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CONSTRUCTION OF A DETERMINISTIC
cj-AUTOMATON USING DERIVATIVES

ROMAN R. REDZIEJOWSKI1

Abstract. A deterministic automaton recognizing a given u;-regular
language is constructed from an u;-regular expression with the help of
derivatives. The construction is related to Safra's algorithm, in about
the same way as the classical derivative method is related to the subset
construct ion.

AMS Subject Classification. 68Q45, 68R15.

1. INTRODUCTION

In 1964, Brzozowski [2] presented an elegant construction leading from a regular
expression directly to a deterministic automaton recognizing the language denoted
by that expression. The construction, based on the notion of a derivative, became
one of the standard tools in the study of finite-state automata. A number of its
applications and improvements is listed in the introduction to a recent paper [1].

The définition of a derivative is easily extended to cj-languages. But, the con-
struction based on derivatives does not work for these languages. The automaton
constructed from derivatives has one state for each distinct derivative. These states
are usually too few for an acceptance condition expressed in terms of infinité rép-
étition of states. For example, all derivatives of the language X = (a U 6)*ow are
equal to X. The resulting automaton has only one state, allowing only two dis-
tinct acceptance conditions, that recognize only the languages 0 and A?. This fact
has been noticed in [5] and [9]; both papers end with an almost identical remark,
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suggesting an acceptance condition in terms of transitions, rather than states.
But this does not work either; the automaton constructed from derivatives has,
in gênerai, too few transitions, as well as too few states. The fact that there exist
non-regular o;-languages with only finitely many distinct derivatives (see [11,12])
seems to further discourage this approach.

However, when we compute the derivatives of X = (aU&)*aw in a formai way, we
obtain the expression (aU6)*awUaa; for the derivative with respect to a. If we fail to
notice that this is equal to X, we have two derivatives, and the resulting automaton
has just enough states to formulate the required acceptance condition. Apparently,
if we fail to notice equality of sumciently many derivatives, we should always be
able to obtain sufficiently many states. The construction presented here originates
from this line of thought, but the result is not the expected automaton with one
state per derivative. The states correspond instead to certain combinations of
derivatives.

We start, in Section 2, by recalling the necessary notions about languages and
automata. In Section 3, we establish the terminology concerning ordered binary
trees. In Section 4, we reduce the problem of deciding whether a given infinité word
belongs to a given language to the problem of deciding whether an ordered binary
tree contains what we call a "live path". In Section 5, we develop an algorithm
to solve the live-path problem and use it, in Section 6, as a base for construct ing
an automaton to recognize a given o;-regular language. The construction of the
automaton is recapitulated in Section 7. Section 8 illustrâtes the construction on
three examples, and Section 9 contains final remarks.

2. LANGUAGES AND AUTOMATA

We assume the reader to be familiar with the material reviewed in this section;
the purpose is mainly to establish the terminology and notation. For a more
thorough treatment, and an extensive bibliography, the reader is referred to the
survey articles [6,13,14]. There is also a monograph in préparation, available as
report [7].

An alphabet A is a finite nonempty set of letters, A séquence of letters from
A is called a word (over A). A word can be finite or infinité, meaning a finite or
infinité séquence of letters. The séquence of O letters is called the empty word and
is denoted by À. The set of ail words is denoted by A°°, the set of all finite words
by A*, the set of ail finite words other than À by A+, and the set of all infinité
words by A^. The concaténation of words x e A* and y G ̂ 4°° is denoted by xy.
The concaténation of a séquence of words x±, #2, #3, • • • where Xi G A+ for i > 1
is denoted by X\X2Xs ... The concaténation of infinitely many copies of a word
x e J4 + is denoted by xw.

Any subset of A°° is called a language.
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We use these opérations on languages:

union Lx U L2 for Zq Ç A°°, L2 Ç A°°,

product LxLi = {xy \x e i i , y G L2} for Lx Ç A*,L2 Ç ^°°,

star L * = A U L U L 2 U L 3 U . . . for L Ç A*,

omega Lw = {̂ 1X2X3 . . . | Xi G L for z > 1} for L Ç A+.

A regular expression (over alphabet A) is defined recursively as follows:
(1) each of symbols 0, À, and a G A is a regular expression.
(2) If X and Y are regular expressions, so are I U 7 , XY, X*, and (X).
(3) Nothing else is a regular expression unless its being so follows from a finite

number of applications of (1) and (2).
(Many publications use the term "rational" instead of "regular" in this and the
following définitions.)

A regular expression dénotes a language: 0 dénotes the empty set, À and a G A
dénote the singleton sets {À} and {a}; X U F , XY, and X* dénote, respectively,
the union, product, and star of languages denoted by X and Y; (X) dénotes the
same language as X. In the absence of parentheses, the opérations are applied in
the order: star, product, union.

An üj-regular expression is any expression of the form

= XXY? U X2Y? U . . . U

where n > 1, Xi is a regular expression, and Yi is a regular expression denoting
a language not containing À, for 1 < i < n. An o;-regular expression dénotes the
language obtained by applying the omega, product, and union (in this order) to
the languages denoted by Xi and Yi.

In the following, we write \X\ to mean the language denoted by a regular or
w-regular expression X. An (LJ-) regular language is any language that can be
denoted by an (CJ-)regular expression.

The same language can usually be denoted by many different expressions. We
say that two (u;-)regular expressions are similar if they can be transformed into
each other using these rules:

(X U Y) U Z = X U (Y U Z), XX = XX = X,

One can easily see that similar expressions dénote the same language. The point
is that similarity of two expressions can always be effectively decided. Expressions
that are not similar are called dissimilar. Dissimilar expressions may still dénote
the same language.
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A derivative of an (o;-)regular expression X with respect to a word w £
denoted by w~1XJ is defined by these recursive rules:

a"1 0 = a^A = 0, a'1 (XY) = (a~lX)Y U o(X)a-1Y,

a"^ = A, a~lX* = (o

a-1^ = 0, a^r = (a

a~x{X u r ) = a^X U a'xY, (wa^X =

where a,b £ A> a j£ b, and o(X) dénotes the language |X| Pi {A}.
The expression o(X) is obtained as follows:

= o(X)o(Y),

o(X) = A, o(X*) = À,

o(X U Y) = o(X) U o(F), o(Xw) = 0.

A derivative of an (cj-)regular expression is also an (o;-)regular expression, and
one can verify that l iu" 1 ^ = {z €. A°° \wz E \X\}. (In some publications, the
derivative is referred to as the "left quotient", "left residual", or "state of X derived
(or generated) by the word w". The notation is also varying; for example: DWX
in [2], w\X in [3], dX/dw, dw[X] or Xw in [4], X/w in [11,12], These terms
and the notation are sometimes applied to the expression, and sometimes to the
language denoted by it. The notation adopted here comes from [1,6-8].)

The number of distinct derivatives of an (cj-)regular expression is potentially
infinité: one for each word w € A*. But, the number of dissimilar derivatives is
always finite. This result was proved in [2] for regular expressions. (It was shown
there to hold even for a weaker définition of similarity, excluding the rules about
0 and A.) A rather obvious extension to u/-regular expressions was noted in [9].

Any finite initial portion of a word x E ̂ 4°° is called a prefix of x. The set of
all préfixes of words in a language L Ç A°° is denoted by pref(L). One can easily
see that Iti;"1^! ^ 0 if and only if w G pref(|X|). A set of equalities, similar to
those for o(X)i can be used to décide whether a derivative is empty.

We define a (deterministic) finite-state automaton informally, as a machine that
can assume a finite number of distinct states. One state is identified as the initial
state. The machine is started in the initial state and reads an infinité word w E ^4W,
letter by letter. Each letter causes a transition to another, or possibly the same,
state. The result ing state is determined uniquely by the current state and the
letter. This is usually represented by a graph where nodes represent the states
and directed edges represent the transitions, as shown in Figure 1. Each transition
is labeled by the letters that cause it. The initial state is pointed to by an arrow.

As the automaton processes an infinité word w, it must visit one or more of its
states infinitely many times. Let the set of such states be In(it;). The automaton is
said to accept the word w if ln(w) satisfies a certain condition. One such condition,
known as the Muller acceptance condition, is that In(u>) is one of a given family
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FIGURE 1.

(a)

FIGURE 2.

T of sets of states. The automaton recognizes a language L Ç A*3 if it accepts
exactly the words belonging to L.

The construction presented in this paper leads naturally to an alternative notion
of acceptance, expressed in terms of transitions. To specify such acceptance, we
place additional labels on the transitions; in Figure 2, they are shown following a
slash.

The labels have the form —ra or +ra, where n is a natural number. There may
be several labels associated with the same letter.

When the automaton exécutes a transition in response to an input letter, it
emits as output all the labels associated with that letter. For example, the au-
tomaton in Figure 2a emits - 1 and - 2 when going from Sb to Sa in response
to input letter a. The automaton accepts w if, for some n, it emits +ra infin-
itely may times, and — n only finitely many times. Thus, the automaton in Fig-
ure 2a accepts w if, after a finite number of letters, it keeps emitting +1, but
not —1, or it keeps emitting +2, but not —2. Because of the topology of the
transition graph, this happens to be equivalent to a Muller acceptance condition
T = {{Sa}, {Sb}}' But, such an equivalent condition does not exist in the gênerai
case. For example, the automaton in Figure 2b accepts w if, after a finite number
of letters, it keeps emitting -hl, but not — 1. This is not equivalent to any Muller
condition possible for this automaton.
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Automata wit h Muller accept ance condition (shortly: Muller automata) are
known to recognize exactly the class of a;-regular languages, in the sense that each
language recognized by a Muller automaton is o;-regular, and for each
cj-regular language there exists a Muller automaton recognizing that language.
The same is true for automata with acceptance defined in terms of transitions
(shortly: transition automata). Each Muller automaton can be transformed into
a transition automaton recognizing the same language. To do this, assign distinct
numbers to the members of T. For a set T € T numbered n, label transitions
into each state s G T with -f-n, and transitions into each state s £ T with —n.
Conversely, each transition automaton can be transformed into Muller automa-
ton recognizing the same language. To do this, split each state so that there is a
separate state for each combination of outputs for the incoming transitions. The
members of T are sets of states containing at least one state with output -f-n, but
none with — n, for sorae n.

An advantage of transition automata, as compared to Muller automata, is that
they usually require fewer states to recognize a given language, Besides, one can
transform the automaton (for instance, minimize the number of states), as long
as its input-output relationship remains unchanged. The Muller automata, on
the other hand, are simpler and well investigated. In Section 7, we indicate how
to modify the construction to obtain a Muller automaton instead of a transition
automaton.

3. O R D E R E D BINARY TREES

The reader should be familiar with the notion of a tree consisting of nodes and
directed edges; we use without définition the related notions such as that of a
root or path. To describe relations between nodes, we use the terms parent, child,
ancestor, and descendant

For a node x, the subtree with root x consists of the node x and all its
descendants. A partial tree of a tree T is obtained from T by removing edges
and nodes other than the root, in such a way that the result is still a tree.

All trees considered here are ordered binary trees, in the sense that all edges
are classified into left and right edges. A node can be the origin of at most one
left and at most one right edge. A node may be the origin of only one edge, either
left or right, or of no edges at all. The node at the end of a left (or right) edge
is called a left (respectively right) node, and a left (respectively right) child of its
parent. A tree is complete if every node has both, left and right child. The trees
considered here are normally infinité. By König's lemma, each such tree contains
an infinité path from the root.

For k > 1, we define the k-th level of the tree as the set of nodes reached from
the root by a path consisting of k — 1 edges. If the number of nodes on the k-th
level of a tree T has a highest value for k = 1, 2, 3, , we say that T has a
bounded width. If no such highest value exists, we say that T has an unbounded
width.
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We define a live path to be any path from the root that contains infinitely many
right edges. The reason for this définition will be clear in the next section.

In the usual graphical représentation of an ordered binary tree, the left child
with ail its descendants is shown below and to the left of the parent, while the right
child with ail its descendants is below and to the right. This establishes a left-to-
right ordering of nodes and paths that we shall exploit hère; for this purpose, we
define it more formally.

A path from the root is uniquely described by a séquence such as Irllr or
rlrl... , where each letter corresponds to one edge, l indicating a left edge and r a
right edge. We define the ordering -< of the paths as identical to the lexicographie
order of these séquences, where l -< r, To define this ordering for paths of different
lengths, we assume the short er path extended on the right with a suitable number
of letters o, where l -<; o -< r. We have thus, for example, II... -< II -< l ~< Ir. If
p -< q holds for paths p, ç, we say that p is to the left of g, and q is to the right
of p; we also write q y p. We extend the ordering to nodes, defining x -< y (and
y >- x) if the path from the root to x is to the left of the path from the root to y.

The following resuit will be needed in the next section:

Lemma 3.1. If a tree contains an infinité séquence o f paths p\ •< P2 ~< Ps -< • • •
from the root, it contains a live path.

(Proof is in the Appendix.)

4. RECOGNIZING AN W-WORD

Let X = UlLi PiQi De any oj-regular expression over an alphabet A. Suppose
we are given a word w G A". We are looking for a procedure to "décide" (in an
infinité number of steps) if w belongs to the language \X\.

Let $, called the marker^ be an arbitrary symbol not in A. Define
Xf = UlLi PifâQi)™- This is an u;-regular expression over the alphabet A U {$}.

Proposition 4.1. A word w G A^ belongs io \X\ if and only if one can insert
into it infinitely many markers in such a way that each prefix of the resulting word
wf belongs to pref(\Xf\).

Proof (1) The condition is sufficient: suppose the required word w' exists. Let
WQIWI,W2, . . . be words not containing $, such that wf = WQ$WI$W2$ . . . . It is
easy to see that any word in prefdX'j) ending with $ must belong to |P Î ($QÎ)*$ |
for some i. Because wf has infinitely many préfixes ending with $, and the number
of indices i is finite, there exists an index j , 1 < j < n, such that infinitely
many among these préfixes are in |Pj($Qj)*$|. Given any k > 1, we can always
choose a prefix u>o$u>i$... $wm$ G |Pj($Qj)*$| with m > k. Because none of
WQ,WI,... ,wm contains $, must be w0 G \Pj\ and wp G \Qj\ for 1 < p < m.
Choosing k sufficiently large, one can show in this way that wp G \Qj\ for ail
p > 1. Because w = WQWIW2 . . . , we have w G IPJQ^I Ç \X\.
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FIGURE 3.

(2) The condition is necessary: suppose w £ \X\. This means w = pq\q% • • • where
p G \Pi\ and gm E \Qi\ for some i and all m > 1. The word w' = p$gi$Ç2$ •. •
belongs to |X'|, and thus has the required property. D

Because À ̂  |Qi| for 1 < i < n, the required word w' cannot have more than
one marker before each letter. AU possible ways of inserting markers bef ore the
letters of w can be represented by an ordered binary tree such as in Figure 3, which
represents insertions of markers into the word w — abau. Each level of the tree
represents a point in the word where we can insert a marker. A left edge represents
the décision not to insert a marker at that point, and a right edge represents the
décision to insert a marker.

Each node on a level k > 1 represents the result of k — 1 such décisions: a
prefix of a possible word wf. In the figure, that prefix is the word spelled out by
symbols along the path from the root to the node. For example, the encircled
node represents the prefix $ab$a.

Each infinité path from the root of the tree represents a possible word wf; in
the figure, it is the word spelled out by symbols along the path. Each live path
represents a possible word wf with infinitely many markers.

In order to exploit Proposition 4.1, we delete from the tree all nodes representing
the words that are not in pref(|X'|). For this purpose, we label each node with
the derivative of X' with respect to the word represented by that node. Taking as
an example X = (a U 6)*aw, we have X1 — (a U 6)*($a)a;; the resulting labels for
the tree of Figure 3 are shown in Figure 4.

The préfixes of wf that are not in pref(|X;|) are represented by nodes labeled
with derivatives that dénote 0. We delete from the tree all such nodes, together
with the adjacent edges. (Recall that we can always effectively décide which deriva-
tives dénote the empty language.) One can easily see that the result is still a tree,
finite or not. We dénote this tree by T(wiX). The tree T(w1X) for w = abaw

and X = (aU b)*aw is shown in Figure 5.

Proposition 4.2. A word w G A^ belongs to \X\ if and only if T(w,X) contains
a live path.
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X' 0 0 0
a / \%a a/ \ $ o a / \$a a/ \$a

X' ($a)w 0 0 0 0 0 0
/ \ / \ / \ / \ / \ / \ / \ / \

FIGURE 4.

Xf ($a)w

a / \%a \ S

Xf ($a)w ($a)w

/ \ \ \

FIGURE 5.

Proof. (1) The condition is sufncient: suppose T(w,X) contains a live path p. It
represents a word w' obtained by inserting infinitely many markers into w. Each
prefix v of wf is represented by a node along p. The fact that the node belongs to
T(w,X) means that I ^ X ' I ^ 0 and thus v G pref(|X'|). By Proposition 4.1, we
have w G \X\.
(2) The condition is necessary: Suppose w G \X\. By Proposition 4.1, one can
insert into w infinitely many markers so that each prefix of the resulting word wf

belongs to pref(|X'|). The word wf is represented by a live path p in the complete
tree represent ing all possible insertions of $. As each prefix of w! belongs to
prefQX'l), each node of p is labeled with a non-empty derivative, and is included
in T(w,X). D

If two nodes, x and y, on the same level of T(w, X) are labeled with simi-
lar derivatives, the entire subtrees with roots x and y are isomorphic. This is
so because similar labels dénote the same language. The children of x and y in
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the original complete tree are labeled with derivatives of the same language with
respect to the same letter. These labels dénote, respectively, the same languages
(even if they are dissimilar). The same applies to children of the children, and
so on. As we can always décide if a label dénotes the empty language, the corre-
sponding nodes are either both deleted, or both retained, in the construction of
T(w,X).

We can éliminât e such redundant subtrees, and preserve the property stated by
Proposition 4.2. Let us modify the tree T(w, X) as follows. If two or more nodes on
the same level are labeled with similar derivatives, remove all these nodes except
the rightmost. Together with each node, remove the adjacent edges. The result is
a partial tree of T(w, X), in the following denoted by T(tu, X). The tree f{w, X)
for the preceding example is shown in Figure 6.

Proposition 4.3. A word w G Aw belongs to \X\ if and only ifT(w,X) contains
a live path.

Proof. It is enough to show that T(w, X) contains a live path if and only if T(tu, X)
does.
(1) The condition is sufficient: any path in T(w, X) is a path in T(w, X).
(2) The condition is necessary: suppose T(wy X) contains a live path p. Suppose p
is not contained in T(w,X) (for otherwise we are ready). Because the root is in
T(u>,X), the initial portion of p must be in T(w,X). Let this initial portion be
called pi. Let x be the last node of p\. Let y be the next node in p, already
outside T(w,X). If y is not in T(w,X), T(w,X) must contain a node z >- y,
on the same level as y, and labeled with a similar derivative. Let T(y) and T(z)
dénote, respectively, the subtrees with roots y and z. The continuation of p from
y is a live path in T(y). As remarked before, T(z) is isomorphic with T(y).
The corresponding path in T(z) is also live; extended backwards to the root of
T(IÜ, X), it gives a live path p' in T(w, X). Suppose pf is not contained in T{wy X)
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(for otherwise we are ready). Again, an initial portion of p1 must be in T(w,X).
Call this initial portion p<i\ it obviously contains z. Using the relationship between
the nodes x, y, and z, one can verify that pi -< p2.

By repeating this procedure, we either arrive at a live path that is contained
in T(w,X), or continue indefînitely, obtaining a séquence of paths p\ -< p2 ~<
ps -< ... , ail contained in T(w, X). In that case, T(w, X) contains a live path by
Lemma 3.1. D

Notice that the rule of always leaving the rightmost among the nodes with
similar derivatives is essential. For example, leaving the leftmost nodes in the tree
of Figure 5 instead of the rightmost produces a tree without a live path.

By our construction, the labels on each level of T(w,X) are dissimilar. Ail of
them are derivatives of the u;-regular expression Xf. As X' has only finitely many
dissimilar derivatives, T(w, X) has a bounded width.

5. D E T E C T I N G A LIVE PATH

In the preceding section, we reduced the problem of deciding if w E \X\ to
the problem of deciding if the bounded-width tree T(wtX) contains a live path.
This is a gênerai problem concerning ordered binary trees, so let us consider an
arbitrary bounded-width tree T, and forget for a while the expressions at its nodes.

We need a method for detecting if one of many branching paths visits certain
checkpoints infinitely often. Such a method is a central part of another construc-
tion of a deterministic automaton, invented by Safra [10]. The paths in that case
are paths in an automaton. We borrow the idea from [10] and apply it to our tree.

The idea is to identify certain "green levels" as we proceed down a tree. The
first green level is level 1. The next green level occurs as soon as every path from
the last green level contains at least one right edge.

We present the algorithm as a process of marking up a graphical représentation
of T. This is only a way to explain and verify the algorithm; in the next section, we
shall eliminate the tree altogether. We use a représentation of T where the nodes
on each level appear in the order -<. The descendants of a contiguous séquence of
nodes on one level form then a contiguous séquence on the next level. To remember
which nodes are already reached via a right edge, we enclose each encountered right
node in a pair of brackets, and then copy the brackets to the next level so that
they enclose ail descendants of the bracketed nodes. When every node is enclosed
in brackets, we have reached a green level; we remove all brackets and repeat the
process. This process is illustrated in Figure 7. The first encountered right node is
x\ we insert brackets around xy and then around its descendants on levels 3 and 4.
After we have added brackets around the right node y on level 4, ail nodes are in
brackets, and we have reached a green level. We remove the brackets and start
again. The next encountered right nodes are v and v; we have another green level
when we reach t.
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FIGURE 8.

Obviously, the tree has a live path if we can identify in this way infinitely many
green levels. But the converse is not necessarily true. A tree has infinitely many
green levels only if all infinité paths from the root are live. Thus, our process will
never detect a live path in the tree of Figure 8 if the leftmost path consists entirely
of left edges. We can go on inserting brackets around the subtrees with roots x
and y, but the leftmost node on each level will never have brackets.

The solution is to repeat the process recursively for each bracketed subtree.
A bounded-width tree can contain only finitely many infinité paths from the root,
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FIGURE 9.

and thus only finitely many infinité paths that are not live. If we proceed down
a live path, we must eventually arrive at a subtree that does not contain any of
them.

Because we want to identify the green levels separately for each subtree, we
need to identify the brackets that enclose each of them. We do this by numbering
the brackets. To have a uniform process, we also enclose the entire tree in brackets
numbered 1.

The process for a part of the tree of Figure 8 is illustrated in Figure 9. Green
levels of a subtree with brackets numbered n are annotated with Gn.

The first few steps are shown in Figure 9a. As soon as we encounter the right
node x, we start looking for green levels in the subtree formed by its descendants.
The subtree is enclosed in brackets numbered 2. Its first green le vel is that con-
taining x itself. On the next level, the subtree has one right node, z. We enclose
it in (yet unnumbered) brackets. Since this is the only node within the brackets
numbered 2, the subtree 2 has hère another green level. This is the situation in
Figure 9a.

The subséquent steps are shown in Figure 9b. We remove the brackets between
[2 and 2] and proceed to look for another green level of subtree 2. On the next
level, the subtree has two nodes. One of them, u, is a right node, so we insert a
pair of brackets around it. Since the other node is a left node, this is not a green
level of subtree 2, and we have to start tracking the subtree of descendants of u,
We assign number 3 to the brackets just inserted. We have hère the first green
level of subtree 3.
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The situation within the subtrees 2 and 3 remains unchanged on the next level.
On the level below it, we have two right nodes, v and w, and insert a pair of
brackets around each. We have now a green level for both subtrees, 2 and 3. This
is the situation in Figure 9b. The next step is to remove all brackets between [2
and 2] Î this removes all memory of the subtree 3, but there is no need to track
that subtree any more.

If we use a new number for each subtree, the numbers will grow indefinitely. It
will be practical to reuse the numbers "freed" by finished or abandoned subtrees.
If we reuse the numbers, we have to distinguish green levels of different subtrees
using the same number. To do this, we annotate the first green level of a subtree
numbered n by —n, and the subséquent green levels by +n. The présence of a
subtree wit h infinit ely many green levels is then indicated by — n appearing finit ely
many times, and +n infinitely many times, for some number n.

In the following, we write B(ni k) to dénote the pair of brackets numbered n on
level fe. If a node x inside B(n, k) is not enclosed in another pair nested in B(ny fe),
we say that x visible in B(n, k); otherwise we say that x is hidden. We say that
a pair of brackets is saturated if all nodes enclosed in it are hidden. By resetting
a pair of brackets we mean removing all brackets within it. The exact procedure
for marking up the tree is:

Algorithm 5.1. Enclose the root in brackets numbered 1, and annotate level 1
with —1. For k = 1, 2 ,3 , . . . , mark up level k + 1 in these four steps:

(Al) enclose each right node on level k + 1 in a pair of unnumbered brackets.
(A2) For each pair of brackets B(n, k) on level k, enclosing at least one node

with a child: insert a pair of brackets B(n, k + 1) on level k + 1 enclosing
exactly the children of nodes in B(n, fe), together with any brackets inserted
around them by (Al). Insert the brackets so that they are nested in the
same way as identically numbered brackets on level k.

(A3) Reset each saturated pair of brackets B(n,k + 1) on level k + 1 that is not
contained in another saturated pair. Annotate level k + 1 with -\-n for each
pair thus reset.

(A4.) Assign a distinct number to each pair of unnumbered brackets. Use the low-
est natural numbers that did not appear on level k + 1 after (A3). Annotate
level k + 1 with —n for each number n thus assigned.

The resuit for the tree of Figure 8 is shown in Figure 10. Notice that the Algorithm
did not produce annotation +3 on level 6 corresponding to green level G3 of
Figure 9; this is the result of ignoring nested saturated pairs in (A3). Notice the
reuse of number 3 at node w.

One can easily see that the unnumbered brackets inserted by (Al) cannot be
saturated at (A3), so (A3) always resets numbered brackets. From (A3) and (A4)
follows that each level annotated with n (rneaning -fn or — n) contains brackets
numbered n. Starting from a level k annotated with —n, brackets numbered n
are propagated by (A2) to consécutive levels, enclosing a subtree with root at
level k. This can terminât e in one of two ways: either the subtree ends, or the
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FIGURE 10.

brackets are removed by (A3). We note other facts about the marking produced
by Algorithm 5.1:

Lemma 5.2. Let k\ be any level annotated with n. Let k2 > k\ be any level
containing a pair of brackets numbered n, and such that none of the levels k}

ki < k < k2 is annotated with n. The path from level k\ to any node x in B(n, k2)
contains a right edge if and only if x is hidden in B{n^k2).

Lemma 5.3. Let k\ be any level annotated with n. Let ki > k\ be any level
annotated with +n, such that none of the levels k, k\ < k < k2 is annotated with
n. Each path from level k\ to a node in B{n, k2) contains a right edge.

Lemma 5.4. The number of brackets on one level never exceeds the number of
nodes on that level.

The proofs are in the Appendix. We are now ready for the main resuit:

Proposition 5.5. T contains a live path if and only if there exists a number n
such that Algorithm 5.1 annotâtes infinitely many levels with +n, and only finitely
many with — n.

Proof. (1) The condition is sufficient: suppose the required number n exists. Let
k be the last level annotated with —n. Let T(ky n) be the subtree with root on
level /c, enclosed in brackets numbered n. Infinitely many levels after the fc-th are
annotated with +n, showing that the tree T(&, n) is infinité. Let p be an infinité
path from the root of T(fc,ra). This path crosses infinitely many levels annotated
with +n. By Lemma 5.3, p contains at least one right edge between each pair
of consécutive levels annotated with +n. Thus, p contains infinitely many right
edges. Extended back to the root of T, it is a live path in T.
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(2) The condition is necessary: suppose T contains a live path p, but the required
number n does not exist. That means, for each ra, if only finitely many levels are
annotated with — n, only finitely many levels are annotated with +n, and there
exists the last level annotated with n.

The brackets numbered 1 are never removed, so only one level (the first) is
annotated with — 1. By our assumption, there exists the last level, fci, annotated
with 1. Let xi be any right node on p on a level k > k\. By Lemma 5.2, x\ is
enclosed by one or more pairs of brackets within the pair J5(l, fc). Let the number
on the outermost such pair be n\. The brackets numbered n\ appear on each level
below k: they are copied by (A2) because X\ has a descendant on each level below
k, and they are not removed by (A3) because no level below k is annotated with
+1.

Because the brackets numbered m are present on every level below &, (A4)
can not annotate any of these levels with —ni, so only finitely many levels are so
annotated. By our assumption, there exists the last level, &2, annotated with n\.
Let X2 be any right node on p on a level k > &2. The reasoning can be repeated
to show that another pair of brackets, numbered n-2, is nested within the pair
numbered m on all subséquent levels.

This can be repeated indefinitely, showing that the number of brackets appear-
ing on the same level increases without a bound as we proceed down the tree.
Because T has a bounded width, the number of brackets on some level must ex-
ceed the number of nodes on that level. But, this is not possible according to
Lemma 5.4. D

6. BACK TO RECOGNIZING AN W-WORD

We return now to the tree T(w, X). The tree T(w, X) of Figure 6, marked up
according to Algorithm 5.1, is shown in Figure 11.

Let us list the symbols appearing on consécutive levels. For the tree of Figure 11,
this gives:

level 1 [ i ^ i] —1
O F Yf F (^n^ 1 1 O

*̂ li ̂ - ij
4 F Yl F (§ \0J 1 1 2

5 [^'[.(Jorji] +2

6 r Y1 f ^n'k^ l l + 2

These rows can be written without actually constructing the tree T(wyX) and
marking it up. Suppose first that T(w, X) is the complete tree, such as in Figure 4.
The first row is [ ^ ' j — 1. Each node on level k > 1 has two children, labeled,
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level

2 IX' kf&O-ah] -- -2

3 [î X i]

/ \
[ i A [2 v ^ u j 2 J 1 J —^

iu,],l +2

[J' [a($a)w
a]i] +2

FIGURE 11.

respectively, with w^xd and (Stüfc)"1^, where d is the label of the node and Wk is
the k-th letter of w. A row representing level fc+1 with markings produced by (Al)
and (A2) is obtained by replacing each derivative d in row k by w^xd [ ($Wk)~1d ] .

In the construct ion of T(w,X), we remove from the complete tree all nodes
labeled with empty derivatives. This corresponds to deleting from the row all
derivatives d denoting 0, together with any enclosing brackets. In the construction
of T(w, X), we remove from T(w, X) each derivative that has a similar derivative
to the right of it. This corresponds to deleting from the row all such derivatives
and any brackets that enclose them.

The reader may verify that the foliowing algorithm faithfully reproduces the
rows obtained for T(w,X) marked up using Algorithm 5.1:

Algorithm 6.1. Start with [x X
f
 x] — 1 as row 1. For each k > 1, construct row

k + 1 by transforming row k in these four steps:
(BI) replace each derivative d in the row by u)'^1d [ ($Wk)~1d ], where Wk is the

k-th letter of w.
(B2) Remove each derivative that dénotes 0 or has a similar derivative to the

right of it. Then, remove any empty pairs of brackets.
(BS) Reset each saturated pair of brackets that is not contained in another sat-

urated pair. Annotate the row with + n for each pair thus reset, where n is
the number of the pair.

(B4) Assign a distinct number to each pair of unnumbered brackets. Use the
lowest natural numbers that did not appear in the row after (BS).
Annotate the row with —n for each number n thus assigned.
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Prom Propositions 4.3 and 5.5 follows:

Proposition 6.2. A word w 6 A^ belongs to \X\ if and only if there exists a
number n such that Algorithm 6.1 produces infinitely many rows annotated wüh
+n? and only finitely many annotated wüh —n.

One can imagine a machine that computes consécutive rows according to
Algorithm 6.1 as it reads the word w. By watching the annotations —n and
•fn, one can décide if w G \X\.

But, the machine does not need to perform any computations. Define the
"state" to be the part of a row between, and including, the brackets [x x ] . Define
the "output" to be the part consisting of the annotations — n and +n. At each
stage, the next state and the output are determined by the current state and the
next letter of w.

Each state is a séquence of dissimilar derivatives and numbered brackets. Let
the number of dissimilar derivatives of X1 be k. By Lemma 5.4, the state can
contain at most k pairs of brackets. Hence, (B4) can never assign a number higher
than fctoa pair of brackets. The number of possible distinct states for given X and
all possible words w 6 A" is thus finite. Given an expression X, one can compute
the next state and the output once for all possible states and input letters a e A,
and program the machine to use these results. Such a machine is nothing else
but a finite-state automaton recognizing the language \X\. In the next section, we
recapitulate the construction of that automaton.

To simplify the présentation, we have ignored so f ar the case when the tree
T(w, X) is finite. The tree being finite means that w has a prefix not belonging to
pref(|X|), and thus itself cannot belong to \X\. Algorithm 6.1 applied to a finite
tree produces, at some stage, an empty row. Applied to such an empty row, the
Algorithm produces another empty row.

7. THE CONSTRUCTION

Let X = Ur=i PiQï ^ e a given o;-regular expression over alphabet A. To
construct a finite-state automaton recognizing the language |X|, construct the
expression Xf = UILi Pii^Qù™•> where $ is a new letter not in A. Compute all
dissimilar derivatives of Xf and identify those equal to 0.

States

The states of the automaton are named by distinct séquences consisting of
derivatives of Xf and brackets numbered with integers between 1 and fe, where
k is the number of nonempty dissimilar derivatives. We do not define the well-
formed state names because the procedure for construction of all accessible states
will produce only well-formed names. Notice that empty séquence is a well-formed
state name.
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Initial state

The initial state is [, X~lXf J = [> X1
 x ] .

Next state

For a state s and an input letter a G Ay the next state is obtained as follows:
(NI) replace each derivative d appearing in s by a~1d [ (Sa)"1^ ] .
(N2) Remove each derivative that dénotes 0 or has a similar derivative to the

right of it. Then, remove any empty pairs of brackets.
(N3) Reset each saturated pair of brackets that is not contained in another

saturated pair. (A pair of brackets is saturated if every derivative within
it is enclosed in additional brackets. Resetting a pair means removing ail
brackets within it.)

(N4) Assign a distinct number to each pair of unnumbered brackets. Use the
lowest natural numbers that did not appear in the state after (N3).

Output

The output from the transition defined by (N1-N4) is a (possibly empty)
collection of positive or négative integers defined as follows:

(01) produce output +n for each saturated pair of brackets reset according to
(N3), where n is the number of that pair.

(02) Produce output — n for each number n assigned by (N4).

Accessible states

To construct all accessible states, start wit h initial state and construct states
reached after all séquences of 1, 2, 3, ..., etc. input letters until no new states are
obtained.

Acceptance condition

One can easily see that the automaton thus constructed implements the machine
described in the preceding section. (The only différence is that we omitted output
— 1 at the first line.) From Proposition 6.2 follows that a word w E Aw belongs
to \X\ if and only if it causes the automaton to output +n infinitely many times,
and — n only finitely many times, for some number n.

Constructing a Muller automaton

If you insist on constructing a Muller automaton rather than a transition
automaton, remove (02), consider the whole row, together with the +n anno-
tations, as a state name, and change (N4) to:

(M4) Assign a distinct number to each pair of unnumbered brackets. Use the
lowest natural numbers that did not appear in the state before (NI).

The result of this change is that brackets numbered n disappear from the state
before n is reused. The acceptance condition T consists of subsets of states T



152 R.R. REDZIEJOWSKI

such that for some n, all states in T include brackets numbered n, and at least
one state includes +n.

8. EXAMPLES

We illustrate the construction of the automaton on three examples. The first is
the same as in Sections 4 and 6. The other two are borrowed from [7], Section L8.

EXAMPLE l

I = ( a U & ) V . In this case, Xf = (o U 6)*($a)w. We start by computing the
derivatives of Xf that will be used in the construction. Denoting the derivative
w~1X/ by Dw, we have:

DX=X', Du = ($a)w, D%ah = 0 ,

Da=Dx, D$b = 0, D$a$a = D$a ,

Dénote by Sw the state reached after an input word w E A*. The initial state is
S\ = [i X' x] = [x D\ j] . We proceed to construct transitions (the omitted steps
are void).
• Letter a applied to state 5A:

(NI) replace Dx by Da [£>$a], obtaining [, Dx [D$a] x].
(N4) Assign number 2 to brackets, obtaining Sa = [i Dx [2 D$a 2] J .
(02) Output - 2 .

• Letter b applied to state Sx:
(NI) replace Dx by Z?6 [D$b], obtaining [, L»A [ 0 ] , ] .
(N2) Remove [ 0 ] , obtaining [x DA i] = SA.

• Letter a applied to state Sa-
(NI) replace Dx and D$a by Do [ L>$û ] and D%aa [ D$a$a ) ,

obtaining [, Dx {D$a ] [9 0 [ D$a ] a] , ] .
(N2) Remove the first [D$o.] and 0, obtaining d Dx [2 [D$a] 3] x ] .
(N3) Remove brackets within [2 2 ] , obtaining [x Dx [2 ,D$a 2] x] = 5 a .
(Ol) Output +2.

• Letter 6 applied to state Sa'-
(NI) replace DA and D$a by D5 [D$6] and D$ab [D$a$b],

obtaining [, DA [ 0 ] [2 0 [ 0 ] 2] , ] .
(N2) Remove [ 0 ] and [2 0 [ 0 ] 3 ] , obtaining [x £>A J = 5A.
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a/+2

FIGURE 12.

As no new states were reached from Sa, we have two states, S\ and 5 a , and four
transitions:

state + letter => state output

Sx a [x Dx [2 D%a 2] ,] - Sa - 2

Sx b iDx.} - 5 A

Sa a iDxUDu,) ,] = S a +2

^a 6 tDAi] = S A .

The automaton recognizing | (a U 6)*aw| is shown in Figure 12. Notice that this is
not the minimal automaton recognizing this language: the automaton of Figure 2b
recognizes the same language using only one state.

EXAMPLE 2

X = (aU 6)*6aw. We have Xf = (aU6)*b($a)w. The derivatives needed for the
construction are:

Dx =X', Dba =DX, Db$aa = 0 ,
Da =DX, Dbb =Db, DbSab = 0 ,

Db =X'\J($a)u, DbSa = (ta)u, DbSaSa = DbU,

D%a = 0, Dm = 0, DbSaSb = 0,

-D$b = 0 ,
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n
s—•

Sx

b

n
S N

Sb

o/-2

a 1+2

n

FIGURE 13.

where, as before, Dw stands for the derivative w~1X/. The transitions are:

outputstate

Sx

Sx

sb
sb

Sba

Sba

+ letter
a

b

a

b

a

b

state

2 D b $ a 2]

=Sb

=Sba

=Sb

= Sba

=Sb.

- 2

The automaton recognizing | (a U 6)*6aw[ is shown in Figure 13.

EXAMPLE 3

X = ((b U c)*a U b)". We have Xf = ($((6 U c)*a U 6))w'. The transitions are:

outputstate + letter

S\ a

Sx b

Sx c

Sb a

Sb b

Sb c

Sc a

Sc b

Sc c

where, as before, D™ stands for the derivative w 1X'. The automaton recognizing
| ({b U c)*a U 6)w( is shown in Figure 14.

lD$bl] =sb +1
=SC + 1

=SX + 1

+1
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FIGURE 14.

FIGURE 15.

The states Sj, and 5A are equivalent in the sensé of the next state and output,
so the above automaton is equivalent to that shown in Figure 15.

9. FINAL REMARKS

Because of the same basic idea for detecting a live path, our construction is in
many ways similar to Safra's. Expressions with nested brackets are essentially tree
structures. Our states are thus trees of derivatives. The Safra's states are trees of
subsets of states of a non-deterministic automaton. This relationship is similar to
that between Brzozowski's derivative method (where states are derivatives) and
the subset construction (where states are subsets of states of a non-deterministic
automaton). But, there is no exact correspondence between our states and Safra's
states. One différence is that ail derivatives within a state are ordered. Using
this order, we eliminate similar derivatives anywhere in the state, while Safra's
algorithm éliminâtes duplicate states only within the same level of a tree-state.
This seems to somewhat reduce the number of distinct states. (We could further
improve on this by eliminating derivatives that dénote a subset of a language de-
noted by any derivative on the right.) Some simplification cornes also from the
acceptance condition expressed in terms of transitions, rather than states. The
différence may be illustrated by the fact that the automaton for the language of
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Example 3, constructed in [7] by Safra's method, has originally five states. How-
ever, these minor improvements do not seem to significantly reduce the complex-
ity 2°^nlogn) of Safra's construction (which, according to a resuit quoted in [10],
constitutes the lower bound).

An advantage of the described construction is that it goes directly from an
expression to a deterministic automaton, without an intermediate step of con-
structing a non-deterministic automaton. Also, manipulating states in the form
of strings of symbols is simpler than manipulating Safra's tree-states, especially if
the computations are done by hand. This can be again seen by comparison with
examples in [7].

Brzozowski's derivative method for regular expressions has two important
properties. First, it can produce a unique, minimal, automaton for the given
language, not depending on the expression used to dénote that language. (This
happens when all derivatives used in the construction dénote distinct languages.)
Second, it can be applied to extended regular expressions, that allow intersection
and complémentation in addition to union, product, and star. (It was, in fact,
presented so in [2].)

Unfortunately, none of these properties is shared by the construction presented
here. The resulting automaton dépends strongly on the expression, and need not
have the minimal number of states. (A unique minimal automaton does not in
gênerai exist for an cj-regular language.) Complémentation and intersection can
probably be used within the regular expressions Pi and Qi in X — \Jl=1 PiQf, but
Proposition 4.1 breaks down if X does not have the stated form.

A P P E N D I X

Proof of Lemma 3.1

Suppose a tree T contains the required séquence of paths. Notice that p -< q
implies p ^ <?, so all paths pi for i > 1 are distinct.

Suppose a node x belongs to infinitely many among the paths pi. Dénote the
set of these paths by P. Suppose the left child of x does not belong to some path
pj G P. That means pj either ends at x or proceeds to the right child of x. In
each case, pj is to the right of any path that proceeds from x to the left child.
The path pj is to the right of exactly j — 1 among the paths j ^ , namely those with
i < j] that means at most finitely many paths in P proceed from x to the left
child. As all paths pi are distinct, at most one can end at x\ hence, all paths in P
but finitely many proceed to the right child of x. In other words:
(*) if a node belongs to infinitely many among the paths pi then either all of thevn

proceed to the left chüd, or all but finitely many proceed to the right child.
To find a live path in T, start with the root. From each node, proceed to the child
that belongs to infinitely many among the paths pi. Call the resulting path p.
Since the root belongs to infinitely many among the paths pi, (*) guarantees that
so does each node encountered on the way; hence p is infinité.
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Suppose now that p contains only finitely many right edges. Then, from some
node x on, ail edges of p are left edges. But then, according to (*), every node on
p after x belongs to exactly the same paths Pi as x, meaning all these paths are
identical; this contradicts the assumption that ail of them are distinct.

Proof of Lemma 5.2

Consider a fixed level k\ annotâted with n. The proof is by induction on &2.
(1) Induction base: k2 ~ k\ + 1. Consider any node x in JB(n, k2). Because level
k2 is not annotated with -n , the pair B(n,k2) was inserted by (A2) as a copy
of pair J3(n, k±) containing the parent y of x. Because level ki is annotated with
n, y is visible in B(n, fci): the pair was either inserted by (Al) and numbered by
(A4), or reset by (A3), in the process of marking the level k\. If x is the left child
of y, no brackets are inserted around it by (Al) in the process of marking the
level k2: and x is visible in B(n, k2). If x is the right child, (Al) inserts a pair B
of unnumbered brackets around it. (A2) inserts B(n, k2) immediately around B.
(A3) can remove B only by resetting B(n, k2) or some brackets around B(n, k2). It
did not reset B(n,k2) because the level is not annotated with -\~n. It did not reset
any containing brackets because this would remove 5(n, k2). Hence, the brackets
B (with a number added by (A4)) remain around £, and x is hidden in B(n,k2).
In each case, the Lemma holds for x,
(2) Induction step: suppose the Lemma holds for some level k2 > k\. Suppose
level k = k2 + 1 is not annotated with n and contains the pair £(n, k). Consider
any node x in B(n, k). As before, level k2 must contain the parent y of x, enclosed
in brackets B{n,k2). Two situations are possible:
• the path from level k± to y does not contain any right edge. Then, by inductive

assumption, y is visible in B(n, k2). In the same way as before, we can verify
that x becomes hidden in Z?(n, k) if and only if the step from y to x adds a
right edge to the path.

• The path from level ki to y contains at least one right edge. Then, by inductive
assumption, y is hidden in B{n> A )̂- The outermost pair of brackets enclosing
y within B{n, k2) is copied by (A2) to become the outermost pair enclosing x
within jB(n, fc), and is not removed by (A3) for the same reason as before.

Proof of Lemma 5.3

Let ki and k2 be as stated. The reasoning in the proof of Lemma 5.2 shows
that the situation stated by that Lemma holds before step (A3) for level /e2, even
if level fc2 is annotated with +n. The fact that k2 is annotated with +n means
that B(n,k2) was saturated before (A3), that is, every node within B(n,k2) was
hidden. By the preceding remark, each path from level k\ to such a node contains
a right edge.
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Proof of Lemma 5.4

Suppose there are more pairs of brackets than nodes. Each node is visible in
exactly one pair of brackets. That means, at least one pair contains no visible
nodes. By définition, such a pair is saturated. But, (A3) does not leave any
saturated pair, and (A4) does not introducé any.

The author thanks two anonymous référées for a mimber of useful suggestions.
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