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SKIP TREES, AN ALTERNATIVE DATA STRUCTURE
TO SKIP LISTS IN A CONCURRENT APPROACH (*)

by Xavier MESSEGUER C1)

Abstract. - We present a new type ofsearch trees, called Skip trees, which are a generalization of
Skip lists. To be précise, there is a one-to-one mapping between the two data types which commutes
with the sequential update algorithms.

A Skip list is a data structure used to manage data bases which stores values in a sorted way
and in which it is insured that the form of the Skip list is independent of the order of updates by
using randomization techniques. Skip trees inherit all the proeprties of Skip lists, including the time
bounds of sequential algorithms.

The algorithmic improvement of the Skip tree type is that a concurrent algorithm on the fly
approach can be designed. Among other advantages, this algorithm is more compressive than the
one designed by Pughfor Skip lists and accepts a higher degree of concurrence because it is based
on a set of local updates.

From a practical point of view, although the Skip list should be in the main memory, Skip trees
can be registered into a secondary or external storage. Therefore we analyse the ability of Skip
trees to manage data bases in comparison with B-trees.

Résumé. — Nous présentons un nouveau type d'arbres, que nous appelons Skip trees, lesquels
sont une généralisation des Skip lists. Concrètement, il existe un isomorphe entre eux qui commute
avec les algorithmes.

Une Skip list est une structure de données ordonnées qui sert pour manager des bases de
données. Une propriété intéressante est que la configuration des Skip lists ne résulte pas de l'ordre
d'introduction des données parce qu'on utilise des techniques aléatoires. Des Skip trees héritent
toutes les propriétés des Skip lists, surtout les bornes des algorithmes séquentiels.

Mieux encore, l'utilisation des Skip trees nous permet de construire un algorithme concurrent
on the fly. Cette solution offre de grands avantages : l'algorithme est plus compréhensible que
celui construit par Pugh pour les Skip lists, et il accepte plus de concurrence parce que les
transformations sont locales.

D'un point de vue pratique, malgré que les Skip lists doivent être enregistrées en mémoire
centrale, les Skip trees peuvent être stockés sur un support secondaire. En conséquence, nous
étudions l'habilité des Skip trees pour indexer des bases de données en comparaison avec les
B-trees.
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252 X. MESSEGUER

1. INTRODUCTION

This paper follows on from the attempt to design a concurrent algorithm
on the fly approach of Skip lists.

The Skip list [22] is data structure that stores values in a sorted order (see
fig. 1). It plays an important rôle because, by means of randômization, the
form of the Skip list is independent of the order of updates. The exepected
efficiency of updates is comparable with other equilibrated structures such as
AVL trees and B-trees. In the last five years there have been a great number
of report analysing its properties [3, 11, 18, 24],

level
4
3
2
1

header
10 30 40 50 60

Figure 1. - Skip list.

70 80 o
90

NIL

The concurrent on the fly approach, which allows a very high degree of
concurrence, is inspired by [5]. This paper proposes a Garbage collection
concurrent algorithm consisting of the main algorithm, which dynamically
puts nodes onto the structure and takes them away, and the garbage collector,
which marks the removed nodes and gathers them together into a garbage list.
The goal was to design the garbage collector with a set of local évolution
rules that assume temporal atomicity (small number of assignments and
tests) and spatial atomicity (a fixed small set of neighboring nodes). J. L. W.
Kessels was the first to apply this approach to search trees, specifically AVL
trees [10]: once new keys have been inserted, the tree is balanced with a set
of local évolution rules. This approach was further applied in [1, 13, 14, 15].

The concurrent algorithm on Skip lists by W. Pugh [21] is far from being
composed of local rules and needs some kind of circular pointers to maintain
information. These two facts cast doubts as to the comprehensiveness and
correctness of the algorithm. We think that the main difficulty dérives from
the sequential update algorithms: recall that the insertion and deletions
ones are based on the path followed in the search stage, therefore, global
information is needed to modify local data.

Informatique théorique et Applications/Theoretical Informaties and Applications



SKIP TREES, AN ALTERNATIVE DATA STRUCTURE TO SKIP LISTS 253

As the main obstacle to designing concurrent algorithms takes place in
the structure of Skip lists (a net of linked lists), we propose a new data type
called Skip trees, composed of trees and inspired by the path followed by
the sequential search algorithm in Skip lists (*). The improvement is that
we are not obliged to store the path followed in the search process because
this information has been added to nodes of trees, therefore the design of
algorithms can be based on sets of local rules. Moreover, as there is a
one-to-one mapping between Skip lists and Skip trees that commutes with
the update algorithms, the large amount of race properties of Skip lists can
be transferred to Skip trees. Let us explain the main ideas of the mapping:
considering the Skip list in Figure 1, we group consécutive items with the
same level, such as 60 and 70, into the same node, and attach to them the
nodes with a lower level (including empty ones) in a sorted order; the Skip
tree show in Figure 2 is obtained.

height

Figure 2. - Skip tree.

From a dynamic point of view, as the level of each key of Skip lists
is given by a random procedure, the height of a node (the height of the
subtree rooted at this node) is given by the same random procedure; but it
is interesting to note the length of a node (the number of keys stored in

(') This idea was applied by T. Papadakis in his PhD thesis [17] to introducé deterministic Skip
list.
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this node) inherits a similar random distribution. Then, the Skip trees can be
considered as a class of unbounded random B-trees because all the leaves
have the same depth; we say unbounded random because the length of the
nodes is unbounded and has a random distribution. Moreover, as the expected
length of the nodes is proportional to a certain parameter q : 0 < q < 1
of the distribution, it holds that Skip trees are close to 2-3 trees for q ~ .5
and close to B-trees for q ~ 1.

From a practical point of view, Skip list should be in the main memory,
but if the data is very large the pagination of the structure is necessary. If this
pagination is based on sets of consécutive keys, then ail update algorithms
slow down because they have to change pages many times. Skip trees,
thanks to their structure, allow more efficient pagination. Moreover, due to
their relationships with B-trees, the improvements proposed by G. Diehr and
B. Faaland [4] can be applied.

Recall that mappings between data structures are a well-known topic.
L. Guibas and R. Sedgewick [8] embed schemes in a dichromatic frame.
T. Papadakis [17] gives us a one-to-one mapping between 2-3 trees and
deterministic Skip lists. Later on T. Ottmann, H. Six and D. Wood [16]
prove that there exists a one-to-one mapping that commutes with updates
between AVL trees and 1-2 Brother trees.

Finally, Skip trees have the same performance rates as the random search
trees by R. Seidel and C. Aragon [23]. However, random search trees should
be applied in different context, because the probability of a key is given by
a continuous identically distributed random variable.

This paper has six sections. The second recalls the main properties of Skip
lists. The third gives the définition of Skip trees, their local rules and the
formai définition of mapping and its proof. The fourth section présents the
concurrent and sequential algorithms. The fifth section analyses the ability
of Skip trees to manage data bases, and the last section includes the main
conclusions and the proposais for further research.

2. SKIP LISTS

Skip lists are randomized data structures introduced by W. Pugh in 1990
[22]. Sequential skip list alogirthms are very simple to implement, and they
provide significant constant factor improvements over balanced and self-
adjusting trees. Skip lists are also space efficient, requiring an average of 2
(or fewer) pointers per item and no balance, priority or weight information.
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SKIP TREES, AN ALTERNATIVE DATA STRUCTURE TO SKIP LISTS 255

Furthermore, the probability of the search time or space complexity exceeding
their expected values rapidly approaches 0 as the items number in the skip
list increases [54].

A non-empty Skip list (see fig. 1) consists of several non-empty sorted
linked lists. All the items are stored in the list of level 1. Some of them
also belong to the list of level 2, and so forth. Each item x in S has a
key denoted as key (x) and a positive integer level (x). If level (x) = l,
it means that x belongs to the linked lists of level 1, 2, . . . , / . We write
level (5) to dénote the maximum level among the levels of its items. The
level of S is aîso called as its height.

To implement a skip list, we need to allocate a node for each item. Each
node x contains the item and level (x) pointers. The successor of x at
level /, denoted forward (x, /), is given by the l-th forward pointer of x.
A header node, header(S), which stores a dummy key smaller than any
légal key, points to the first node of each linked list. A node called NIL,
which stores a key greater than any légal key, is pointed by the last node
of each of the linked lists.

Given a Skip list S and a node x ^ NIL and some integer 0 < / <
level (x), we write

wall (x, l) = "the first node y to the right of x, i.e.

key (x) < key (y), such that key (y) > V\

For instance, in Figure 1, wall(header(5f), 3) is the node having key 50.
We define a subskiplist at node/level (x, ï) of 5, denoted Sxj for short,

as the Skip list of height l, where x acts as a header and wall (x, l) acts as
NIL. Sxj contains all node/levels of 5 reachable from (x, ï).

We recall the sequential algorithms:
Search: Given a Skip list S and a key a, the search procedure returns the

unique node in S such that key {node) < a < key (forward (node, 1)).
It works moving the key a forward or down through S until it reaches
node. In any given stage the key is said to be at a node/level (x, /),
designated the current node/level. Initially the current node/level is set to
(header (5), level (5)). The search procedure itérâtes until the current
level l is 0.

Insertion: Assume, w.l.o.g., that the key a to be inserted does not belong to
S. The insertion has three main phases. First, we search for a to locate
the insertion point for the new item, but it is also necessary to collect
information about the search path, namely the would-be predecessors of
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the new item in each list. Second, a random level is chosen and a new
node is allocated for the new item. Finally, the third phase modifies the
necessary links to add the new node.
The random distribution considered was the négative binomial distribution

with random parameter q, also designated Pascal or geometrie distribution,
and denoted NB (1, q). Recall that a négative random variable is the number
of failures observed before a success in a series of independents trials, where
the probability of success in a trial is q. Let X be a random variable with
this distribution JVB(1, q), then Prob{X = k} = pk q and the expected
value is p/q being p + q — 1 (2).

The levels of nodes of a Skip list with parameter q is given by the
independent distributed random variables NB (1, q) + 1 with expected mean
1/g. Consequently the expected level of a Skip list of size n is O (logj jp n),
and the expected time to search, insert or delete a key is O ( l o g ^ n ) [22].

We recall the total rules of Skip list (see fig. 3) that appear implicitly in
the work of Pugh [21] about concurrent Skip lists. Assume that a — key (x).
Firstly we recall the rule upward (S, a), that corresponds to the increase
of the level of node x by one.

upward (5, a) = "increase the level of x by one and reconstruct S,

when level (x) — level (5), increase level (5*) by one".

Upward

Downward

Figure 3. - Rules of Skip lists.

When level (x) > 0 we can define appropriately the inverse rule, namely
downward (S, a), that decreases the level of x by one, in such a way that:

downward (upward (5, a), a) = upward ( downward (S, a), a) = S.

We finally introducé the rule a t t ach(5 , a) and una t tach(5 , a) that
attaches and unattaches key a to nodes with level 1.

(2) Some authors count the number of trials instead of the number of failures (see [20]).
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3. SKIP TREES

A Skip tree is a search tree. Each internai node n has three registers:
height (n) gives us the height of the node, child (n) stores an ordered list
of pointers. If key (n) has r keys, child (n) contains r + 1 pointers to its
children. Each leaf l contains only one key. The leaves do not have any
children and ail of them have the same depth.

Observe that the number of keys of nodes is not bounded and that we allow
internai nodes without keys (empty nodes in Figure 2) having only one child.

We define four local rules that will serve us to design the algorithms. Firstly
we define split and join rule starting from the split and join ones defined
for 2-3 trees of B-trees but giving due attention to white node. Then, we
define at tach and unat tach rules that attachs or unattach nodes to trees.

Given a Skip tree T and a key a belonging to node x of T, we define:

split (T, a) = <

x 7̂  root (T) the node x is split into two more nodes and
the key a is located in the father of x.

x = root (T) the node x is split into two more nodes and
a new node will be created to store a.

In both cases, white nodes will be created or propagated when necessary.
The different context of a in T give us different types of split which are
straightforward to deduce (see fig. 4).

a

b

d

split(7\c)

c • <

join{T,c)

split(7',6)

a b c ^ *
— : : join(T.fc)

a \ c \ d

1 \ \

/
a

b

\
c

Figure 4. - Splits and Joins with white nodes: in the first case when c is split a white
node is generated, and in the second case the split of 6 takes off the white node.
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Dually, we can definite the inverse rule join (T, a) that groups together
the internai nodes located on both sides of the key a into only one internai
node, and puts a between them. In joint (T, a) the height of a decreases
by one. It follows that:

join (split (T, a), a) — split (join (T. a), a) — T

We need a rule that attaches a new key a to T.

attach (T, a) = "a new leaf with value a is hung in T at height 0

and the key a is located appropriately at level 1. This

means. if the node is white, fulfill it with a\ otherwise

insert a between the keys located at this internai node".

Finally, we can easily define the inverse rule unat tach (T, a) if a has
height 1.

3.1. Mapping between Skip trees and Skip lists

We define the mapping between Skip trees and Skip lists, and we prove
that it is one-to-one function and that local rules of Skip lists commute with
local rule of Skip trees. These two facts suggest that the update algorithms of
both data types are syntactically identical; they only differ from local calls.

3.1.1. One-to-one mapping

Bef ore giving an accurate définition of:

T : Skip lists —»• Skip trees

let us explain this top-down transformation informally (see fig. 5). There
are three main cases:

• The first case happens when we have a subskiplist Sxj such that
0 < l < level (x) and forward (o;, l) = wall(x, /). The transformed
Skip tree T (SXti) starts with a white node of height l having as a child
T (Sxj-i). Notice that the smallest key of T (Sxj-i) will be key (x).

• The second case corresponds to 0 < l < level (x) and forward (x, l) •=/=•
wall (x, /). Therefore there is a least one node between forward (x, l) and
wall(x, /). If there is only one node y\ between forward (x, ï) and
wall(x, /), then the Skip tree T (Sxj) has an internai node with key
ai = key (2/1) and two children corresponding to the transformations of
SXii-i and Syj-i.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Case 1 : 0 < î < level(:r) and forward(x,/) = wall(ar.i)

Case 2 : 0 < i < level(x) and forwardfx, l) ^ wall(x, I)

x wall(ar,ï)

Case 3 : î = 0

i i
i i

a 1 h=0

Figure 5. - Mapping T between Skip lists and Skip trees.

• Case 3. The last case happens when we have l = 0 or SXIQ. Therefore
we get a leaf having the key a of x,

Formally, we define the T as:

DÉFINITION 1: Given a Skip list S = S (header, NIL) we define T (S)
recursively starting from T (5 (header, NIL)). Given a nodeâevel (x, ï)
we consider the integer ƒ > 1 such that forward^ (rr, /) = wall (x, /),
therefore

1. When f — 1 and l > 0 we have

D

2. When ƒ > 1 and l > 0 we note yi — forward* (x, /) (in particular

vol. 31, n° 3, 1997
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x = 2/0 = forward0 (x, Z)), a% = key (j/j) ûnd Tt = T (Sy.j-i)

[ ai | a2 | | a/_x ]]
\

3. When 1 = 0 we have

<»= key W

We can easily verify that Skip list given in the Figure 1 transforms to

the Skip tree in Figure 2.

LEMMA 1: The mapping T : Skip lists —»• Skip tree is a one-to-one
function.

3.1.2. Commutation between local rules and mappings

More interestingly, rules on Skip trees match with rules on Skip lists.

To be more precisely:

LEMMA 2: Given a Skip list 5 having all the key s different, the following
relationship between rules of Skip list S and Skip tree T (S) holds:

1. Given a key a belonging to S it holds that T (upward (5, a)) =
split (T (S), a).

2. Given a key a which does not appear in S, it holds that
T (attaché a)) = attach (T (S), a).

Proof: First, give us a proof outline of (1). Assume that a = key (x)
and / = level (x). As in upward (5, a) the level of x will be Z + 1, we
consider in 5 the sallest subskip S' containing x with level (5f/) > l. When
x goes up one level it will eut the forward pointer at level l + 1 of a node
y belonging to S1. We would need to consider three main cases depending
on y and z — forward (y, l + 1).

• Both y and z verify level (y) = level {z) — l + 1.

• Both y and z verify level (y) > l + 1 and level (z) > l + 1.

• The node y vérifies level (y) > l+l but node z vérifies level (z) — l+l.

• Reciprocally we have, level (y) = l + 1 but node z vérifies level (z) >
l + l.

For each one of these cases there are another four possibilies, depending
on the brothers surrounding x.
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• The node x is surrounded by left and right brothers having exactly level L

• The node x has only a left brother with level exactly L

• The node x has only a right brother having level exactly l.

• There are no brothers surrounding x and having level L

The preceding considérations allow us a total of 16 different contexts for
x inside S' straight-forward to prove. •

We give due attention to inverse rules. Therefore, given a Skip list 5 with
différent keys, and a key a with level greater than one, it holds that:

T (downward(S' î a)) = j o i n ( T (S), a).

If the case a has level one, we have

T (unat tach(5, a)) = u n a t t a c h ( T (S), a).

4. CONCURRENT AND SEQUENTIAL ALGORITHMS ON SKIP TREES

The trees are generated by the forthcoming insertion and deletion
algorithms, but starting on empty trees. As the insertion is random, these
trees are (random) Skip trees, but as people do with Skip lists we only refer
to them as Skip trees.

Before designing the algorithms we select the random distribution which
détermines the height of keys. As the height is equal to the level on Skip list,
it is determined by the random variable 1 + NB (1, q). Thus by a "Skip tree
with parameter g" we mean Skip trees whose keys have all been inserted
following this random distribution.

We first address the main algorithmic contribution of this paper: the
concurrent algorithm on the fly approach and its proof of correctness. Later
on we dérive the sequential algorithms because they can be viewed as
concurrent ones acting over one key.

4.1. Concurrent algorithm

We design a concurrent algorithm on the fly approach. This approach,
inspired by [5], suggests defining a set of local rules which modifies the
tree with a nondeterministic évolution strategy, until the desired final state
is reached. Although locking groups of nodes during critical updates cannot
be avoided, locality of rules ensures small number of locked keys and for a
short time as possible. Observe that the rules explained in section 3 verify
these properties.
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The correctness of the algorithm dérives from the following properties:
safety: expresses that if no rule can apply, then the final state has been

reached (partial correctness),
liveness: expresses that eventually no rules applies (total correctness),

The safety property is easy to test from the guard (precondition) of rules
and the proof of liveness needs a variant function that should be positive
and strictly decreases at each application of any rule.

4.1.1. Search rules

Assume that we search the Skip tree T for the set of items a i , a2, . . .
We add to each node a new register, denoted waiging bag, that contains all
the keys waiting to be percolated. We do not assume any strategy, such as
FIFO, LIFO, . . . , in the management of the bag. The algorithm introducé
all items into the bag of the root, and applies the rule which percolates them
down through the tree.

Rule: Percolation

Guard: Node x such that waiting (x) / 0.
Behavior: An item a extracted from waiting (x) bag. If a E key (x)

the key has been found. Otherwise we consider four cases: (i) If x is
a leaf the item does not belongs to the tree and is erased. (ii) if x
is white then a is added to bag child (x) [0]. (ii) if there is some i
such that key (x) [i] < a < key (x) [i + 1] , then a is added to bag
waiting (child (x) [i]). (iv) If a is smaller than the smaller key (larger
than the larger key) then a is added to the leftmost (rightmost) child bag.

Spatial scope: Node x and one son.
We prove the correctness:

Safety: if no rule applies all the waiting bags are empty, then all keys have
been searched.

Liveness: let IN (x) the number of nodes contained inside the tree rooted at
x, and INw — J2 IN (x)\waiting (x)\ this addition for all nodes. The
variant function INw strictly decreases.

4.1.2. Search and insertion rules

Now we deal with items to be searched only and items to be searched
and further inserted. Then we slightly modify the behavior of Percolation
in order to take into account the last class of items, and we recall from
section 3 the rule split.

Informatique théorique et Applications/Theoretical Informaties and Applications



SKJP TREES, AN ALTERNATIVE DATA STRUCTURE TO SKIP LISTS 263

Rule: Percolation

Behavior: Assume that item a, extracted from waiting (rr), should be
inserted. If it is found, Le. is equal to some key of x, then remove it
from waiting bags. Otherwise when it reaches a leaf a new key a is
added to skiptree (with attach rule), and its height, namely rc-height,
is randomly computed and stored with the new key.

Rule: Split

Guard: Key a of node x has rc-height larger than those of x.

Behavior: Explained in section 3. observe that the waiting bag is split too.

Spatial scope: Node x and its parent key.

We prove the correctness:

Safety: if no rules applies ail items have been percolated, and the
unsuccessful ones have been attached and sent up at their rc-height.

Liveness: let W the variant function that stores the number of items contained
in waiting bags and H the addition of the différences between the rc-height
and the current height of new keys. The variant function (VF, H, INw)
strictly decreases at each step of both rules.

4.13. Search, insertion and deletion rules

As in the preceding section, we slightly modify the rule Percolation in
order to take into account the new kind of items to be deleted, and we recall
the split and join rules.

Rule: Percolation

Behavior: Assume that item a, extracted from waiting (x), should be
delected. If the key is found then it is colored gray, otherwise the item
is sent down (if x is a leave "sent down" means "erased").

Rule: Split

Guard: Now key a of node x cannot be gray.

Behavior: The same.

Spatial scope: Node x and its parent key.

Rule: Join

Guard: Key a is gray.
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Behavior: Explained in section 3. Observe that if the gray key is located
at a leaf we apply unattach rule to remove it.

Spatial scope: Key a and both childs.

We prove the correctness:

Safety: if no rules applies ail items have been percolated and the grey keys
have been removed from the case.

Liveness: let INQ = ^2 IN (x) this addition for ail nodes with gray keys.
The variant fonction (W, INQ) strictly decreases at each application of
join rule; therefore, (W, H, INw, INQ) strictly decreases at each step
of any rule.

4.1.4. Expected magnitudes of Skip trees

The distribution function of the following magnitudes can be deduced:

Height: it is determined by the random variable H — 1 + NB (1, q) (like
the height of Skip lists). The expected values is 1/g.

Length: Let L be the random variable whose value is the number of keys
of nodes. Thanks to the one-to-one mapping, L is equal to the number
of consécutive keys with the same level, magnitude which is denoted
gap by Papadakis [17] and that is determined by the radom distribution
L = NB (1, p) whose expected values is q/p.

The Skip trees inherit from Skip lists the following expected properties:

THEOREM 1: Let T be a Skip tree with parameter q and size n(q+p — 1);

1. The expected height of T is O ( l o g ^ n), and the probability that the
expected height déviâtes k times from the expected values decreases as
O(n~k).

2. The expected length of internai nodes is q/p, and the probability that it
was deviated c times from the expected value is q\cqlv\

3. The expected number of splits or joins while upadating a key is 1/q,

Proof: 1. Given a random Skip tree T with parameter q and n keys, the
Skip list S — T~l (T) is an usual Skip list with n keys where the height
of nodes is determined by the random variable 1 + NB(1, q), then the
height of S holds O (log! ip n). To prove that the expected height decreases
exponentially we apply the Chernoff tail bound lemma [2],

P rob{# > a} <E(etïï)/eta Va, t > 0.
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The expectations for H are E (etH) — q/E (e~t—p) being q = 1— p. Then

taking t — ~ In (1/p). Observe that this resuit is well definded for 1 < c < k.
2. Let L be the random variable whose value is the number of keys in

a node of a tree T, then

Prob{L > cE(L)} = Prob{L> cq/p} - V

k>cq/p

3. The expected number of splits and joins is equal to the expected height
of one key, then

E (1 + NB (1, q)) = l + E (NB (1, q)) = l+p/q = 1/q. M

4.2. Sequential algorithms

These algorithms can be easily derived from the concurrent ones because
they can be viewed as concurrent ones acting over one key. Thus they
are easily designed, their correctness is ensured by the concurrent one and
the time bounds are derived from Skip lists. Clearly we do not need the
waiting bags.

• Search algorithm: the item is percolated until it is found or it falls
from a leaf.

• Insertion algorithm: the item is percolated. If the search was
unsuccessful a new key is attached and the rc-height is determined. Then it
is split until the key reaches its rc-height.

• Deletion algorithm: The item is percolated until it is found and and
coloured or it falls from a leaf. In the first case we join the gray key until
it is removed.

The correctness is ensured by the correctness of the concurrent algorithm.
Due to the one-to-one mapping, the time of updates has the same performance
as the sequential updates time of Skip lists. Given a Skip tree T, the inverse
S — T " 1 (T) is a Skip list. Therefore we transferre the results obtained
in Skip lists [22, 7]:

vol. 31, n° 3, 1997



2 6 6 X. MESSEGUER

THEOREM 2: Let T be a Skip tree ofsize n and random parameter q. The
expected time for searching, inserting or deleting a key is O ( l o g ^ n ) and
the probability that the expected height déviâtes k times from the expected
value decreases as O(n~~k).

5. CLOSE TO B-TREES

Although a Skip list can not be efficiently broken (or paginated) to store
some parts in secondary or external memory, Skip trees have this capability
due to their structure. This fact and the closure between B-trees and Skip trees
with parameter q ~ 1 suggest the use of Skip trees for handling indices of
data bases, such as B-trees do. The following lemma explores this possibility.

LEMMA 3: Let T be a Skip tree ofsize n and parameter q, recall L and H

as random variables giving the length ofnodes and the height of tree:

1. Prob {L > cE (L)} ~ (eq)~c for larger values of q.

2. Prob{iî > l + log1/p(n)} = l - ( l - £ ) r a ~pforn » landp~Q.

Proof: 1. Recall that Prob {L > cE(G)} < (q^p)c. This expression can
be approximated by

1-p Q _ \l/p

) * = )

2. Recall that the height of each node is also a négative binomial but with
parameter g: H = NB (1, q) -H 1. Say L(n) = l o g ^ n , then

Prob {Hn > L (n) + 1} = 1 - Prob {Hn < 1 + L (n)}

because all the keys should have smaller height,

= 1 - f [ (1 - VL{n)+1) = 1 - (1 - pL(n>+1)n

because they are independent random variables. •

The above lemma suggests that Skip trees manage data base as well as
large were q and n, but taking care about the length of nodes. The probability
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that the height was greater than the expected one is very small, but this is not
true for the length of nodes: for instance, c — 1 détermines that about n/e
nodes grows more than the expected value. This fact suggests implementing
Skip trees with nodes of variable length as E. McCreight [12] or G. Diehr
and B. Faaland [4] propose for B-trees.

6. CONCLUSIONS AND FURTHER RESEARCH

From a theoretical point of view, the balanced search trees can be separated
into two groups depending on the set of local rules: a fîrst group, which
uses splits and joins, consisting of B-trees and derivatives, and a second
group, which uses rotations, composed of AVL trees and Red-black trees.
Therefore, the main theoretical conclusion of this paper is that Skip lists, by
means of Skip trees, belong to the first group. Hence, in the trees of this
group holds that if the length of the nodes is bounded we are dealing with
2-3 trees, 2-3-4 trees, . . . , but if the length is randomly determined by a
négative binomial distribution we are dealing with Skip trees (or Skip lists).

A second conclusion is that Skip trees lie between Skip lists and the family
of B-trees. Skip trees inherit random characteristics and race properties from
Skip lists, and structural and algorithmic improvements from the family
of B-trees. For instance, an example of a structural improvement is the
définition, by following C. Douglas [6], of Skip* trees or Skip+ trees. And
an example of algorithmic improvements is that we can translate algorithms
from B-trees to Skip trees by taking parameter q ~ 1, or from 2-3 trees to
Skip by taking parameter q c± 0.5.

From a practical point of view, Skip trees can be partitioned to paginate
them as if they were B-trees and can be applied to manage data bases, taking
care, however, with the length of nodes.

Finally, we have designed a concurrent algorithm on the fly approach.

We leave for further research the design of massively parallel algorithms
for Skip trees. The state of the art is that W. Paul, U. Vishkin and H. Wagener
[19] designed a parallel algorithm for 2-3 trees, L. Higham and E. Schenks
[9] designed one for B-trees, and J. Gabarró, C. Martïnez and X. Messeguer
[7] designed a parallel algorithm for Skip lists. Thus, the parallel algorithm
of Skip trees will arise from the right mixture of them.
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