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ITERATION OF RATIONAL TRANSDUCTIONS

ALAIN TERLUTTE1 AND DAVID SIMPLOT1

Abstract. The purpose of this paper is to show connections bétween
iterated length-preserving rational transduetions and linear space com-
putations. Hence, we study the smallest famüy of transduetions
eontaining length-preserving rational transduetions and closed under
union, composition and itération. We gjve several charaeterizations of
this class using restricted classes of length-preserving rational trans-
duetions, by showing the connections wit h "context-sensitive trans-
duetions" and transduetions associated with recognizable picture lan-
guages.

AMS Subject Classification. 68Q45, 68Q42, 68Q70.

1. INTRODUCTION

The family of rational languages turrxs out to be one of the most important
classes within the Chomsky hierarchy. Finite automata that are the main object
for studying rational languages are now used in most domains of computer science.
Rational transduetions introduced by Elgot and Mezei [5] are a natura! extension of
rational languages and were very useful to represent several kinds of computations.
For instance, the addition of two integers in any base can be realized by a rational
transduction and the study of these tools has led to efficient parallel algorithms
(see [1,17} for instance).

The theory of rational transduetions was mamly developed by Schutzenbergerr

Eilenberg and Nivat (see [4,18,19]). This theory is now well established and its
basic results can be found in [2,4}. More recently, some représentation theorems
were achieved in terms of compositions of morphisms and inverse morphisms [8,23].

At the contrary, there are only a few papers dealing with itération of rational
transduetions (see [7,24]). Since several mechanisms of computation are actually
itérations of rational transduetions, it seems that this study deserves to be un-
dertaken. For instance, finitely generated congruences, dérivations in a grammar,
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100 A. TERLUTTE AND D. SIMPLOT

partial commutation - as well as semi-commutation -, L-systèms are examples of
such mechanisms.

The set of transductions equipped with the opération of composition has a
semigroup structure closed under itération. The subset of rational transductions
is closed under composition but not under itération. We are mainly interested by
the the smallest set of transductions closed under union, composition and itéra-
tion and containing the rational transductions. Indeed to obtain several interesting
transductions, both rational transductions and iterated rational transductions are
needed. For instance, the mirror opération is shown in the preliminaries to be
such a transduction. It is neither a rational transduction nor an iterated rational
transduction but it can be realized by composition of these two kinds of transduc-
tions. Note also that itérations introducé non-determinism. So it is established
in Section 8 (Lem. 8.1) that the inverse of a letter-to-letter morphism can be ob-
tained as the composition of an iterated rational function with a letter-to-letter
morphism.

In this paper, we shall restrict ourselves to iterated length-preserving
transductions, more precisely, we shall study the the smallest family of transduc-
tions containing length-preserving rational transductions and closed under union,
composition and itération. There are two main reasons for this choice. First, one
easily vérifies that itérations of arbitrary rational transductions can be obtained by
composition of arbitrary rational transductions with iterated length-preserving ra-
tional transductions. At reverse, arbitrary rational transductions can be achieved
by composition of length-preserving rational transductions and itérations of faith-
ful rational transductions. In this way the projection from A* onto B* with B Ç A
is equal to the composition of the itération of the rational function which erases
only the first occurrence of a letter of A \ B with the length-preserving rational
function which corresponds to the intersection with B*.

We close the present introduction with a description of the structure of the
article. After recalling some définitions and notations in Section 2, we give in
Section 3 three examples of non-rational transductions which can be expressed
with itération.

The next section deals with several characterizations of the closure under union,
composition and itération of the class of length-preserving rational transductions.
A such closure of a class of transductions is denoted "UCI-closuse" for Union,
Composition and Itération. In Section 4 we show that the itération of only one
length-preserving rational transduction is needed to obtain ail transductions of this
class (Th. 4.3). As a conséquence we see in Section 5 a resuit which states that
the iterated transduction can be chosen in a restricted class of length-preserving
rational transductions called "one-step transductions" - which correspond to finite
rewriting Systems with length-preserving rules (Prop. 5.2).

In Section 6, we prove that this class of transductions coincides with the class
of "context-sensitive transductions" which are the natural extension of rational
transductions using intersection with context-sensitive languages instead of regular
languages (Th. 6.4).
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The connection with transductions associated with recognizable picture
languages [6] is given in Section 7 (Prop. 7.3). In Section 8, we show that the
UCI-closure of the class of length-preserving rational fonctions also coincides with
this class.

All these characterizations are summarized in the last section (Th. 9.1) and we
show how these results allow us to obtain several closure properties.

A part of this work has been already published as extended abstract in [13].

2. PRELIMINARIES

We assume the reader to be familiar with basic formai language theory (see [2,4]
for more précisions). The goal of this section is to fix notations and terminology.

2.1. WORDS AND LANGUAGES

For a finite alphabet E, we dénote by E* the free monoid generated by E.
The neutral element of this monoid is the empty word, which is denoted by e. The
length of a word u is denoted by |u|, while \u\a dénotes the number of occurrences
of the letter a in u. The mirror image of a word u is denoted by ü.

For a word u G E*, we dénote by alph(w) the alphabet of u that is defined by:
alph(u) = {a G S | |u|a ^ 0}. The set of all factors of u is denoted by Fac(u) and
is defined by:

Fac(u) = {w G S* | 3v,vf G E* such that vwv1 = u}-

The set of all factors of length n, for n > 0, of a word u is denoted by Facn(iz) and
corresponds to Fac(n) H Sn . The set of all left factors of u is denoted by LFac(w)
and is defined by:

LFac(tt) = {w G S* | 3v G E* such that wv = u}-

A language over S is a subset of E*. The classes of regular, deterministic context-
sensitive, context-sensitive, e-free context-sensitive and recursively enumerable
languages over E are denoted respectively by Rec(E*), CSd(E*), CS(E*), CS£(S*)
andr.e.(S*).

2.2. TRANSDUCTIONS

Now we give some basic définitions about transductions. A transduction is a
subset of X* x F* where X and Y are two finite alphabets. For a word u, the set
of images of w by a transduction r is denoted by UT and is defined by:

UT = {v | (u,v) G T}-
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This définition is extended in a canonical way to languages. When we describe
applications of several transductions, it is cohvenient to use the notation u \—• v

T

when v G UT.
For a transduction r, the domain of r, denoted by Dom r, is the set of all

words which have an image by r. The set of images of r, denoted by Im r, is the
language of words which have an antecedent by r.

Dom r = {u\3v such that (w, v) G r} ,
Im r = {v | 3w such that («, u) € r}-

The inverse of a transduction r is the transduction whose couples are the
permutation of first and second components of the couples belonging to r. It
is denoted by r" 1 = {(v,u) \ (u,v) G r} .

The set of transductions has a structure of a semigroup according to the
composition opération:

Définition 2.1. Let r and a be two transductions. The composition of r and a
is the transduction defined by:

ra — {(u, w) | 3v such that (u, v) G r A (v, tu) G cr}-

A transduction r from X* into F* is rational if and only if it is a rational part of
the monoid X* x F* (with the classical concaténation product which is defined by
(x,y).(xf,y') — (xx',yyf)). It is the class of transductions which can be realized
by a finite transducer - that is a finite automaton where edges are labeled by an
input and an output word.

Formally, a finite transducer T is a 6-tuple (X, Y,Q,ô, / , F) where X is a finite
alphabet called the input alphabet, y is a finite alphabet called the output alpha-
bet, Q is a finite set of states, ô is the finite transition function from Q x X* into
the parts of Q x Y*, / is the set of initial states included in Q and F is the set of
final states included in Q.

The transition function is extended to Q x X* in its entirety. For each state
q, we force 6(q,e) to contain (q,e). If S(q,x) 9 (q',y) and 6{q\xf) 3 (q'f\yf) then
ô(q, xxf) contains (<?", yyf). For a given word u G X*, we say that u is transformed
in v G Y* if there exist an initial state qi G / and a final state qf G F such that
(q/yv) G Ö(qi,u). The transduction r associated with T is defined by:

= IJ {(u,v) eX*xY* | (qf,v) G

The next theorem présents well-known closure properties of the family of rational
transductions (see [2] for detailed proofs of these properties).

Theorem 2.2. The class of rational transductions is closed under union,
composition and inverse.
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We say that a transduction r is functional if for each word u in Dom r, UT
contains exactly one word. When we deal with a fonction r we will write UT — v
instead of UT = {v}. More précisions and définitions about fonctions will be given
in Section 8.

A transduction r is length-preserving (Lp. for short) if and only if for each
couple (urv) G r we have \u\ = \v\. In the remainder of the paper, we consider
only length-preserving transductions. The class of all length-preserving rational
transductions is denoted by T and the class of length-preserving rational fonctions
is denoted by T.

Despite the fact that the class of rational transductions is not closed under
intersection, the intersection of two length-preserving rational transductions is a
length-preserving rational transduction.

A morphism (f is a rational fonction that satisfies the conditions eh = e and
(uv)h = (uh)(vh) for every words u,v. Hence, the morphism cp is cornpletely
defined by the values acp of the letters a e alph(Dom tp). The morphism <p is
called strictly alphabetic, or letter-to-letter, if for each a e alph(Dom (p) we have
\a(p\ = 1. The family of letter-to-letter morphisms is denoted by M.

In our proofs, we shall use several particular kinds of morphisms. For an
arbitrary alphabet A, the identity over A* is denoted by
IA - notice that IA = {(u,u) \ u G A*} is equivalent to the intersection with
A* which is denoted by (Pb4*). When we consider an alphabet E which is the
cartesian product of n alphabets, E = X\ x X2 x ... Xn (with n > 1), the mor-
phism H , with 1 < % < n, is the projection onto the ith component.

Let C and C' be two classes of transductions. We dénote by CC the class of
transductions obtained by composition of a transduction of C with a transduction
ofC:

CC' = {TT' | T G C A T ' e C'Y

Let C be a class of transductions. The class of all transductions whose inverses
belong to C is denoted by C~l:

Let C be a family of languages. The class of transductions which consist of an
intersection with a language of £, denoted by (n£), is defined by:

(n£) = {T\T = (nA) for some A e £}•

For instance A4 ~l (PiRec) dénotes the class of transductions obtained by
composition of an inverse letter-to-letter morphism and the intersection with a
regular language.



104 A. TERLUTTE AND D. SIMPLOT

3. ITÉRATIONS OF RATIONAL TRANSDUCTIONS

First, we give a formai définition of iterated transductions. The itération is the
natural extension of the Kleene operator to the semigroup of length-preserving
transductions.

Définition 3.1. Let r be a transduction. The itération of r, denoted by r + is
the transduction defined by:

where r% is defined inductively by r 1 = T, r n + 1 = rnr for n > 0.

For a given class of transductions C, we dénote by C+ the class of itérations of
transductions of C:

Thus, T+ dénotes the family of iterated length-preserving rational transductions
and T+ dénotes the family of iterated length-preserving rational functions.

Example 1. Mirror image. Let us start with a simple example to explain the
use of iterated length-preserving rational transductions. Let X be an arbitrary
alphabet. We consider the function ƒ which associâtes the mirror image with each
word of X*: Vw G X*, wf = w. Although this function is not rational, Le. cannot
be realized by a finite transducer, we show that ƒ can be obtained by composition
of rational functions and iterated length-preserving rational functions.

Let S be the alphabet XUX containing non-marked and marked letters of X.
We define a rational function r from S* into £*: for every word w = auv with
a e X, u G X* and Ü G î * , we have wr = uàv; the image of the empty word is
the empty word, er = e, and the transduction is undefined in other cases.

For instance, the successive applications of r on a word over X of length seven
are:

w =
wr =

2
WT =

wr = d-j de a's a*4 &3 Q"i d\,

WT8 = 0.

It is clear that for any word w G X*, the set wr+(nX*) contains a single word
which is the marked mirror of w. If we dénote by tp the morphism from X* into
X* which gives the unmarked image, we have ƒ = (nX*)r~*~(p.
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Example 2. Natural integer division. Let us now consider the transduction
which realizes the division of two positive integers. We use the binary représenta-
tion of integers and we consider words over the alphabet A = {0,1}. For a given
word u e A*, we dénote by û the integer represented by u - for convenience, we
state that the most significant digit is on the right of the word, hence 1011 repre-
sents the integer 13, but the other case can be treated similarly. We also consider
that the empty word represents 0.

For now, we define the transduction r we want to build with l.p. rational
transductions. The input words are over the alphabet A x A coding the two
integers we want to treat:

r = < (u,v) e (A x A)* x A* | \u\ = \v\Av = uI

We use the naive algorithm which subtracts the divisor to the dividend until the
dividend is smaller than the divisor and to count the number of subtractions.

This method could be used in VLSI to implement the integer division
(see Fig. 1) but there exist faster methods.

It is well known that the subtraction of two integers can be realized by a finite
transduction. In order to iterate subtractions we need to keep the divisor and to
obtain the result of the subtraction in place of the dividend. Moreover we need to
increase a counter we code in the third component of the input word. We consider
the transduction a defined by:

(u,v) €(AxAxA)*x(AxA

The Figure 2 gives a finite transducer which realizes a simple subtraction. It is
easy to construct a finite transducer for a. Let us note that in the construction,
if in a given word u G (A x A x A)*, the dividend (uüi) is strictly smaller than
the divisor (UU2) then u has no image by a.

To initialize the itération, we use the rational transduction p which simply puts
a third component which is the counter initialized to 0:

p = {(u,v) e(Ax A)* x(Ax Ax A)* \ vUx ^uU1AvU2 = uU2 AvU3 e 0*}-

Now, we know how to initialize the computation and to run the subtraction. To
achieve the computation, we just need to extract the result. We use the rational
transduction (p which compares the two first components and outputs the third
component when the dividend is smaller than the divisor:
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The dividend is stored in the register A while the divisor is stored in
the register B, The sequencer initializes the computation by sending
the re set signal which sets the counter, register C, to 0 and sets the
carry, signal c of the component SUB, to zero.

Each clock cycle, the divisor B is subtracted to the dividend A, the
resuit is stored in the register A and the counter is increased of one.
These opérations are repeated until the carry is set to 1. When the
carry takes the value one, it means that the dividend was smaller than
the divisor and that we have made an extra subtraction. Then it suf-
fices to decrease the counter to obtain the quotient. Notice that it is
"cheaper in time" to wait the carry than to compare A and B before
each subtraction.

F I G U R E 1. A simple implementation of 8-bit integer division.

(o,o)/o

FIGURE 2. A transducer which realizes the subtraction.
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The expected transduction r can be expressed by using p, a and <p:

T = p(a
Since the itération operator + means at least one application of the iterated
transduction, we need to add the identity over (A x A x A)* to consider the
case where the dividend is strictly smaller than the divisor.

Example 3. Prime numbers. For now, we give a way to generate the set of prime
numbers by using itération of rational transductions. In the previous example, we
have seen how to realize the division. A similar method allows us to build a
transduction for the modulo. We dénote by rm the transduction corresponding to
this opération:

(u,v) e (A xA)*x(AxAxAy\ u % ^ UÏÏ2

vils = ulli mod uU2

where pmi am and tpm are the rational transductions defined by:

Pra = { («, V) E (A X A)* X (A X A X A)* j VU2 == ull2 ^ ,

^n3 =

= {(u,v)e((AxAxA)*)2\ _ ^
— UÜ2

y?m = <(u:v) € (A x A x A)* x (A x A x A)* \u = v A uUs < uli2 \ *

In order to test whether a given word u codes a prime number, we enumerate the
words (of same length) which code the numbers belonging to [2,n — 1] and we
check that û cannot be divided by these numbers.

We use rm and the following length-preserving rationa! transductions:

p = {(u, v) e A* x (A x A)* j vUx = u A vTi2 = 2},

(u,v)e(AxAxA)*x(AxA)*\

if = {(u,v) e(Ax A)* x A* j v = uU1AuIi2 = uUx}
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The transduction r is defined by:

r = {(u,u) G A* x A* | û is prime},

- y9(rma)+v> + {(M)},
= p(pm(Vrn + /AX AX A) +<PmV) +<f + {(1, 1)}'

The couple (1,1) has to be added since the word 1 has no image by p because we
need at least two letters to code the integer 2. Notice that this restriction spares
us to consider the case of the empty word.

The set of words over A which code prime numbers is then the image of A* by
the transduction r.

4. THE UCI-CLOSURE OF LENGTH-PRESERVING RATIONAL
TRANSDUCTIONS

As already mentioned above, it is well known that the class of rational
transductions is closed under union and composition. It is obvious that the it-
ération of a length-preserving rational transduction is not necessarily a rational
transduction. To be convinced, it suffices to consider the transitive closure of a
rewriting System like semi-commutations - see also the examples of Section 3.

We use the notation UCI for Union, Composition and Itération closure of a
family of transduction.

Définition 4.1. The class UCI(T) is the smallest family of transductions which
contains T and is closed under union, composition and itération.

For the sequel, we give several représentation theorems for this class of
transductions. We first need a lemma which is useful in many proofs.

Lemma 4.2. Let r be a transduction ofTT+T. We canfind three length-preserving
rational transductions ai, a<i and a3 such that r = aicr^as and alph(Im ai)
nalph(Domcr3) = 0.

Proof. Let us consider three arbitrary transductions of T denoted by T\ , TI and
r3 and the transduction r = TIT^T^. We build ai, 02 and a$ which satisfy the
conditions.

We rename the alphabets: let S be the alphabet alph(Dom r2)
Ualph(Im T2)Ualph(Dom r3) and let E be the alphabet defined by E = {a | a G E}.
Let h be the bijective morphism from E* into E such that ah — ~â for every a G S.

Let <72, CF2 be the two transductions defined by:

af
2 = T<ih and o^ — h~~1r2h.
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Now, we take the next définitions:

o\ = Ti, a2 = a2 + a2', and 0-3 — / i " "^ .

It is easy to see that r = a\ a2 03. Since the alphabet alph(Dom a3) is a new
alphabet (included in E), the conditions are satisfied. •

Theorem 4.3. The family UCI(T) is equal to the family TT+T. This means
that a transduction r belongs to UCI(T) if and only if r — aicr^as for some

Proof Since TT+T is included in UCI(T), it is sufficient to show that TT+T
is closed under union, composition and itération. Let ai, a2, 0-3, a[, a2 and
a3 be transductions belonging to T. We consider the transductions aia2a% and

Because we can rename the letters used "inside" the itérations, namely
S = alph(Im ai U Dom a2 U Im o2 U Dom as) and S' = alph(Im a[ U Dom a2 U
Im a2 U Dom 0-3), we can suppose that E D E' = 0. Moreover, according to
Lemma 4.2, we can suppose that alph(Im cri) and alph(Dom a3) are disjoint.

The case of the empty word may be problematic. Therefore, we suppose that
(e,e) belongs to a ai (respectively a a^) if and only if each a; (resp. each a^)
contains this couple.

• The transduction a\a2a% + a^a^a^ belongs to TT+T:

The transduction a\a2 asa[af
2^a'3 belongs to TT+T:

a\a2 asa[a2 a'3 = a\(a2 -h asa[ + a2)
+

The transduction (cri<j2~cr3)+ belongs to TT+T:

cr3)+ =

Hence UCI(T) is included in TT+T and the resuit holds. •

These resuit can be refined as follows:

Proposition 4.4. Let r Ç X* x F* be a transduction such that X D Y = 0. The
transduction r belongs to UCI(T) if and only if r = (r\X*)a+(DY*) for some
a G T.

Proof Let ai, a2 and cr3 be three Lp. rational transductions such that r = a\a2 as-
For the empty word, we suppose that (e, e) belongs to a ai if and only if each ai
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contains this couple. We consider the alphabets of the different domains and sets
of images:

Xi = alph(Dom cri) Y\ — alph(Im ai)
X% = alph(Dom a2) Y2 — alph(Im a2)
Xs — alph(Dom <r3) F3 = alph(Im a3).

We can suppose that X\ Ç X and that Y3ÇY. Moreover, because we can rename
the different alphabets, we can suppose that:

Xn(Y1UX2UY2UYs) = 0, (1)

Y n (Yi U X2 U Y2 U I3) = 0- (2)

We consider the transduction (flX*)(ai -f <J2 + 03)
The équation (1) means that a word over X has no image by o2 or a3 &nd that

u\ cannot be applied after o\ or a2. On the other hand, the équation (2) signifies
that a2 and a3 cannot be applied after a3.

According to Lemma 4.2, we can suppose that Y\ ( I I3 = 0. Hence <r3 cannot
follow ai . Let us recall that by hypothesis, we have X\ D Y3 = 0, this implies that
ai cannot follow a3.

Hence we have a i a j a 3 = (nX*){p\ -f a2 + a3)+(ny*). ö

If the domain and the image of the transduction are not disjoint, this proof
does not work since we cannot prevent the application of ai after a3 and, hence,
to iterate the complete transduction. However, by renaming the alphabets, we
deduce the next corollary frorn the previous one.

Corollary 4.5. A transduction r belongs to UCI(T) if and only if there exist a
finite alphabet X, a rational transduction a and a letter-to-letter morphism tp such
that T = (nX*)a+(p.

In the next section we show that the iterated transduction of Theorem 4.3 can
be replaced by a transduction in a restricted class of length-preserving rational
transductions named "one-step transductions".

5. ONE-STEP TRANSDUCTIONS AND CONTEXT-SENSITIVE
LANGUAGES

The class of transductions we define is equivalent to the application of a rule of
a finite rewriting System which contains only length-preserving rules.

Définition 5.1. Let X be a finite alphabet and let P be a finite subset of X* x X*
such that (u,v) G P => \u\ ~ \v\. The one-step transduction r associated with
(X, P) is defined by:

T = U {(xuy^xvv) I x,y G x*}-
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The class of one-step transductions is denoted by Ö.

It is obvious that O is properly included in T. The following proposition states
that we can use the itération of a one-step transduction to characterize UCI(T).

Proposition 5.2. The family UCI(T) is equal to the family TÖ+T. This means
that a transduction r belongs to UCI(T) if and only if r = aicr^os for some

2 G Ö.

Proof. It is clear that it sufïices to prove that 7+ is included in TO_j_T. Let
r G T be a l.p. rational transduction which does not contain the couple (e:, s). We
construct three rational transductions a\, a2 and &% (ail length-preserving) such
that r + = aia^as and a2 G Ö.

Since the transduction r is rational, it is realized by a transducer T = (E, S', Q,
S,{QO}IF) with S = alph(Dom r) and E' = alph(Im r). Since r is length-
preserving, we can suppose that Dom Ö Ç Q x E and that for each (g, a) G Q x E,
we have ô(q,a) Ç Q x S' (see [4], p. 265).

• The transduction o~\ marks the flrst and the last letters of each word of E*
and places the initial state q0 on the first letter, whereas the remaining letters
are unchanged. Formally, the transduction ai is defined by:

o-i = {(aub, (qOyà)ub) \ a-,6 G S,uG S*} U {(a, (qo,à)) \ a G E}^

The next transduction, o<i simulâtes, by itération, several computations of
the transducer T. It is the one-step transduction associated with the couple
(X UQxX, P) where X is the alphabet containing letters of E, E' and these
letters with the begin or end marks (or both), and P is the finite relation
defined by P = Px U P2 U P3:

- the set Pi initializes in a non-deterministic way a new run of the
transducer:

Pi ={(à,(qQià)) | aeE}U{(â,(g o ,â)) | a € E},
— the set P2 simulâtes a transition of the transducer:

the set P3 deletes the state on the last letter when this state leads to a
final state by reading this last letter:

^3= U

q' E F
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• The last transduction <j3 vérifies that there is no state in the word and deletes
the marks:

as = {(àub,aub) | o , 6 e E ' , u € E/*}U{(à)o) | a e E'}-
Namely, applications of a^a^crs look like the following:

i—>- (qOi a'o)aia2a3

h—+ a/
0(qua1)a2a3 if (qua'o) e ö(qo,ao)

<?2 (P2)

H—+ ao a ife,a2)a3 if (ç2)ai) € <ï(çi,ai)
0-2 (P2) ^

($0, a>o)ofi(q2, ̂ 2)03

0-2
* a%(q'1,a

/
l)(q2,a2)a3 if ( ç i X )

)

^ <<(ç2,a2)fe,a3) if tó,a?) €*(«!,ai)
(P2)

- ^ a^a^ç^, a2)a^ if (g, a^) € S(q3i a3)
(P3) —

for some g G F

for some qf e F
nff nn nnnn

U() tti tio t*3 •

This dérivation shows how the word aoaia2a3 may be transformed into ol^d^^z
where

ö u ö 1 > a a û a

Notice that these two dérivations are not separated, Le. the transduction on
a^a^a^a^ begins at the fourth step while the first one is not fmished.

The reader shall easily verify by himself that T + = aia^&s-
Nevertheless, if (e,e) belongs to r, we use the same construction but we add

the couple (e,e) to ai, P and a3. D

In order to prépare the next results, we need to consider context-sensitive
languages which are closely related with O+ .

Lemma 5.3. Let A G CS(£*) be a context-sensitive language over E. There exist
a regular language R and a one-step transduction r such that A = i?r+(nH*).

Proof. First, we consider a language A over E which does not contain the empty
word. Since A is a context-sensitive language, it is generated by a length-increasing
grammar G = (S, V, P, 5) where V.is the set of variables, P the set of productions
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included in (£ U V)* x (E U V)* such that for every (u, v) € P we have \v\ > |u|,
and S is the axiom.

We build a one-step transduction r associated with (EU^U {$}, Q), where $ is
a new letter which does not belong to S or F, and Q is the set of rewriting rules
defined by:

Q = {(u$M-!ul)V) | (u> v) € p} y {(a$j $a) | a G S U

It is easy to see that A = (S$*)r+(n£*).
Let vl be a context-sensitive language which contains the empty word. We use

the same construction for A \ {e} and we add the couple (e, e) to Q. Then, we get
+ . •

Lemma 5.4. Tfte c/ass o/ context-sensitive languages is closed under transduc-
tions o/UCI(T).

Proo/. Clearly, it suffices to show that the class of e-free context-sensitive
languages is closed under iterated one-step transduction (Prop. 5.2). Let A G
CSe(E*) be an £-free context-sensitive language and r a one-step transduction
associated with (X,Q).

Since context-sensitive languages are closed under length-preserving rational
transductions, the language B — Ar is an e-ixee context-sensitive language. This
language is generated by a grammar G = (X, V, P, S) in Kuroda normal form [10]:

Vu-^vGP (u,v)G(V xX)U(V x V2)U(V2 x V2).

We construct a grammar Gf = (X,V^P\S) where the set of productions is P
increased by the rules of Q: P ' = P U Q. Since each rules in P has a left part
in V* and since each rules in Q concerns only words over X, it is easy to see
that C(Gf), the language generated by G', is equal to Ar+. Moreover, G" is a
length-increasing grammar, so Ar+ is context-sensitive. •

From these two lemmas, we can deduce the following resuit.

Corollary 5.5. Let A Ç E* be a language over E. It is a context-sensitive
language if and only if there exist a finite alphabet X and a length-preserving
rational transduction r such that A = (X*)r+(nE*).

Proof Let A G CS(S*) be a context-sensitive language. By Lemma 5.3 we
know that A = i&r+(n£*) where R is a regular language over an alphabet X
and r is a one-step transduction. It is easy to construct a length-preserving ra-
tional transduction a' from {a}* into X* such that R = {a}V. Hence, we
have A = {a}*tr'cr+(nS*). According to Proposition 4.4, we know that J V +

= (n{a}*)r+(nE*) for some r eT. The equality A - {a}*r+(nE*) then clearly
holds.
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Let r be a length-preserving rational transduction and let X be a finite alphabet.
By Proposition 5.2 we know that r + — o-ia^os where <7i and cr3 are two length-
preserving rational transductions and a2 a one-step transduction. Let us dénote A
the language X*r+(nE*). We have A = XVicr^c^nE*). The language X*<n is
clearly reguîar. By Lemma 5.4, we know that X*GX<J^ is context-sensitive. Since
the class of context-sensitive languages is closed under T and under intersection
with regular sets, A is also context-sensitive. D

The characterization of context-sensitive languages by one-step transductions
allows us to show the next resuit which concerns context-sensitive transductions.

6. CONTEXT-SENSITIVE TRANSDUCTIONS

The purpose of this section is to establish a similar resuit for transductions of
UCI(T) to the one stated by the Nivat's theorem for rational transductions [18].
This theorem can be stated as follow.

Theorem 6.1 (Nivat [18]). A transduction r is rational if and only if there exist
two morphisms ip and if; and a regular language A such that:

Moreover, we can always flnd two morphisms <p and ip and a language A which
satisfy the following property:

Va E alph(A) aip.aijj ^ e. (P)
We extend this characterization to define "context-sensitive transductions".

Définition 6.2. Let r be a transduction. The transduction r is a context-sensitive
transduction if and only if there exist two morphisms y?, ip and a context-sensitive
language A which satisfy the property (P) and such that r = <p~l(nA)ip.

We force the morphisms to verify the property (P) because without this
restriction we obtain the class of "recursively enumerable transductions" which
is the class of transductions (computations) which can be realized by a Turing
Machine.

Indeed, let B € r.e. be a recursively enumerable language. We know that B
is the image of a context-sensitive language A by a morphism ?r (which can be
erasing) [14]. Hence, the intersection with B can be realized with the intersection
with A: (nB) = 7r~1(r\A)7r. Therefore, without the restriction we can obtain ail
"computable" transductions. But, it seems to be préférable to restrict our study
to a less powerful class.

Hère, we are interested in the family of length-preserving context-sensitive
transductions which is denoted by Tes-

In the case of length-preserving rational transductions, we can assure that h
and g are two letter-to-letter morphisms (it is a resuit attributed to Eilenberg
and Schützenberger presented in [4] - see also [15]). This resuit means that
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T = A4~1(nRec)À4. We show that if a context-sensitive transduction is length-
preserving, we can use letter-to-letter morphisms in its définition. In other words,
we have Tcs = M~1(f)CS)M.

Lemma 6.3. Let r G Tes be a length-preserving context-sensitive transduction.
There exist two letter-to-letter morphisms (p, tp and a context-sensitive language A
such that T = ip~l(nA)ip.

Proof. Let r G Tes be a Lp. transduction defined by r = a 1(nB)a' with er, af

two morphisms, and B a context-sensitive language with the following property:

Va G alph(I?) acr.acr' ^ e.

We can suppose that alph(i?) = alph(Dom a) — alph(Dom er'). We consider the
following alphabets:

X = alph(Im er), Y = alph(Im </), S = alph(Dom of).

We distinguish two cases:

• If X n Y = 0. We consider the morphism h from £* into (X U Y)* defined
by ah = aa.aa'. Notice that h is non-erasing. We dénote by 6 the partial
commutation where the letters of X commute with the letters of Y:

0 = {(zi, v) \ uUx = vïlx A uTly — vliy }-

Let g be the morphism from (X x Y)* into (X U Y)* such that (a;, y)^ = xy.
It is easy to see that

r = n f 1(nA)n2 with A = BhOg-1.

Since the class of context-sensitive languages is closed under non-erasing
morphisms, inverse morphisms and partial commutations (it is a corollary of
Lem. 5.4 - see also [3,22]), the language A is also context-sensitive and the
property holds.

• If X and Y are not disjoint. It sufiices to rename the alphabet Y with a
bijective letter-to-letter morphism p and to apply the previous construction
for a~1(C\B)a/p.

The main resuit of this section is the following equality.

Theorem 6.4. The classes UCI(T) and Tes coincide.

In order to obtain this result, we prove separately each inclusion.

Lemma 6.5. Tbs Q UCI(T).
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Proof. It is clear that it suffices to show that (nCS) C TO+T. Hence, for a given
context-sensitive language A G CS(S*), we build three l.p. rational transductions
<7i, a2 and a3, where a2 is one-step, such that (C\A) = aia^as.

According to Lemma 5.3, we have A — i?r+(nE*) where R G Rec(X*) is
a regular language and r is a one-step transduction associated with the couple

The rôle of the three transductions ai, a2 and 0-3 is to verify that a word u G E+

can belong to wr+ for a word w G X*. These transductions are defined as follow:
• the first transduction ai générâtes from u every words of R of the same

length as u. It also memorizes the word u:

ai = {(u,v) G E* x (S x X)*) | vlli =uAvU2 G R}-
We can also define cri as n^1(n(JRn2~1)), hence it is clear that ai is rational,

• the transduction a2 applies r to the second component of words of (E x X)*:

C2 = {(u, v) G ((E x X)*)2 | uni = vlli A ̂ n2 G wn2r}-

It is easy to see that a2 is the one-step transduction associated with
(E x X, Pf) where:

Pl = {(x,y) | xlli = yïïi A (xU2,yU2) G P},
• the last transduction 0̂3 vérifies that the two components are identical and

over E:

cr3 = {(u,v) G (S x E)* x E*
This transduction is obviously rational.

A word w G E* belongs to Dom aia2 as if and only if there exists a word w e R
such that u G wr+\ in this case we have uaia^as = {u}. Thus, aia^as is equal
to (nA). D

The converse inclusion is deduced from the following lemma:

Lemma 6.6. Let T <Z X* x Y* be a transduction belonging to UCI(T). The
language

A = {ue(X x Y)* \ uU2 G

is a context-sensitive language and r = n j 1

Proof. We use-Proposition 5.2 and we show that for any transduction a in Ö, the
iterated transduction a+ belongs to Tes- Let (X,P) be the couple alphabet-rule
set associated with a.

Let L be the language over (X x X) defined by:

L = {ue(X xX)* \ uU2 G
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We want to prove that this language is context-sensitive. Let ar be the one-step
transduction associated with (X x X,Pf) where the set P1 is equivalent to the
application of a rule of P on the second component of a word over (X x X):

P' = {(*,!/) £(Xx X)* | xTlx = yUx A (xU2,yU2) e P}-
We can see that:

L = L'a'+ with L' = {u e (X x X)* | tdli = uU2}-
Since the language V is regular, by Lemma 5.4 we know that L is context-sensitive.
By the définition of L, we can easily deduce that a+ — II^1(nL)Il2. •

7. R E C O G N I Z A B L E PICTURE LANGUAGES AND TRANSDUCTIONS

In this section, we consider recognizable picture languages in the terminology
of Giammarresi and Restivo (see [6] for complete définitions). A picture over an
alphabet E is a two-dimensional rectangular array of letters of E. We dénote the
set of ail pictures over E by E**. The set of all pictures over E of n rows and m
columns (n,m ^ 0) is denoted by En 'm .

Let p be a picture. We dénote by p{i^j) the letter which occurs at the zth line
(from top) and j th column (from left). The projection by n of p is a picture with
the same size where the letter at a coordinate (x, y) is the image by n of the letter
p(x,y). The set lines(p) (respectively the set columns(p)) represents the set of all
rows of p (taken as a string) (resp. all columns of p taken as string from top to
bottom).

According to [6] and [11], we can define recognizable picture languages
as follows:

Définition 7.1. Let L be a picture language over E. The picture language L is
recognizable if and only if there exist two recognizable string languages H and V
over an alphabet X and a mapping TT from X into E such that:

L = {ƒ G E** | 3p e ^~XU) s.t. lines(p) C F A columns^) C V}-

Because of the strong links between recognizable and local string sets, it is easy to
see that the recognizable string languages can always be replaced by local string
languages.

For instance, the set of all squares over the alphabet E = {a}, denoted by L,
is recognizable since it can be obtained by projection of the language K of all
pictures over X = {0,1} which have exactly one occurence of the letter 1 on each
row and on each column. The language K can be defined by using recognizable
string languages:

K = {p e X** | lines(p) Ç 0*10* A columns(p) Ç 0*10*}-
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The pictures of K look like the following:

0
1
0

1
0
0

0
0
1

0
1
0
0

0
0
0
1

1
0
0
0

0
0
1
0

The language L is the projection of K by the projection ir : X —» H such that
?r(0) = TT(1) = a.

We dénote by fry {p) and fr_L (p) the words which appear at the top of p and at
the bottom of p, respectively.

With a picture language, we associate a transduction which is defined as follows:

Définition 7.2. Let L be a picture language. The transduction associated with
L is denoted by TL and is defined by:

TL = {(fr-r(p),fr_L(p)) | P e L}-

The class of transductions associated with recognizable picture languages is
denoted by 7Rec(P£,).

The idea is to consider pictures as computations over the words which occur on
the first lines. We introducé this new family of transductions because we have the
next resuit:

Proposition 7.3. The class Tne^PL) coïncides with the class of transductions of
UCI(T) which do not contain the couple {s,s).

This proposition is deduced from Lemmas 7.5 and 7.6 but we first need a tech-
nical lemma:

Lemma 7.4. Let L be a recognizable picture language. There exists a recognizable
picture language K containing no picture of height one such that TL —TK-

Proof The language L is defined with two recognizable string languages H and
V over an alphabet X and a projection -ir according to Définition 7.1. Let V' be
the recognizable string language defined by:

V' =XVH ({aa | a G X}X*).

It is clear that the recognizable picture language

K = {ƒ e E** I 3p e 7T~1(/) s.t. lines(p) CH A columns(p) Ç V'}

vérifies TK = TL- Ü

Lemma 7.5. The class TRec(PL) is included in UCI(T).
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Proof. Let us consider a recognizable picture language L over an alphabet S.
According to Lemma 7.4, we can suppose that L does not contain pictures of
height one. The language L can be defined with two local string languages H and
V over an alphabet A and a projection TT from A into S:

L = {ƒ e £** I 3p G TT"^ / ) s.t. lines(p) Ç ff A columns(p) Ç V}-

First we consider the language

L; = {pe A** | lines(p) Ç i / A columns(p) Ç F}

and we show that TL> belongs to UCI(T). The idea is to define two alphabets X
and Y included in £ and a length-preserving rational transduction r in order to
define a picture language K:

^ p(zr 1) .. .p(î, m) e (p(z - 1,1) .. .p(t - 1, m))r,
fr±(p)€Y*.

This property means that TK — (r\X*)r+(nY*) and thea that TK belongs to
UCI(T). The next step will be to show that K' = L''.

Because L does not contain pictures with less than two rows, we can suppose
that the language V does not contain words of length less than two. Then V,
which is local, can be defined by three sets B Ç A, F Ç A2 and E Ç A:

V = BA* H {w e A* t Fac2(» Ç F} H A*E.

The set B corresponds to the set of authorized beginnings, E to the set of
authorized endings and F to the set of authorized factors of length two. Moreover,
since the words of V are longer than two, we have B n E = 0.

We define X = B, Y = E and the transduction r is defined by:

T = | ( a o . . . a n , 6 o . . . & n ) | V l < z < n . a.h € F / '

This transduction is rational since it can be defined by a bimorphism (see Nivat's
theorem recalled as Th. 6.1). We dénote by R the regular string language defined
by:

It is clear that r = n^ 1
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For now we show that K = V\ Let p G A71*™ be a picture belonging to K.
Since X and Y are disjoint (B n E — 0), we know that n > 2. By définition of K,
we have

VI < i < n p(i, 1).. .p(i, m) G (p(i
p(n, 1) . . . pijl-) TU) G Y*.

From the équation (4), we can deduce that

- i , i )
(3)
(4)
(5)

VI < i < n p(i\ 1).. .p(i, m) G i/,
V l < i < n V l < j < m p(i~lj)p(ij) G D.

Hence, by équations (3, 5) and (7), we obtaïn:

(6)

(7)

VI < i < m p( l , i ) . . .p(n,i) G V.
Combined with the équation (6), it means that p G L'. This means that V Ç K
by construction of K.

Then we know that rL> =. (nX*)r+(n7*) G UCI(T). The transduction
associated with L is now easily defined in terms of composition and itération
of l.p. rational transductions: TL = -ÏÏ^TWÏÏ. SO TL belongs to UCI(T). D

Lemma 7.6. Let r G UCI(T) be a transduction which does not contain the couple
(£,s). It also belongs to

Proof. Let r be a transduction of UCI(T) which does not contain the cou-
ple (e,e). According to Corollary 4.5, we know that r = (DX*)a+ip where X
is a finite alphabet, (p a letter-to-letter morphism and r a length-preserving ra-
tional transduction. We dénote by Y and Z respectively the alphabets of the
domain of tp and of the image of ip. Let S be the alphabet used in the itération:
E — alph(Dom aUlma). We can suppose that X and Y are included in E.

We construct a recognizable picture language K such that TK = T. We use the
alphabet A = (E x E). First, we define a recognizable string language La which
corresponds to one application of a:

La = {lu G A* | 1ÜÜ2 G

Let us consider a picture of two rows respectively occupied by the words u and v
of La. This picture looks like the following:

u
v

(xo,yo)
(x'o,y'o)

(xi,yi)

(x'i,y[)
(xn,yn)
(X'n,y'n)
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If we impose for every 0 < i < n the equality y% — x1^ we have vll2 € vH\a2.
At reverse, for each couple of words w, wf in H* such that w' € wa2, there exists
a picture with ulii = w and i;II2 = w'. It is the main idea of the construction.
Let us consider the string language C" over A defined by:

C1 = {w e A* | V(z, y)(z', y') G Fac 2 H y = z'},
and the recognizable picture language if' defined by:

K' = {pe A** | lines(p) Ç La A columns(p) Ç C'}-

It is easy to see that n^1TK'n2 = cr+. Fór a given picture p of Kf of height k
we have frx(p)n2 G frT(p)IIicrfc. Conversely, for each couple of words w, wf in S*
such that wf e wak, there exists a picture p in if' such that £rT(p)ni = IÜ and
frjL(p)Il2 = lu'.

To conclude the proof, we just need to assure that the first row contains only
words over X and that the last row contains words over Y and to apply the
morphism <p. Let L and C be the recognizable string languages defined by:

L = ruiaur,
C = XC'Yn({x(x,y)\x€X,ye.i:}A*)

n(A*{(xjy)(y<p) \xèV,yeY}).

The language K is defined from L and C:

K = {p G A** | lines(p) Ç L A columns(p) C C}-

The resuit clearly holds since we have TK = T. •

Using Corollary 5.5 and Proposition 7.3, we easily get a resuit concerning
recognizable picture language theory [12].

Corollary 7.7 (Latteux and Simplot [12]). The family of frontiers of recogniz-
able picture languages is exactly the family of e-free context-sensitive languages.

In this corollary, "frontiers" mean the "bottom lines" of the pictures.

8. THE UCI-CLOSURE OF LENGTH-PRESERVING RATIONAL
FUNCTIONS

We now turn to itérations of functions. Indeed, it is natural to wonder if
we obtain another class if we take length-preserving rational functions instead of
rational transductions. So we introducé the family "UCI(ƒ") and we show that it
coincides with UCI(T).

To use functions in place of transductions is a way to reduce the non-determinism.
When we use non-functional transductions, during the computation we have to
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choose one word in the possible images of the current word, but with functions we
have no choice.

Although, there is non-determinism which occurs in the application of the
functions. That why we also consider sub-sequential functions and ts-sequential
functions.

In order to define these two families of functions, we need to introducé determin-
istic finite transducers. There exist several notion of determinism for transducer,
hère we use a natural définition which means that at every step of the computation
we have no choice to do.

Let T = (X, y, <3,£,/, F) be a finite transducer. The transducer T is determin-
istic if

I is a singleton
6 is functional
V(g, u) e Dom ô Vv e LFac(u) \ {u} ö{q, v) = 0.

A rational function is sub-sequential if it can be realized by a deterministic
transducer with an output function associated with final states - the word given
by this function is concatenated at the end of the output word (see [2] for more
précisions). A rational function which is realized by a deterministic finite trans-
ducer is a called ts-sequential for sequential with terminal states.

The class of all length-preserving sub-sequential functions is denoted by <S, the
class of all length-preserving ts-sequential functions is denoted by Sts and we have

Sts c s-
We can notice that for every Lp. ts-sequential function (and then l.p.

sub-sequential functions) we cannot construct a letter-to-letter deterministic fi-
nite transducer (ie. every transition is labeled with a letter as input and a letter
as output) - for instance, consider the function which gives 00 for 10 and 11 for 11.

The class of letter-to-letter ts-sequential functions, denoted by 5ts,n, is then the
simplest class. In this class, when we read a letter we can output a letter with no
choice. We have the following obvious inclusions:

M C 5ts.ii c 5 t s c S c f c T .

Our results concern the class 5tS)n and are naturally extended to the other classes
that contain this class and which are more classic.

The aim is then to show that the UCI-closure of <Sts,n is equal to UCI(T). It
sufnces to show that Rat(5ts,n) contains all l.p. rational transductions. The first
step is to show that inverse letter-to-letter morphisms are in Rat(5ts,u)-

Lemma 8.1. Let h G M be a letter-to-letter rnorphism. There exist three
letter-to-letter ts-sequential functions o\rei,oz such that h~x = ^1^0-3. This
means that M~1 C 5tS)n<5ts,ii+*5ts,ii.

Proof. Let h be a letter-to-letter morphism trom X* into Y*. The letters of X
are denoted by {0,1 , . . . , k}. The idea is to enumerate all words over X with the
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FIGURE 3. A transducer which realizes the successor function.

same length than the input word and to compare their image by h with the input
word. We define an order -< over X*:

U •< V <=> \u\ = \v\ A Ü <iex V)

where <iex is the classical lexicographie order. ït is clear that •< is total over each
S' for i e N. For instance, if X = {0,1,2}, we have:

000 ^ 100 ̂  200 ̂  010 ̂  110 ̂  210 ̂  020 < 120 < 220 ̂  001 -< - • d 222.

Hence we define a function a from X* into X* which corresponds to the suceessor
function and where the successor of a word 2* is Ö1:

Vu € X* \ {A;}* ua = v such that
G X* \ {u, f} u ^ w ^ Vj

Vue{k}* ttcr^OW.

It is easy to see that a belongs to <StSîn- For instance, if X — {Q, 1,2}, the function
a is realized by the transducer given Figure 3. And we have 0V + = X2 for ail i.

We now define the three Ietter-to4etter ts-sequential functions:

F -^ ( 7 x X)*
u i—^ v such that ?;ïïi = u

(F x X)* -^ (Y x X)*
u *-» i; such that fui =

(FxX)* ^ X*
u i—> u such that t; = UÜ2 A uIÏ2/i =

It is easy to see that, for all u E Y*\ the set uo\G^ contains all words over (Y x X)
with u on the first components and any word over X on the second components.
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The function 03 sélects the word on second components when its image by h is u.
Then we have

It is then easy to show the main resuit of this section.

Theorem 8.2. The classes Rat(«Sts,ii), Rat(5t8), Rat(5), UCI(^) and UCI(T)
coïncide.

Proof Since we have Rat(<Sts,n) Q Rat(«Sts) Ç Rat(5) Ç UCI(^) C UCI(T), it
sufïices to show that Rat(<Sts,n) = UCI(T). We just have to notice that
T = M~1(nRec)M is included in Rat(<Sts,n) by using Lemma 8.1 and the fact
that the intersection with a regular language and a morphism are letter-to-letter
ts-sequential functions. •

The next question concerns the existence of a représentation like in Theorem 4.3.

Proposition 8.3. The family UCI(T) is equal to the <Sts,n(<Sts,ii + Sts,n)+«Sts,ii-
This rneans that a transduction r belongs to UCI(T) if and only if r = 01(02
+cr3)

+a-4 for some 01, a2, 03,04 e 5tS)n.

Proof Let r be a transduction belonging to UCI(T). According to Corollary 4.5
and Lemma 8.1, we have

r =
for some alphabet X, some functions ai,02,03 G <Sts,n and some letter-to-letter
morphism <p. By renaming the different alphabets used in the functions, we can
suppose that:

alph(Dom cri) n alph(Im 0̂ 2) = alph(Dom 01) Pi alph(Im 01)
= alph(Im 0"i) Pi alph(Dom 03) = alph(Im 01) H alph(Dom <p)
= alph(Dom 02) f l l = alph(Dom 02) Pi alph(Im 03)
= aîph(Im 0̂ 2) H alph(Dom <p) — alph(Dom 03) n X
= alph(Dom 0-3) Pi alph(Im 03) = 0.

Hence, we obtain r = (nX*)(ai +&2 +^3)+^« Since the alphabets of the domains
of 0"i and 0-3 are disjoint, their union is still a letter-to-letter ts-sequential function
and the resuit holds. •

We are not able to obtain a finer characterization even by using more gênerai
l.p. rational functions such as S, <Sts or J7. But it is still an open question whether
or not UCI(T) and TT+T coincide.

But these results allow us to answer to an open question of Wood who studies in
[24] the génération of context-sensitive languages by using itération of propagating
deterministic GSM maps. A propagating deterministic GSM map is a rational
function which can be realized by a deterministic transducer T = (X, Y, Q) 5, ƒ, F)
such that Dom ô Ç QxX and Im ÔDQ x {e} = 0. We call these maps propagating
ts-sequential functions and the interesting point is that this class contains the
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class <Sts,n- The author defines, for n > 0, a class of languages called £(n-EPDF)
which corresponds to the classes of languages which can be generated by applying
to a letter the itération of the union of n propagating ts-sequential fonctions.
Wood shows that the class £(3-EPDF) coincides with the class of e-free context-
sensitive languages and asks whether or not this holds for the classes £(2-EPDF)
and£(l-EPDF).

By using Corollary 5.5 and Proposition 8.3, we show that £(2-EPDF) alsö
coincides with the class of context-sensitive languages.

Proposition 8.4. Let A be an e-free language over the alphabet £. Ris a context-
sensitive language if and only if there exist two propagating ts-sequential fonctions
tp, ip and a letter S such that A = S(<p + ^)+(nE+). This means that C(2-EPDT)
= CS£.

Proof The right to left implication is obvious since £(2-EPDF) is included in
£(3-EPDF) = CSe. For the reverse implication, we use Corallary 5.5 which can
be written like this: A — a*r+(n£*) where r is a transduction of UCI(T). Since
A is e-free, we have A = a + r + (nS + ) .

Moreover, by using the same idea than in Proposition 8.3, we have:

where ai and a2 are two letter-to-letter ts-sequential functions. Let S be a
new letter which does not belong to any alphabet. We define two propagating
ts-sequential functions a[ and a'2:

a[ - {(Sn,Sn+1) | n e N * } ,

af
2 = {(Sn,an) | n€N*}-

It is easy to see that A can be defined as (we use the fact that the alphabets of
the domains of a[ and af

2 are different thant those of ai and a'2):

A = S(a[ + oi)+(cri + a2)+(n£+) = S(a[ + <J2 + <n + <r2)

To conclude, it sufEces to notice that the alphabets of the domain of o\ and a[
(resp. a2 and a2) are disjoint and that this implies that tp = ai -h a[ (resp.
tp = a2 + a2) is a propagating ts-sequential fonction. •

9. REPRÉSENTATION THEOREM AND CLOSURE PROPERTIES

If we recapitulate results stated by Theorem 4.3, Proposition 5.2, Theorem 6.4,
Proposition 7.3, Theorem 8.2 and Proposition 8.3, we get the following représen-
tation theorem.
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Theorem 9.1 (Représentation theorem). Let r be a transduction. The following
properties are equivalent:

1. the transduction r can be defined by using union, composition and itération
o f length-preserving rational trans ductions (r G UCI(T)J;

2. there exist three length-preserving rational transductions ai, 02 and «73 such
that T = (J\<T%<JZ (T G TT+T);

3. there exist two length-preserving rational transductions a± and a% and a
one-step transduction a2 such that r — aia^os (r G TO+T);

4. there exist two letter-to-letter morphisms (p and ip and a context-sensitive
language A such that r = ip~~l(nA)/ip (r G Tes);

5. there exists a recognizable picture language L such that r \ {(e,e)} = TL

6. thé transduction r can be, defined by using union, composition and itération
of letter-to-letter ts-sequential functions (r G Rat(<StS)n)j;

7. there exist four letter-to-letter ts-seqùential functions G\, <X2, 03 and a^ such
that T = ai(a2 + <73)+c"4 (r € StSlu(5ts;u + <Sts,n)-f5ts,nJ-

These different characterizations of UCI(T) give to this class a kind of robustness
and allow us to show some closure properties. We already know that UCI(T) is
closed under union, composition, itération and inverse. The following proposition
states two additional closure properties which are not obvious with the définition
of the class.

Proposition 9.2. The class of transductions UCI(T) is closed under intersection
and différence.

Proof. Let r^a è UCI(T) be two transductions from X* into Y*, According to
Lemma 6.6, we have r = n^"1(n^4)Il2 and a = U^1(nB)Il2 where A and B are
two context-sensitive languages over X x Y. The intersection and the différence
of r and a can be written as follows:

T D a = {(u, v) | (w, v) G r A (ii, v) G a},

- •nj;1(n(i4rïB))n2,
r \ a = {(u, v) | (u, v) G r A (u, v) 0 a},

We simply use the fact that the class of context-sensitive languages is closed under
intersection and complement [9,21]. So Af)B and AnB are also context-sensitive
and the closure properties hold. ü

Let us remark that the closure under intersection as well as several results -
like the first characterization given in Theorem 4.3 - can be shown by using recog-
nizable picture languages. Notice that the class of recognizable picture languages
is not closed under complement [6] and then neither under différence.
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This last closure property allows us to obtain an unexpected characterization
of UCI(T) with one-step transductions.

Proposition 9.3. The family UCI(T) is equal to the smallest family of
transductions which contains Ö and is closed under union, composition, itération
and différence.

Proof. We use the proof of the Proposition 5.2. In this proof, we show that a
transduction r G UCI(T) is equivalent to aia^os where <7i marks the begin and
the end letters, a<i is a one-step transduction and «73 is an intersection with a free
monoid followed by an unmarking.

We just have to show that marking, intersection with a free monoid and unmark-
ing can be realized by union, composition and différence of one-step transductions.

It is obvious that the identity over the alphabet E - in other words the inter-
section with E* - is the one-step transduction associated with the couple (S, {e}).

Let ( 7 Ç I * x ( I U l ) * b e a Lp. rational transduction which marks the end
letter of the input words:

a = {{ma, wa) \w€X*,aG X}-

Let p and p1 be the one-step transductions associated respectively with ( I L J I , P)
and {X U I , P ' ) where P and P ' are defined by:

P = {M|û€X},
P' = {{ab,ab\a,beX}-

The transduction a is equivalent to {f)X*){p\pf). In the same way a transduction
which marks the first letter is realized by différence on two one-step transduction.

It is obvious that the unmarking - where there is only one marked letter - can
be realized by a one-step transduction. G

10. CONCLUSION

The class UCI(T) is an interesting class of transductions which corresponds
to length-preserving computations where the work space is bounded by the size
of the input. Nevertheless, the computation cannot always be deterministic. If
we show in Proposition 8.3 that we can use ts-sequential fonctions, but the it-
erated function is a union of two fonctions and then can be non-deterministic.
It is an open question whether or not this class, which corresponds to length-
preserving context-sensitive transductions, is equal to Lp. deterministic context-
sensitive transductions. This last class is studied in a paper in préparation [20]
and shown to be equal to !F!F+!F.
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We can notice that it is undecidable whether or not a given context-sensitive
transduction is a rational transduction (since it is equivalent to test the recog-
nizability of a context-sensitive language). But we can consider restricted classes
of context-sensitive transductions. For instance iterated one-step transductions
with only one rule have already been studied in [16] and the decidability of the
rationality has been conjectured:

Conjecture 10.1 (Lilin 91 [16]). Letr be a one-step transduction associated with
(X, P) where P = {u —> v} and u ^ v. The transduction r + is rational if and
only if there do not exist words x,y,z G X* such that u = xyz and v = zyx.

We would like to thank Michel Latteux for supervising this work and his constant encour-
agements and help during the rédaction. We would like also to thank Jacques Sakarovitch
and an anonymous référée for their help to obtain a rigorous writting of this paper.
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