v €
ug ™} belongs to CSqet (Lem. 7.2). The class CSqey is closed under inverse of letter-
to-letter morphism, intersection and letter-to-letter morphism. Then the language
Lg™ belongs to CSget. O

When we want to produce context-sensitive languages, we can iterate a ts-
sequential function to simulate the deterministic LBA.

Proposition 7.4. For each deterministic contert-sensitive language L C X7,
there exists a length-preserving ts-sequential function ¢ such that L = X* o™ (NX*).

Proof. Let L C X be an e-free context-sensitive language. There exists a deter-
ministic LBA = (Q, X,Y, 4, g0, Q@) which recognizes L.

Our purpose is to check whether a word u is in the language L. We shall
start from a word u and the iteration of the ts-sequential functions shall check his
prefixes. For each prefix u;z of u there will exist some r € N such that

MTUP" = UWTUP" = wiTUy fwz €L

= UiTuy ifujz & L.

Let us remark that the recognition of a word (or a prefix of a word) by a LBA is
realized with a finite number of steps depending on the length of the word (the
prefix) which is treated, on the number of letters in the working alphabet and
on the number of states. Like in other proofs, we shall count by enumerating
all words written with an alphabet having enough letters to ensure us that all
reachable configurations in the LBA have been obtained.

The algorithm of recognition of the word u will be the following
start with zug
while it remains underlined letters do
prepare u;TUz Or UjZuz in order to treat the prefix wiz
while not enough iterations do
* apply one transition of the LBA and increase the counter
control the counter of iterations
check if the prefix is recognized
output the result of the recognition uiTug or UIZTUuz.

ES

EE .

We shall use 5-folds [u;zug, v1yve, counter, transmission, action).

The first component is the word u we want to test the recognition by testing the
recognition of the prefixes u;z. The second component will be the working memory
of the LBA using a k-letters alphabet Z =Y U (@ xY)U(Q x Y)U(Y x Q). The
words u1z and v1y have the same length. Thus the first underlined letter in the
second component points out the last letter of the prefix which is actually treated
and ve will always be equal to us. This underlined letter serves for end-marking
and allows the transducers to take one letter delay.
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The third component is the counter of iterations using the alphabet Z, the
fourth one carries informations like control of the counter or control of recognition
and the fifth one stores the action to do.

A first function ¢; prepares the 5-fold. The value 0 of the counter is the

word zL"l.

wgl = [*’E%, (q0) fL')’LL2, 07 ulula Ll“l]
zulﬂ’_””_?gl = [Zulx"_/«g> (QOa Z)'U,].&, 0) nlul) LI“I]
ZUTURg1 = [2u1Tu2, (g0, 2)urzug, O, §1¥!, LI¥].

A second function go applies one transition of the LBA to the actually treated
prefix.

We use a slight modification in our notation. The transition function 4 is applied
in a context. The configuration ubgacvw is denoted by ub(g, a)cvw and can give
through d one of the following images: u(q’, b)a’cvw, ub(¢’, a’)cvw or uba/(¢', c)vw.
The letter ¢ could be underlined, v being . The rightmost application of é on a
word u(g, a)w can also give a word u(q’, a’)w or u(a’, ¢')w if the transition indicates
a right move.

The LBA being deterministic, there is at most one transition to apply at any
time. The function ¢ is completed in order to be the identity in all cases not
defined in the LBA.

[urzua, v1yvs, cpt, 4%, LI gy = [urzus, (viyve)d, cpt + 1, 1!, 1),

The third function g3 controls the counter to know whether the LBA must go
on (counter < |[Z||“+2]) or whether the recognition of the word has to be tested
(counter = || Z||l*=l).

[u1 U2, V1YV, ept, ¥, Clul) gz = [u1 U2, V1YUZ, cpt,ﬁl’i‘1|($_rﬁ|”2|,B|”|]
if cpt € 2:,'3‘””’2'“2|
[u1zUg, v1yve, ept, 14, Ol g3 = fuyzus, vlyvg,cpt,ﬁiultﬁﬂ\”ﬂ,B'“']
o Cf cpt € Z<lwnzly, 7% with z; # 2.
The function g4 brings the result of this control back to the first letter.
(w1 zug, v1yvs, cpt, {8t B gs = [urzug, viyvs, cpt, 1+~ 8449+, Bl
with i > 1 and §4 € {§,,8,}
w1z, v1yvs, cpt, S5 71, B*!]gy = [urzus, viyvs, cpt, 1!, L]
(w1 2w, v1yva, cpt, $, 4111, B gy = [uyzug, viyus, ept, 14, RI¥].
The function gs tests whether u;x is recognized.
[urzug, viyva, cpt, {1, R ]gs = [ur1zug, viyvs, cpt, il Irgle!, O]
o - if viyvs € Yl“l‘(Y X QF)Y|“2|
[u1zug, vV1YV2, cpt, i1, Rl¥lgs = [u1 Uz, V1YV, ept, flurlFgluel Olul] else.
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The function gg¢ brings back the information. If the prefix is not recognized, it
outputs the prefix with marked letters.
[ur1zug, viyvs, cpt, flat?, Olgs = [urzuz, V1YV, cpt, fi-lafitt, Olv]

where ¢ > 0 and « € {r,7}.
[ur1zug, 11yvs, ept, ril¥l=1, Ol gg = uizuy
[urzuz, v1yve, cpt, Fflul—1, O'”']ge = UrTUg.

Due to the sixth component which is different in each function, we could
verify that

X¥(g1+9g2+93+ga+gs+96)T(NXT) = XF(91(g29397 ) Tgs98) T (NXT).

More precisely, for all u = uizus € X* X+ or u = uizus € X X, we have
Y. “2

[u1$|)HZ[l|“1”|gsg(|3u1$l

ug1(92939 U LU ifuize L

= UiTug ifuyz g L
ug1(929395) 9598 ¢ X' XTUX X'
if i # juyz| or j #||Z]|™% or k # |uz|.

Then, starting with u, it suffices to use |u| times this cycle and we obtain u if
u € Land Tif u g L. Thus L is equal to X (g1 + g2 + g3 +ga + g5 + g6) T (NXT).
If € belongs to L, we can add the couple (g, ) to the functions g;.

All functions are ts-sequential and the alphabets of their domains are distinct.
We can define the ts-sequential function ¢ = g1 + g2 + g3 + ga + g5 + ge- a

Lemma 7.5. For each deterministic context-sensitive language L, there exist a
length-preserving rational function g and a morphism h such that L = a* g*h.

Proof. Let L be a deterministic context-sensitive language included in X*. The
Proposition 7.4 shows that L = X~ +(ﬂX *).
It is obvious that X* = a &zlSuch = a*(Na* )K,mlSuch Then L = a*79 where
= (Na*)ka, Succkgt(NX*).
The transduction 7, belongs to U C(]-'+) F F4 F andisincluded in {a}* x X*.
By Lemma 4.1, there exist a function g’ and a morphism A’, such that m, =
(Na*)g'Th'. Thus L = a*g' K. ]

8. DETERMINISTIC CONTEXT-SENSITIVE TRANSDUCTIONS

We define deterministic context-sensitive transductions as we have defined context-
sensitive transductions [9].

Definition 8.1. Let 7 be a transduction. The transduction 7 is a determin-
istic context-sensitive transduction if and only if there exist two letter-to-letter
morphisms ¢, 9 and a deterministic context-sensitive language A such that 7 =

e (NA)p.
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In other words, the class of deterministic context-sensitive transductions is
Hs_al (NCSget) Hsa-

Since the class of deterministic context-sensitive languages is defined in terms
of iterations of functions, we can easily prove the equality between the class of
deterministic context-sensitive transductions and the class UC(F).

Proposition 8.2. The class of deterministic context-sensitive transductions is
equal to the class UC(F4). That means UC(Fy) = HH(NCSdet) Hsa-

Proof. The equality is proved by two inclusions: Lemmas 8.3 and 8.4. d
Lemma 8.3. The class UC(Fy.) is included in H;'(NCSqet) Hsa-

Proof. Let 0 = fgth € UC(F4). Let us suppose that o C X* x Y*.
The transduction 7 = pa(Ix, f){Ix,g)" {Ix, h) belongs to UC(F,).
The language X*7 = {[u,v] | v € uo} is a deterministic context-sensitive
language (Prop. 7.3).
The transduction o is equal to II; * (N X*7) I3 and belongs to M} (NCSget) Hsa-
O

Lemma 8.4. The class H,'(NCSqet) Hsa s included in UC(F4).

Proof. We mainly have to prove that intersection with a deterministic context-
sensitive language L C X* belongs to UC(F).

By Lemma 7.5, we know that there exist a letter a and two functions f; and fa
such that L = a* fl+ f2. Then the intersection with the language L is realized by
p2{Ix,ka){Ix, 1) Ix, fo)(N({(z,z) | = € X})*)II; which belongs to UC(F4).

A letter-to-letter morphism is a length-preserving rational function and then
belongs to UC(F4); the inverse of a letter-to-letter morphism also belongs to
UC(F+) (Lem. 3.7). Since UC(Fy) is closed by composition, every deterministic
context-sensitive transduction belongs to UC(F4). O

We deduce from the Proposition 8.2 the following corollary:
Corollary 8.5. The class UC(F4) is closed by inverse.
The closure properties of the class CSg4et allows us to state the next corollary.

Corollary 8.6. The class UC(F) is closed by intersection and difference.

9. CONCLUSION

‘We have studied the UC-closure of some classes of iterated functions. This study
states the kind of transductions we can obtain by iterating rational transductions.
It also gives characterizations of the family of context-sensitive languages and of
deterministic context-sensitive languages.

If a language L belongs to CS, there exist two letter-to-letter ts-sequential
functions g; and g, and an alphabet Y such that L = a*(g1 + g2) " (NY™).
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If a language L belongs to CSqet, there exist a length-preserving ts-sequential
function g and a letter-to-letter morphism A such that L = a*g*h.

But the well-known problem of the equality between context-sensitive languages
and deterministic context-sensitive languages remains open.

We would like to thank Michel Latteux for supervising this work and his constant encour-
agements and help during the redaction. We also thank Jacques Sakarovitch for useful
remarks on a previous version of this paper.
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