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A CHARACTERIZATION OF POLY-SLENDER
CONTEXT-FREE LANGUAGES *

LUCIAN ILIE 1 ' 2 , GRZEGORZ ROZENBERG3 AND ARTO SALOMAA1

Abstract. For a non-negative integer /c, we say that a language L
is k-poly-slender if the number of words of length n in L is of order
O{nk). We give a précise characterization of the /c-poly-slender context-
free languages. The well-known characterization of the /c-poly-slender
regular languages is an immédiate conséquence of ours.

AMS Subject Classification. 68Q45, 68Q70.

INTRODUCTION

An infinité séquence (#i,(n))n>o can be associated in a natural way to a lan-
guage L: #L(W) is the number of words of length n in L. The idea is by no
means new; for instance, in the first ICALP, Berstel [3] considered the notion of
the population function of a language L which associâtes, to every n, the number
of words of length at most n in L. The notion of the number of words of the same
length is certainly very basic one in language theory and this is why some results
have been proved several times. We recall briefly in the following the history of
such results.

When #L(n) is bounded from above by a fixed constant, such languages are
called semidiscrete in Kunze et al [11] and slender in Andra§iu et al [1]. The
slender regular languages have been characterized as finite unions of sets of the

Keywords and phrases: Context-free language, poly-slender language, Dyck loop.

* This research was partially doue during the first author's visit to Leiden University.
1 Turku Centre for Computer Science TUCS, 20520 Turku, Finland.
2 Research supported by the Academy of Finland, Project 137358. On leave of absence
from Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest,
Romania.
3 Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden,
The Netherlands and Department of Computer Science, University of Colorado at Boulder,
Boulder, CO 80309, U.S.A.

© EDP Sciences 2000



78 L. ILIE, G. ROZENBERG AND A. SALOMAA

form uv*w in [11] but the result was not well known and it was proved again
independently by Pâun and Salomaa [16] and Shallit [19]. A similar situation is in
the context-free case. The characterization of the slender context-free languages
as finite unions of sets of the form {uvnwxny | n > 0} was proved by Latteux
and Thierrin [9] (they called such finite unions itérative languages) but, again, the
result was not widely known and the same characterization was conjectured in [16]
and shown to be true by Ilie [12]. The proof of [12] is completely different from the
one of [9]. The characterization has been strengthened in [10] where some upper
bounds on the lengths of the words u, v, wy x, y are given.

The case when # L ( H ) is bounded by a polynomial (we say L is poly-slender)
has been considered by Latteux and Thierrin [13] who proved that for context-free
languages the not ion of poly-slenderness coincides with the one of boundedness.
Once more, the result was proved again by Raz [17]. In the case of regular lan-
guages, Szilard et al. [20] gave a fine characterization based on the order of the
polynomial which bounds # L ( ^ ) .

Besides the above mentioned results, there has been recently a lot of attention
devoted to other aspects of slenderness. Some applications of the slender languages
to cryptography are shown in [1], Shallit [19] investigated slender regular languages
in connection with numération Systems, the slenderness of L-languages has been
considered by Dassow et al [5] and Nishida and Salomaa [15] and Honkala studied
in [7] and [8] a generalization of the notion of slenderness, called Parikh slenderness,
by considering languages for which the number of words with the same Parikh
vector is bounded from above by a constant.

In this note, we consider the situation when the degree of the polynomial bound-
ing #z,(n) is a fixed non-négative integer; the obtained languages are called k-poly-
slender. Generalizing the result of [9] and [12], we give a characterization of the
/c-poly-slender context-free languages. The structure of the Dyck language is the
base for the structure of these languages. The corresponding characterization given
in [20] for regular languages follows immediately from ours.

POLY-SLENDER LANGUAGES

We first fix some notations. For a word w and a letter a, \w\ is the length of
w, \w\a is the number of occurrences of a in w, and p(w) dénotes the primitive
root of w. The conjugacy relation is denoted ~; for two words u,v, u ~ v iff
u — pq, v = qp, for some p, q. The empty word is denoted by e. For basic notions
and results of combinatorics on words and formai languages we refer to [4,14]
and [18], respectively.

For a language L, dénote #L(n) = card({u> G L \ \w\ = n}); this is referred
to as the complexity (function) of L. For an integer k > 0, L is called fc-poly-
slender if #L(n) = O(nk). L is poly-slender iff it is &-poly-slender, for some
k>0.

A language L Ç £* is called bounded if there are some words w\, w^ - • • ,wn

G S* such that L C ^ ^ . . . ^ * . It is clear that the class of poly-slender languages
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is the same with the class of languages with the population function polynomially
limited. Therefore, the characterization theorem of [13] can be written as below
(it appears in this form in [17]).

Theorem 1. [13, 17] A context-free language is poly-slender iff it is bounded.

DYCK LOOPS

Consider the Dyck language of order ft, ft > 1, Dk Ç {[Z)]t | 1 < i < ft}*.
Dk is generated by 5 —• SS \ [tS]z \ e. Consider also a word z G Dk with
\z\[z = |z|]t = 1,1 < z < ft, and some words ul,vl,wl G E*, where E n {[t,]i |
1 < i < ft} = 0- For any integers n% > 0,1 < % < ft, define the morphism
hnit ,nfc : (S U {[,,], | 1 < % < ft})* — . S*, by a —> a, for a G E, [»—^ < %
] t — > < % 1 < 2 < ft. Put z = zi2f2...22fc,^ ^ {[z,]z | 1 < 2 < ft}. ThenD Ç E*
is a fc-Dyck loop if, for some uz, vz, wt, z as above,

D = ihnlt ,nk(w0Z1W1Z2W2 • • - Z2k'W2k) \ n% > 0} • (1)

We shall call z an underlying word of D. (Clearly, z is not unique.) Also, h will
stand for /iiîi) ;i and will be called an underlying morphism of D. D is a Dyck
loop iff it is a ft-Dyck loop, for some ft. Notice that if l < ft, then any Z-Dyck loop
is also a ft-Dyck loop.

We give below two examples of Dyck loops which will be used also later.

Example 2. For the underlying Dyck word z = [îhfefeUUfelskkleMTb, we con-
struct the Dyck loop

Lx - {a2ni(6a)ni6(a6)3n2ö r i365n46Tl5a4n5(a6a)n363n6a r i7ö2n76 r i2 | n% > 0} • (2)

About the underlying morphism we mention only that the images of any of ]± and
)Q are empty.

Example 3. The underlying Dyck word for the Dyck-loop

L2 = {(a6)2 n ia(6a)3 n 2aa6n 262 n 3ön 4aöan 4a3 n 3an 5a2 n i | n% > 0}, (3)

is z = [ïfefefeUWsklsh and we assume h(]5) = e.

BOUNDED LANGUAGES

The following resuit of Ginsburg and Spanier [6] will be essential for our purpose.

Theorem 4. [6] The family of bounded context-free languages is the smallest fam-
ily which contains ail finite languages and is closed under the following opérations:
(i) union, (%%) catenatton, (tu) (x^y)*L = Un>QxnLyn, for x,y words.
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Remark 5. Clearly, Theorem 4 is still valid if, instead of finite languages, one
starts from unary languages (that is, languages containing one word only). More-
over, if one starts from unary languages and uses only the opération (ii) and (iii)
from Theorem 4, then what is obtained is always a Dyck loop. Conversely, any
Dyck loop can be obtained in this way. Indeed, this is clear from the définition of
the Dyck loops; the role of the production S —> SS is the same with the one of
the catenation and the role of a production S —> [tS]i is the same with the one
of the opération *, in the sense that we use (uZiVi) * L.

Therefore, we get from Theorems 1 and 4:

Theorem 6. For a context-free language L, the following assertions are equiv-
alent: (i) L is bounded, (ii) L is poly-slender, (iii) L is a finite union of Dyck
loops.

Proof. First, (i) and (ii) are equivalent by Theorem 1. Second, (iii) clearly im-
plies any of (i) and (ii). Third, (i) implies (iii) follows from Remark 5 and the
distributivity of the catenation and "*" with respect to union. D

CHARACTERIZATION OF &-POLY-SLENDERNESS

We prove in this section our main resuit, that is, the characterization of the fc-
poly-slender context-free languages. In the case of 0-poly-slender languages, such
a characterization was proved in [9] and [12]; using the above notations, the result
of [9, 12] is written as

Theorem 7. [9, 12] A context-free language is 0-poly-slender iffit is a finite union
ofl-Dyck loops.

In what follows, we shall generalize Theorem 7 to:

Theorem 8. For any k > 0, a context-free language is k-poly-slender iff it is a
finite union of (k -f 1)-Dyck loops.

Before pro ving the theorem we need se ver al notions and a lemma.
For three words u,w,v such that u and v are non-empty, we say that w links

u with v, denoted link(u,w,v), iff p(u)w = wp{v)\ it means that there are words
p and q such that p(u) = pq,p(v) — gp, and w E (pq)*p. The idea is that w links
u with v when in words of the form unwvm the period \p(u)\ is continued over w
throughout v171 (unwvm is a prefix of p(ii)w), that is, one cannot really distinguish
w there. Notice that, when w is empty, link(rt, e, v) means precisely that u and v
are powers of the same word, in accordance with the intuitive meaning of link.

The following lemma will be a very useful tooi in the proof.

Lemma 9. Consider the words x* G £+,2/i G £*, and some non-negative integers
nurrii. Dénote w = yo^i1 yix%2V2 - - • x?rVr, w' = Vox^11 yix^2y2 .. . ^ r y r and
assume that link(x$, y^ Xi+i) holds for no i. Then there is a constant NQ, depending
only on the lengths of the words Xi and yi, such that, if all Ui^rrii are larger than
NQ and there is i with Ui ̂  rrii, then w ^ wf'.
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Proof. We prove that iVo = minWl (max \yi| + 4max \xi\) is good. Assume w = wf.
Without loss of generality, we may assume ni > mi. If (ni — mi)\xi\ > \yi\ +
|xi^2|, then, by Fine and Wilf's theorem and the choice of 7V0, p{x\) ~ p(x2)
and, if p(xi) = pq,p(x2) — qp, then yi G {pq)*p. This means link(xi,2/1,^2), a
contradiction. Otherwise, by the choice of 7V0, we get, for some s > 0, x"1"7711?/! =
Vip(x2)s thus again link(:ri, 2/1,3:2), contradicting our assumption. The lemma is
proved. D

Proof of Theorem 8. One implication is obvious. For the other, the basic idea is
to do the construction in Theorem 4 in a certain way, that is (roughly), anytime
"*" is applied, the highest power of n in the complexity function #i,(n) associated
with the language L is increased by one and, anytime catenation is applied to
two infinité languages, the highest exponent in the complexity of the resulting
language is the sum of the former two. Let us consider a context-free language L
which is fc-poly-slender. Then, by Theorem 6, L is a finite union of Dyck loops. If
L contains no /-Dyck loop with l > k + 1, then we are done. Assume then there
is such a loop, say D, and that it has the form in (1) with l instead of k. We may
assume, with no loss of generality, that UiVi 7̂  e, for any 1 < i < £, as otherwise we
have a Dyck loop of smaller order. We shall consider very much in the sequel the
links made by Wi between the two adjacent images of /i, h(zi) and h(zi+\). But
those images of h which are empty have no interest for the language (this is why
link is undefined when the first or the third component is empty) and therefore, for
any 1 < i < 21 — 1, we defme next(i) as the smallest j > i + 1 such that h(zj) ^ z.
If there is no X\x\V.(]n{zi) %v)iV}i+\ . . . wnext(ï)-i> Mznext(z)))> then, by Lemma 9, any
two different tuples of n^s (n^'s are ail assumed large enough - the complexity
order is not affectée!) give different words of D. Therefore, #D{U) / O(nl~2),
which contradicts the fact that L is fc-poly-slender. Consequently, there are such
links.

We then group together the linked powers and apply Lemma 9 to those. In order
to make things clear, we define two relations on the set {i | 1 < i < 2Z, h(zi) / e}.
(Recall that the positions i with h(zi) = e are ignored.) The first is chain(z, next(ï))
iff Wnk(h(zi)^WiWi-\-i . . . wnext(ï)-i» M^next(ï)))- We say that i and j are in the same
chain iff chaînez, j) , where chain*1 is the équivalence generated by chain. The
second is syst(i, j) iff chaînez, j) or z% = [p,Zj =]p, for some 1 < p < l. We say
that i and j are in the same system iff syst"(i, j) , where syst̂ * is the équivalence
generated by syst.

For the Dyck loop in (2), we have the following classes of chain^: {1}, {2,3},
{4,5,7}, {8}, {9}, {10}, {12}, {13,14} and the classes of syst0 (unions of the
former ones): {1, 2, 3,12,13,14}, {4, 5, 7, 8, 9}, {10}.

We next group together ail powers in the same chain. For (2) this means that
we write it as

Li = {a2ril&(a6)ni+3n26n3+5n4+ri5a4n5(a6a)ri363n6an7^2+2ri7 | m > 0}-
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Now, the application of Lemma 9 gives a different result in the sense that the
power s in the lemma are no longer single power s of our Dyck loop but linear
combinations of those in the same chain. This means for (2) that any new tuple
(2ni,ni + 3ri2,n3 + 5n4 + 715,4715,77-3, 3^6,7^7,^2 + 277,7) (recall that we assume
the éléments large enough) gives a new word. Incidentally, for (2), we get such a
new tuple exactly when the tuple (ni)i<i<7 is new, due to the fact that the three
Systems corresponding to the classes of syst̂ , namely

n3 + 5n4 + n5 = 0 { 3n6 = 0
4n5 = 0 , ,
n3 = 0 [ '

have only trivial solutions. (It is worth noticing that the unknowns in the above
Systems are not the exponents but rather the differencs of these for two different
descriptions of the same word.)

However, this need not be the case in gênerai. As an example, consider the
loop in (3). There are links and we have the classes of chain**: {1,2}, {3,4,5},
{6, 7, 8,10} and only one class of systl: {1, 2 , . . . , 8,10}. We write L2 as

L2 = {a(6a)2ni+3r i2aa6n2+2n3+n4a6a2ni+3r i3+n4+n5 | n* > 0}

and, because the matrix of the associated system has more columns than rows,
the associated system has also non-trivial solutions.

Consider then, in the gênerai case, the Systems associated with the équivalence
classes of syst**, as seen in the above example. (Notice that each system has as
many équations as the number of classes of chain'' in the respective class of syst**.)
As we noticed, if all such Systems have trivial solutions only, then we have the
same situation as in the case of no links. Thus, the same contradiction with the
/c-poly-slenderness of L is obtained. Therefore, there are Systems which have also
non-trivial solutions.

Consider one class of syst**, say [ïo]syst#
 s u c n that its associated system, say

y ^ ctijTij = 0, for all 1 < i < 5, (5)
3=1

has also non-trivial solutions. Hère s is the number of chains (classes of chain")
in [ïo]syst« a n d t is the number of n^'s involved, that is, the number of pairs [j\i
involved.

Let us show first that 5 < t + 1. We can view the class [io]Systtt a s a graph with
5 vertices, which are the chaines, such that two vertices are connected by an edge
only if there is a pair [i]i Connecting them according with the définition of syst (\i
is in one chain and ]* is in the other). As the graph is connected, there are at least
s — 1 edges, hence there are at least s — 1 pairs [i]i, which means t > s — 1.
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Assume that s = t + 1 (as, e.#., in the first System in (4)). The matrix of the
System A = (aîi7)1<î<s, has one or two non-zero éléments in each column and at

i < < t
least one in each row. Therefore, there is a row with exactly one non-zero element.
The matrix obtained by éliminât ing the row and the column corresponding to this
element has the same properties as A. Inductively, we obtain that rank(A)—t and
hence the System (5) has only trivial solutions, a contradiction. Therefore, s < t
and rank(A) < t. If we dénote the columns of Aby At,l < i <t, then there exists
a non-trivial linear dependence of Az's, say

2 = 1 1=1

where c4's and dt's are positive integers. Recall that we are interested in the
values of the vector X ^ = i n ^ ' f°r a^ ni ^ 0. Dénote J = {j% | 1 < i < r} ,
K = {kz | 1 < i < s}; we may assume J H K = 0. We claim that the following
equality holds:

^ > 0,0 < ft < c - 1 > • (6)

The inclusion "D" is obvious. Let us prove the "Ç" part. Consider some fixed
(^1)^2) • • • , nt) and put, for any 1 < i < r, n3ï = nf

ncz + q%, 0 < q% < cz — 1. Take
Q-> 1 < Q < r, such that nf

3q = min{n^ | 1 < i < r}. We have then

%=1 1 = 1 2 = 1

r t s r

2=1 l = \ 2=1
gJK

and the inclusion is proved. Now, in any set in the right-hand side of (6) we have
essentially combinations of t — 1 vectors instead of t as we had initially, that is, in
the left-hand side of (6). But, one A% less means exactly one pair of parentheses less
in the underlying Dyck word z. That means, the Z-Dyck loop we started with can
be written as a finite union of (l — 1)-Dyck loops just because l > k + 1 . (Precisely,
we proved that D can be decomposed as a union of r nl=i ci (' ~~ 1)-Dyck loops.)

The above reasoning can be iterated, if needed, and therefore concludes the
proof. •
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We next give some examples of the construction in the proof of Theorem 8.

Example 10. Consider the 5-Dyck loop in (3) which we have already discussed
in the proof of Theorem 8. The matrix of the unique associâted System is

2 3 0 0 0
= I 0 1 2 1 0

2 0 3 1 1

We have the following simple relation between the columns Ai, 1 < i < 5, of A:
A3 = 2A4 + A5. It implies that

1
> 0 > =

J
which allows us to write L2 as

L2 = {a(ba)2mi+3m2aa6m2+m3aba2mi+m3+m4 | nu > 0}-

The pair of parentheses [3] 3 disappeared. But L2 can be still reduced as the new
matrix, say B = (B± B2 B% B±) = (A± A2 A4 As) has still more columns than rows.
After noticing the linear combination 3Bi + 2B3 = 2B2 + 8JB4, we get, according
with the proof of Theorem 8,

j
nu > 0 \ = \J (J {çi^i + q3B3 + p2B2

J 9i=0 g3=0
P2,3,4>O}2 1

u U UUiBi
qi=0q3=0
+P2B2 +p 4^4 I Pl,2,4 >

Therefore, we obtain the following décomposition of L2 as a finite union of 3-Dyck
loops:

i=0 j=0 i=0 j=0

where, for any 0 < i < 2,0 < j < 1,

2^4 > 0},
it2A > 0},

which cannot be reduced further as #L2(n) = Q(n2)
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Example 11. Consider the 4-Dyck loop

L3 = {anian2ban2an*ban3an*ban*ani \ m > O}-

As above, we reduce it to

L3 = {a^a^ba^ba^ba771^™1 | m1)2)4 > 0}
U {a^ba^a^ba^a^ba™* | m2,3,4 > 0}-

We would like to notice that the 3-Dyck loop

L4 = {anian2ban2an3ban3ani \ m > 0},

which is actually very similar with Li cannot be reduced. The (essential) différence
is that the columns of the matrix corresponding to L4 are linearly independent
whereas the ones of L3 are not.

C O N S É Q U E N C E S

The first of the conséquences of Theorem 8 is the characterization of fc-poly-
slender regular languages. We say that the fc-Dyck loop D in (1) is degenerate
if, for any 1 < % < &, at most one of the words Ui and vi is non-empty.

We get then immediately from Theorem 8 the following result which has been
proved in [20].

Corollary 12. For any k > 0, a regular language is k-poly-slender zffü is a finüe
union of degenerate (k + l)-Dyck loops.

Consider next, for a language L, the following smoothening of the complexity
function # L ( ^ ) :

#L(n)= max #L(i).
l<i<n

We have then from Theorem 8:

Corollary 13. For any poly-slender context-free language L, there exists a k > 0
such that #L{n) = Q(nk).

This means there is nothing in between integer powers, e.g., there is no context-
free language the complexity of which is of order 6(n 3 4 ) , ö(logn), G(nloglogn),
etc.

We would like to thank the anonymous référées for useful remarks concerning especially
the clarity of the proof of Theorem 8 and for pointing out the références [11] and [9].
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