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ON SEQUENCES DEFINED BY DOL POWER SERIES

JUHA HONKALA1

Abstract. We study DOL power series over commutative semirings.
We show that a séquence (cn)n>o of nonzero éléments of a field A
is the coefficient séquence of a DOL power series if and only if there
exist a positive integer k and integers j3i for 1 < i < k such that
Cn+k = c^+k_1c^_k_2 . . . Cnk for all n > 0. As a conséquence we solve
the équivalence problem of DOL power series over computable fields.

AMS Subject Classification. 68Q45.

1. INTRODUCTION

DOL power series were defined in Honkala [3] and studied in detail in Honkala
[4]. The study of these series gives an interesting counterpart to the customary
theory of DOL languages.

The séquences of coefficients of DOL power series over the rationals were
characterized in Honkala [4]. In this note we extend this characterization for
arbitrary commutative semirings. As a conséquence we obtain recursive formulas
for these séquences over fields which are multiplicative versions of the recursive
formulas satisfied by linear récurrence séquences studied, e.g., in combinatorics.
We show also that it is decidable whether or not two given DOL power series over
a computable field are equal.

For further background and motivation we refer to Honkala [2,4] and the
références given therein.

It is assumed that the reader is familiar with the basics of the théories of
semirings, formai power series and L Systems (see Kuich and Salomaa [5], Rozen-
berg and Salomaa [6,7]). Notions and notations that are not defined are taken
from these références.
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2. DÉFINITIONS

Suppose A is a commutative- semiring and X is a finit e alphabet. The set of
formai power series wüh noncommuting variables in X and coefficients in A is
denoted by i C X* ^>. The subset of A <C X* >̂ consisting of all series with
a finite support is denoted by A < X* >. Series of A < X* > are referred to as
polynomials.

Assume that X and Y are finite alphabets. A semialgebra morphism h:
A < X* >—> A < Y* > is called a monomial morphism if for each x G X
there exist a nonzero a G A and w G Y* such that h(x) = aw. If h : A <
X* >—> A < Y* > is a monomial morphism, the underlying monoid morphism
H : X* —> Y* is defined by h(x) = supp(ft(x)) for x G X. A series r e A « I * »
is called a DOL power series over A if there exist a nonzero a G A, a word iu G X*
and a monomial morphism h : A < X* >—> A < X* > such that

r = JT/ahn(w) (1)
n—0

and, furthermore,

supp(a/il(tt;)) ^ supp(a/i^(^)) whenever 0 < i < j .

(Note that, if A is a field, this condition is equivalent with the local finiteness of
the family {hn(w)}n>0.)

Consider the series r given in (1) and dénote

ahn(w) =cnwn

where cn G A and wn G X* for n > 0. Then we have

n=0

In what follows the righthand side of (2) is called the normal form of r. A séquence
(cn)n>o of éléments of A is called a DOL multiplicüy séquence over A if there exists
a DOL power series r such that (2) is the normal form of r.

For examples of DOL power series see Section 4.

3. DOL MULTIPLICITY SEQUENCES
OVER COMMUTATIVE SEMIRINGS

A séquence (an)n>o of nonnegative integers is called a modified PDOL length
séquence if there exists a nonnegative integer t such that CLQ = ai = . . . = at-i — 0
and (an+i)n>o is a PDOL length séquence. (For the définition of a PDOL length
séquence see Rozenberg and Salomaa [6].) A séquence (an)n>o of nonnegative



ON SEQUENCES DEFINED BY DOL POWER SERIES 127

integers is a modified PDOL length séquence if and only if the séquence (an+i
—Q>n)n>o is N-rational (see Rozenberg and Salomaa [6], p. 157).

The following theorem char act erizes DOL multiplicity séquences over a
commutative semiring.

Theorem 1. Suppose A is a commutative semiring. A séquence (cn)n>o ofnonzero
éléments of A is a DOL multiplicity séquence over A if and only if there exist a
positive integer k, nonzero a i , . . . , a/- G A and modified PDOL length séquences
(sin)n>o for 1 < i < k such that

(3)

for all n > 0.

Proof Suppose first that r = Y^Lo ^hn(w) is a DOL power series over A with the
normal form

n=0
Without loss of generality we assume that a = c0 — 1. Let g : X* —> X*
be the underlying monoid morphism of the monomial morphism h : A < X* >
—> A < X* >. Then we have gn(w0) = wn for all n > 0. Let X = {x \ x e X}
be a new alphabet with the same cardinality as X. Define the monoid morphism
9l : (X UX)* -^ (X UX)* by

gi(x) = xg(x), gi(x) = A, x e X.

For each x G X let ax e A be such that h(x) = axg(x). Define the semialgebra
morphism a : A < (X U i ) * >—> A by

a(x) — 1, a(x) = ax, x E X.

Then we have

h(u) = a(gi(u))g(u) (4)

and

9l(g(u))=g2
1(u) (5)

for any word u € X*. Equation (5) implies inductively that

9i(9n(u))=9r
1(u) (6)

for any n > 1 and u E X*. We claim that

cn = a(w0gi(w0)gl(wo)...gi(w0)) (7)
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for all n > 0.
The claim is trivially true for n — 0. If the claim holds for n = fc, we have by

(4, 6) and (7)

hk+1(w0) = h(ckwk) = ckh(wk) = cka(gi(wk))g(wk) = cka(gi(gk(w0)))wk+i

which implies the claim for n ~ k -f- 1 and, hence, for all n > 0.
Next, for each x € X define the séquence (s(x)n)n>o by

s{x)n = #x{wogi(wo)gl{wo) '"9Ï(wo))

where #^u stands for the number of the occurrences of the letter x in the word v.
Because

S(z)n+1 - S(x)n = #x(9i+1 (w0)),

the séquence (s(x)n+i — s(x)n) is N-rational for all x E X. (Here N-rationality
folio ws because the séquence is an HDOL lengt h séquence.) Hence the séquences
(s(x)n)n>o are modified PDOL length séquences. By (7) we have

xex

for all n > 0, This concludes the pro of in one direction.
Suppose then that there exist a positive integer fc, nonzero a i , . . . , ak £ A and

modified PDOL length séquences (sin)n>o for 1 < i < k such that (3) holds for
all n > 0. We have to show that (cn)n>o is a DOL multiplicity séquence over
A. Because DOL multiplicity séquences over A are closed under finit e product
provided that no term of the product séquence is zero, it suffices to consider the
case k — 1. Dénote a — a\ and sn = s\n for n > 0. Without restriction we
suppose that (sn) is a PDOL length séquence. If the set {sn \ n > 0} is finite,
(cn)n>o is clearly a DOL muitiplicity séquence over A, Suppose therefore that
{sn \ n > 0} is an infinité set and let G = (E, /,wo) De a PDOL system defining
the séquence S (G) — (wn)n>o with \wn\ — sn for n > 0. Define the monomial
morphism h : A < S* >—> A < E* > by

for a G S. It follows inductively that

for n > 0. Hence the series r defined by

n=0
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is a DOL power series over A and the séquence (cn)n>o = (aSn)n>o is a DOL
multiplicity séquence over A. D

4. THE ÉQUIVALENCE PROBLEM OF DOL POWER SERIES

If the basic semiring A is a field, we obtain the following characterization of
DOL multiplicity séquences.

Theorem 2. Suppose A is a field. A séquence (cn)n>o of éléments of A is a DOL
multiplicity séquence over A if and only if there exist a positive integer k, nonzero
a i , . . . , ük € A and Z-rational séquences (sin)n>o for 1 < i < k such that

1 = 1

for all n > 0.

Proof. The left to right direction is immédiate by Theorem 1. The other direction
follows by Theorem 1 because every Z-rational séquence can be expressed as the
différence of two PDOL length séquences (see Rozenberg and Salomaa [6], p. 160).

D

In case A = Q, where Q stands for the field of rational numbers, the left to right
direction of Theorem 2 was used in Honkala [3] to solve the équivalence problem
of DOL power series over Q. The solution is based on the fundamental theorem of
arithmetic and does not generalize as it stands for an arbitrary computable field.

Example 1. Let A be the ring of numbers n + m\/^3 where n, m £ Z. Let
X = {a, b} and define the monomial morphisms hi : A < X* >—> A < X* >,
t = l,2,by

Define

and

fti(a) = aba,

h2(a) = (1 +

the DOL power series

It follows inductively that

hi(b)

v^3)a,

r\ and \

= 16A,

h2(b) = -2(1

r2 by

oo

: Y, K{aba)
n=0

oo

h%(aba) - h$(aba) = 16rl"1(aba)2
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for n > 0. Hence T\ and V2 are equivalent. Note that A is not a unique factorization
domain. Therefore, to solve the équivalence problem of DOL power series over A
it does not suffice to consider the factorizations of the coefficients into products of
irreducible éléments.

To solve the équivalence problem of DOL power series over an arbitrary
computable field we first deduce a new characterization of DOL multiplicity sé-
quences.

Lemma 3. Suppose G is an abelian group and (cn)n>o is a séquence of éléments
of G. Then the following conditions are equivalent:
(i) There exist a positive integer k, éléments a i , . . . , a/, e G and Z-rational
séquences (siri)n>o for 1 < i < k such that

Cn, =

for all n > 0.
(ii) There exist a positive integer t and integers j3\,... , Pt such that

forn > 0.

Proof. Suppose first that (i) holds. Then there exist a positive integer t and
integers /?i,... , Pt such that

for all n > 0, 1 < i < k (see Berstel and Reutenauer [1], Salomaa and Soittola [8]).
Therefore

i )

for n > 0. Hence (ii) holds tnie.
Suppose then that (ii) holds. Assume first that G = H where H is the

multiplicative subgroup of the rationals generated by the first t primes po, • • • rPt-i-
If x € Q is nonzero and p is a prime dénote by vp(x) the p-adic value of x. Then
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for ail n > 0, 0 < i < t — 1. Hence the séquences (vPi(cn))n>Q are Z-rational.
Because

i=0

for ail n > 0, condition (i) holds.
Let then G be an arbitrary abelian group. Then there exists a group morphism

ip : H —> G such that tp(pi) = Ci for 0 < i < t — 1. Define the séquence (dn)n>o
in H recursively by

di=pu 0<i<t-l

and
dn+t = d^+t_ld^+t_2...d^

for n > 0. Then îjj(dn) — cn for ail n >• 0. By the argument above there exist a
positive integer &, éléments a i , . . . ,a,k € H and Z-rational séquences (sin)n>o for

1 <i< k such that

2 = 1

for n > 0. Consequently,

for n > 0. This shows that (i) holds. D

Theorem 4. Suppose A is a field. A séquence (cn)n>o of nonzero éléments of A
is a D0L multiplicity séquence over A if and only if there exist a positive integer t
and integer s f3\,... ,f3t such that

cn+t = c£+t_1c%+t_2...4* (8)

for n > 0. Furthermore, if (cn)n>0 and (dn)n>0 are DOL multiplicity séquences
over A there exist a positive integer t and integer s (3i,... yj3t such that both (8)
and

dn+t = d0
n\t_1d%t_2...d^ (9)

hold true for ail n > 0.

Proof The first claim follows by Theorem 2 and Lemma 3, the second claim by
the proof of Lemma 3. •

Now we have the tools to solve the équivalence problem of DOL power series
over computable fields.

Theorem 5. Suppose A is a computable field. It is decidable whether or not two
given DOL power series r\ and V2 over A are equal.
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Proof. Let
oo

ri = ^2 CnUn

and
oo

n=0
be the normal forms of n and r2, respectively. The proof of Theorem 3.2 in
Honkala [3] implies that it sufffices to give a method to décide whether or not the
DOL multiplicity séquences (cn) and (dn) are equal. (The main idea in Honkala
[3] is first to décide whether or not {un \ n > 0} = {vn | n > 0}. This is
an instance of DOL language équivalence problem. If the answer is positive, we
can effectively décompose the séquences (un)n>o and (vn)n>o into finitely many
pairwise identical séquences.) This décision can be made by Theorem 4. Indeed,
there exist a positive integer t and integers /?i,... ,/3t such that (8) and (9) hold.
Then cn = dn for all n > 0 if and only if cn = dn for 0 < n < t. D
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