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Abstract. — In this article finite-valued transducers are investigated in connection with their inner
structure. The transducer models considered are the normalized finite transducer (NFT) and the
nondeterministic generalized sequential machine (NGSM), which is a real-time NFT. It is shown
that a k-valued NGSM M can be effectively decomposed into k unambiguous NGSMs My, ..., My
such that the transduction realized by M is the union of the transductions realized by M, ..., My.
Each transducer M; has double exponential size and can be computed in deterministic double
exponential time. This result can be extended to NFTs. As a consequence, the k-valued NGSMs
(NFTs) and the k-ambiguous NGSMs (NFTs, respectively) realize the same class of transductions.

Résumé. — Dans cette article, les transducteurs d’image bornée sont examinés en liaison avec
leur structure interne. Les modéles de transducteurs qui sont considérés sont les transducteurs finis
normalisés (NFT) et les NGSM, qui sont des NFT a temps réel. 1l est démontré qu'un NGSM d’image
k-bornée M peut étre effectivement décomposé en k NGSM non ambigus M, ..., My, de telle
maniere que la transduction réalisée par M soit égale a l'union des transductions réalisées par
My, ..., My. Chaque transducteur M; a une taille doublement exponentielle et peut étre calculé en
temps déterministe doublement exponentiel. On peut étendre ce résultat aux NFT. En conséquence,
les NGSM (resp. NFT) d’image k-bornée et les NGSM (resp. NFT) k-ambigus réalisent la méme
classe de transductions.
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380 A. WEBER
INTRODUCTION

The transducer is the classical model of a finite-state machine with output
device. Informally, a transducer M may be regarded as a finite, directed,
labeled graph. The vertices and edges of that graph represent the states
and transitions of M, respectively. The label of an edge is the pair of
words consumed and produced by the corresponding transition from the
one-way input tape and on the one-way output tape of M, respectively. The
machine M is called a normalized finite transducer, abbreviated NFT, if these
input words always have length O or 1 — or a nondeterministic generalized
sequential machine, abbreviated NGSM, if only length 1 appears, i.e., M
is a real-time transducer. The computations in an NFT M are represented
by paths in the above graph. Every such path consumes an input word and
produces an output word along its edges. A computation is successful if it
corresponds to a path initiating and terminating at designated initial and final
states, respectively. Such paths are called accepting. The transduction (or
relation) realized by M is the set of pairs (z, z) of input/output words being
consumed/produced by any accepting path. For each such pair (z, z), z is
called a value for x in M. Two transducers are equivalent if the transductions
realized by them coincide, i.e., every input word has the same set of values

“in both machines.

The valuedness of an NFT M is the maximal number of different values
for an input word or is infinite, depending on whether or not a maximum
exists. For any positive integer k, the transducer M is called finite valued
(k-valued, single valued) if its valuedness is finite (at most &k, at most 1,
respectively). It is said to be k-ambiguous (unambiguous) if any input word
is consumed by at most k£ (at most 1, respectively) different accepting paths
— and finitely ambiguous if it is k-ambiguous for some k. Evidently, every
k-ambiguous transducer is k-valued and every finitely ambiguous transducer
is finite valued. The converse is in general false.

It is decidable in deterministic polynomial time whether or not a given
NFT is finite valued (Weber [W90]) and, for any fixed positive integer k,
whether or not it is k-valued (Gurari and Ibarra [GI83]). Since ambiguity is
a special case of valuedness (just replace the output word of any transition
by the transition itself), the two above results remain valid if “valued” is
replaced by “ambiguous”. For further background on transducers the reader
may consult the textbooks (Berstel [B79]) and (Gurari [G89]).

The work presented in this article is motivated by the two following
structural theorems for finite-valued transducers.
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DECOMPOSING A k-VALUED TRANSDUCER INTO £ UNAMBIGUOUS ONES 381

(1) A finite-valued NGSM (NFT) M can be effectively decomposed into
finitely many single-valued NGSMs (NFTs, respectively) M, ..., My such
that the transduction realized by M is the union of the transductions realized
by M, ..., My (Weber [W93]).

(2) A single-valued NGSM (NFT) M can be effectively transformed into
an equivalent unambiguous NGSM (NFT, respectively) M’ (Eilenberg [E74]
and Schiitzenberger [Sch76], see Berstel [B79, Chapt. IV]).

In result (1), the integer N is always of exponential order. This is in the
optimal range if the valuedness of M is exponential. Transducers with the
latter property exist (Weber [W90]). Each machine M; in (1) has double
exponential size and can be computed in deterministic double exponential
time. The machine M’ in result (2) has exponential size, which is optimal
in certain cases of M, and it can be computed in deterministic exponential
time (Weber and Klemm [WK95], see Section 2).

The main result of this article (see Section 3) is the following theorem
combining results (1) and (2).

(3) For any positive integer k, a k-valued NGSM (NFT) M can be
effectively decomposed into &£ unambiguous NGSMs (NFTs, respectively)
My, ..., My such that the transduction realized by M is the union of the
transductions realized by M, ..., M.

We want to point out that result (3) improves down to optimality the
number of single-valued transducers in (1) and extends (2) from single-valued
to k-valued transducers. Every machine M; in (3) has double exponential
size and can be computed in deterministic double exponential time where &
appears in the second exponent each. Therefore, if the valuedness of M is
of polynomial order, then this theorem yields a decomposition of M into an
optimal number of unambiguous transducers, and each of them has about the
same size as each of the — exponentially many — single-valued transducers
provided by (1). For any fixed positive integer k result (3) states that a
k-valued NGSM (NFT) M can be effectively transformed into an equivalent
k-ambiguous NGSM (NFT, respectively) M’ of double exponential size. In
certain cases of M the size of M’ is necessarily exponential (Leung [Le93]).
In particular, the k-valued NGSMs (NFTs) and the k-ambiguous NGSMs
(NFTs, respectively) realize the same class of transductions (see Section 3).
Note that in general we cannot expect in result (3) that the transductions
realized by My, ..., My, are pairwise disjoint (Lisovik [Li91]).

Because of reduction our main task will be to prove theorem (3) for
NGSMs. Intuitively, we thus have to prove that a “difficult”, i.e., k-valued
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382 A. WEBER

NGSM M is equivalent to some effectively constructible “disjoint union” of
“easy”, i.e., unambiguous NGSMs M, ..., M. We want to point out that
one major problem for the machines M, ..., My is that the model of a
“disjoint union” does not allow any communication among them. Given an
input word z, each M; has to decide autonomously which of the values for
z in M it should produce as its own value. In order to do so, the transducer
M; computes a “neighborhood” graph associated with . The “minimal”
vertices of the connected components of this graph represent all values for
z in M. The machine M; obtains its value from that minimal vertex having
“rank” ¢ in the neighborhood graph.

In order to specify in more detail the construction of the unambiguous
NGSMs Mj, ..., My, in theorem (3) we need two main tools (see Section 2).
The first one is a strengthening of result (1) where the single-valued NGSMs
are replaced by unambiguous ones without deterioating size or complexity
bounds. The second tool clarifies the notion of “neighborhood” used above.

Another method, apart from the above discussion about theorem (3), to
compare k-valued and k-ambiguous transducers, for any fixed positive integer
k, is to study their respective equivalence problems. The best procedure we
know for deciding the equivalence of k-valued NFTs is derived from theorem
(1) and requires deterministic double exponential time (Weber [W93]). In
contrast to this, it is decidable in deterministic single exponential time
whether or not two k-ambiguous NFTs are equivalent (Gurari and Ibarra
[GI83]). Note that the first-mentioned procedure, deciding the equivalence
of k-valued NFTs, does not take advantage of the fixed k. A first step to
improve this procedure could be to provide in theorem (3) unambiguous
transducers of single exponential size. Concerning the equivalence problem
for k-ambiguous NFTs, it should be interesting to find a polynomial-time or
-space algorithm. Equivalence problems for transducers are further treated
in the surveys (Karhuméki [K87]) and Culik [C90]).

Result (1) remains true when the valuedness of a transducer is replaced by
its length-degree (Weber [W92a]). It is an open problem whether a similar
extension exists for theorem (3). We want to point out that such an extension
would considerably improve the complexity of the best known algorithm for
deciding the equivalence of NFTs having length-degree at most k, for any
fixed positive integer £ (Weber [W92a]). Result (1) also remains valid when
transducers are replaced by bottom-up tree transducers (Seidl [Se94)). It is
an open problem whether a similar extension exists for theorem (3). Finally,
theorem (3) is used in order to show that, for any positive integer k, a

Informatique théorique et Applications/Theoretical Informatics and Applications
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certain (k + 1)-valued distance automaton is not equivalent to any k-valued
distance automaton (Weber [W941]).

1. DEFINITIONS AND NOTATIONS

1.1. General

The set of all integers is denoted by Z. For any nonnegative integer m,
the set {1, ..., m} is denoted by [m|. For any integers ¢ and j, the set
{t € Z : 1<t < j} is denoted by [, j|. For every set U the set of all
subsets of U having cardinality 2 is denoted by ([2])

Let A be a nonempty, finite set. For every z € A* and j € [|z|], the
jth letter of the word z is denoted by z(j). Let z1, z2 € A*, and let
J € [min {|z1], |22]}]. We say that the words z; and 2y differ at position j
if z1 (7) and 22 () are distinct. We write 21 C 23 if 21 is a prefix of zy, ie.,
|21] < |22] and, for every j € [|21]], the letters 2; (j) and 23 (j) coincide.

The free group generated by A, denoted by FG (A), is defined as the
quotient of the free monoid (A U A™)*, where A~ = {b~! : b€ A}, by
the congruence generated by the relations bb~! = b~1b = ¢ for every b € A.
A word z € (AU A™Y)* is reduced if it contains no factor of the form
bb~! or b~1b where b € A. It can be seen that every element of FG (A)
has a unique reduced representative in (A U A~1)* (see Lyndon and Schupp
[LS77, Sect. 1.1]). We can therefore identify in an obvious way FG (A) with
the set of reduced words in (AUA™N)* Let z =b]" ... by € (AUATL)*
where b1, ..., by, € A and 41, ..., Ym € {1, —1}. Then, the inverse of z,
denoted by 271, is by,™ ... by ™. The sets A* and (A~1)* are submonoids
of FG(A). For any nonnegative integer ! the set {z € A* : |z| < [}
is denoted by AS! and the set {z € A* U (A™Y)* : |z| < I} is denoted
by ASH Letz =21 ...2;m € A* and 2/ = 2} ... 2, € A* where 2,
2y, ..., Zm, 2, € A*. Then, z is a prefix of 2’ or 2’ is a prefix of z if and
only if, for every [ € [m], 27} ... 27 2 ... 2} is in A* U (ATH)*.

Let G be a finite, undirected graph. For any vertex p of G we denote by
[p]c the connected component of G to which p belongs, i.e., the set of all
vertices g of G being connected with p.

1.2. Transducers

Our model of a transducer is the normalized finite transducer, abbreviated
NFT. Formally, an NFT is a 6-tuple M = (Q, X, A, 6, Qr, QF) where
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384 A. WEBER

Q, ¥, and A denote nonempty, finite. sets of states, input symbols,
and output symbols, respectively, @7, @r C @ denote sets of initial
and final (or accepting) states, respectively, and § is a finite subset of
Q x (¥ U {e}) x A* x Q. Here, ¥ is the input alphabet, A is the output
alphabet, and § is the transition relation. Each element of § denotes a
transition. In general, of course, the transducer M will be nondeterministic.
We say that M is a real-time transducer or, by historic reasons, a
nondeterministic generalized sequential machine, abbreviated NGSM, if §
is a finite subset of @ x ¥ x A* x Q. In this article we mainly deal
with NGSMs. If § is a subset of @ x (2 U {e}) x {e} x Q, then M is a
nondeterministic finite automaton with e-moves, abbreviated e-NFA. If § is a
subset of @ x X x {e} x Q, then M is a nondeterministic finite automaton,
abbreviated NFA. The latter definition is, of course, isomorphic to the usual
one.

The mode of operation of M is described by paths. A path 7 (of length
m) is a word

(QIa x1, Zl) cee (Qma Tm, Zm) Gm+1 € (Q X (ZU {5}) X A*)m Q

such that (¢1, 1, z1, @2), ---, (gm), Tm, Zm, gm+1) are transitions. The
path 7 leads from g1 to gy+1, consumes & = x1 ... T, € 2*, produces
z =21 ...2m € A*, and realizes (z, z) € £* x A*. It is accepting if
¢1 is an initial and gm+4+1 is a final state. It is a cycle if q1 and gm+1
coincide. Whenever convenient we identify a transition (p, a, z, ¢) with the
path (p, a, z)q of length 1 and vice versa. We define 6 as the set of all
(p, z, 2z, q) € Q@ x * x A* x @ such that (z, 2) is realized by some path
leading from p to q. If M is real time, then § equals 5NQx T xA*xQ.
In this case we rename & by 6. If M is an e-NFA, then 4 is a subset of
Q x I* x {e} x Q. Let m; = 7} 1 and w3 = 7} g2 be paths in M leading
from p; to ¢1 and from p;y to q?_, respcctively If g1 and p2 coincide, then
we define the path 71 o mo as 7r1 7r2 g2. Note that the operation “o” on paths
is associative.

The transduction (or relation) realized by M, denoted by T (M), is the
set of pairs (in X* x A*) realized by the accepting paths in M. The language
recognized by M, denoted by L (M), is the domain of 7' (M), i.e., the set
of words (in ¥*) consumed by the accepting paths in M. Two NFTs are
equivalent if the transductions realized by them coincide.

If (z, z) € ©* x A* belongs to T (M), then z is a value for z in M.
The valuedness of x € ¥* in M, abbreviated valys (z), is the number of
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all different values for z. The valuedness of M, abbreviated val (M), is the
supremum of the set {valy; (z) : = € ¥*}. Note that, for a given z € I*,
valps (x) may be infinite (Weber [W90, Sect. 5]) whereas it is clearly finite
if M is an NGSM. The degree of ambiguity of M, abbreviated da (M),
is the minimal nonnegative integer k such that any z € X* is consumed
by at most k£ accepting paths or is infinite, depending on whether or not
such a k exists. Evidently, val (M) < da(M). Let k be a positive integer.
The transducer M is finite valued (k-valued, single valued) if its valuedness
is finite (at most k, at most 1, respectively). It is finitely ambiguous (k-
ambiguous, unambiguous) if its degree of ambiguity is finite (at most k,
at most I, respectively). Whenever convenient we abbreviate “unambiguous
NGSM” by UGSM and “unambiguous NFA” by UFA.

A state of M is useful if it appears on some accepting path. If all states
of M are useful, then this machine is trim.

Let My = (Qo, X, A, d, Qr,0, @F,0) be another NFT. We define
some local structural parameters of M and Mj. The first one, diff (6, &p)
denotes the minimal nonnegative integer k; such that, for all pairs
((p, a, z, q), (¢, a, 2', ¢')) of transitions in M and My consuming the same
a € YU {e}, |IZ'| — |z|| is at most k1. We set diff (§) = diff (6, §). The set
of e and of all words (in A*) produced by the transitions of M is denoted
by im (§). We set iml (§) = max {|z| : z € im(6)}.

The size of 6, denoted by ||§||, is defined as 1 plus the sum of 1+ |z| over
all transitions (p, a, z, q) of M. The size of M, denoted by ||M||, is defined
as #Q + #X + #A + [|6]|. Note that #im (§) < min {||6]|, #(AS=L())},
diff (6, 6o) < max {iml(§), iml(6p)}, and diff (§) < iml(8) < ||6)| — 1. If
M is an e-NFA, then ||6]| = 1 + #6.

Let 2 = 1 ...2m,m € X* where z1,...,2Zm € X U {e}. For any
two paths # = (qi, %1, 21) --. (Gms Tm, 2m)Q@m+1 in M and 7' =
(a1, 21, 21) -+ (@m» Tm, Z1y) @pyq in Mo both consuming  “in the same
fashion” we define

diff (r, ') = max {||z] ... 2| — |21 ... 7| : 0< 1< m}.
Note that diff (w, 7') is at most m - diff (6, &).

Let v : Qo — @ be some mapping. For any path 7= =
(s1, 1, 21) ... (Sm> Tm, #m)Sm+1 in My we define the word

Y (m) = (P (s1), 71, 21) ... (¢ (8m), Tm, 2m) % (Sm+1)-

Note that in general the word %) () is not a path in M. If ¢ (7) is a
path in M, then it realizes the same pair of words as 7. If moreover 7’
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386 A. WEBER

is another path in My such that ¢ (7') is a path in M, then the equality
diff (¢ (7), ¥ (7)) = diff (7, 7’) holds.

2. MAIN TOOLS

In this section we prove the two following theorems.

TueoreM 2.1: Let M = (Q, X, A, 6§, Qr, Qr) be a finite-valued
NGSM. Then, there are O (2P°YIMIY many UGSMs M, ..., My and UFAs
Mi, ..., M}y suchthat T (M) equals T (M1)U...UT (My) and, for every
i € [N], M| recognizes ¥*\L (M;). Each of these new machines has size
0 (22""™"Y and can be computed in DTIME (22"""™". The state sets of M;
and M are independent of i € [N). Let Qo be the state set of M1, ..., My.
There is a mapping v : Qo — Q which maps any (accepting) path in
M; (i € [N]) to an (accepting) path in M.

TueoreM 2.2: Let M = (Q, X, A, 6, Qr, Qr) be an NGSM with n
states, and let k be a positive integer. Assume that there are accepting paths
1, .., Tpt1 in M consuming the same word (in ¥*) and producing the
words 21, ..., Zp+1 € A*, respectively, such that for any two distinct 11,
i € [k + 1] either diff (m;,, m;,) is greater than (n*T1 — 1) - diff (6) or 2,
and z;, are distinct. Then, the valuedness of M is greater than k.

Theorems 2.1 and 2.2 turn out to be the main tools in order to prove the
main result of this article (Theorem 3.1) stating that a k-valued NGSM can
be effectively decomposed into & UGSMs.

For every single-valued NGSM M with n states there is an equivalent
UGSM M’ having at most 7 - 27—l (at most 2") states and size at most
|[M]|| -2"1 (at most ||M]|®> - 2", respectively); the UGSM M’ can be
computed in DTIME (2i21M1y (Weber and Klemm [WK9S, Prop. 2.1 and
Thm. 2.3]). Using either of these results, it is not difficult to derive from
(Weber [W93, Thms. 2.1-2.3]) a weaker version of Theorem 2.1 where
the UGSMs M, ..., My and the UFAs Mj, ..., M}, each have size

O(222lm“M“) and can be computed in DTIME (222lm”M“). Theorem 2.1
strengthens [W93, Thms. 2.1-2.3] by providing UGSMs M, ..., My
rather than single-valued NGSMs and UFAs Mj, ..., M}, rather than
NFAs without deterioating size or complexity bounds. In order to prove
Theorem 2.1, we strengthen, modify, and combine the proofs of [WK95,
Prop. 2.1] and of [W93, Thms. 2.1-2.3]. Theorem 2.2 has no special history
and is proved by means of pumping methods.
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In the remainder of this section we prove Theorems 2.1 and 2.2,
successively. For the proof of Theorem 2.1 we need the following lemma
which strengthens [WK95, Prop. 2.1].

Lemma 2.3: Let M = (Q1 X Q2, £, A, b, Qr, QF) be a single-valued
NGSM such that the sequence of the Q1-components of the states of any
accepting path in M is uniquely determined by the word consumed by this
path. Set n; = #Q; (i = 1, 2). Then, there is an equivalent UGSM M’
having at most n1 ny 2"2~1 states and size at most ||M|| - 2">~1. The UGSM
M’ can be computed in DTIME (poly (||M]| - 2™2)).

Proof: Let M = (Q1 x Q2, 2, A, 6, Qr, QF), n1, and ny be as in

the lemma. Let us fix some total order on (2. We construct the NGSM
M = (le 27 A» 6/7 QlI, QIF) by Setting

Q' ={(», ¢, B) € Q1 x Q2 x 29> : g € B},
Qr={p ¢ B)eQ :B={d€Q:: (p,d)€Qr}}
Qr={p, ¢ B)eQ : q=min{¢ € B : (p, ¢) € Qr}},

and

§={(p,q, B),a,z ¥,qd,B)eqQ xExA*xQ :
((p7 Q)a a, z, (p’7 q,)) S (S, q = min {3 €B: for some
Z e, ((p,5),a, 2, (0, ¢)) €6},and B' = {s' € Q2 :
forsome s € Band 2’ € A*, ((p, s), a, 2, (¢, §')) € 6}}.

Obviously, #Q' < nynz2™~1 = #Q-2%~1 ||§'|| < ||§]| - 2=, and
|IM|| < ||M]| - 2721, The machine M’ can be computed in DTIME (poly
(||M]|| - 2"2)). Any accepting path in M’ realizing some (z, z) € ¥* x A*,
when restricting its states to their 1 x (J2-components, yields an accepting
path in M also realizing (z, z). Thus, T'(M') is included in T (M). On the
other hand, it is easy to show that L (M) is included in L (M"). Since M
is single valued, this altogether implies that M and M’ are equivalent. It
remains to be shown that M’ is unambiguous.

Let z € L (M'), and let 7 be an accepting path in M’ consuming z. Since
M’ is single valued, the path 7 is uniquely determined by the sequence of
its states and by z. Restricting the states of 7 to their Q1 X (J2-components,
the assumption of the lemma yields that the ()1-components of the states
of 7 are uniquely determined by x. By going through = from left to right,
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388 A. WEBER

it is easy to see that the 292-components of the states of 7 are uniquely
determined by the Q1-components and by z. By going through 7 from right
to left, one observes that the (J2-components of the states of 7 are uniquely
determined by the @3- and 2Q2 -components and by z. Thus, the path 7 is
the only accepting path in M’ which consumes the word z. [J

We want to look at two special cases of Lemma 2.3. The first one is that
n1 = 1. Then, the uniqueness assumption trivially holds true and can be
therefore omitted; the lemma and its proof coincide with [WK95, Prop. 2.1].
The second special case is as follows. There is a given subset Q% of 2Q>
such that, for every p € Q1, the set B = {¢' € Q2 : (p, ¢') € Q1} belongs
to @) and, for every a € &, p, ' € @1, and B € Q}, the set

B ={s € Qy : forsomes € Band? € A",
((p, 8), a, 2, (¢, ') € 6}

belongs to Q4. Then, we observe that every useful state of the UGSM M’ is
in Q1 x Q2 x Q. Using this fact, it is straightforward to replace M’ by an
equivalent UGSM M" with state set Q" = {(p, ¢, B) € Q1 x Q2 x Q} :
q € B} and size at most ||[M|| - #Q). The machine M" can be computed
in DTIME (poly ([|M]| - #@Q})).

Proof of Theorem 2.1: Let M = (Q, &, A, §, Qr, Qr) be a finite-
valued NGSM with n states. We may assume that M is trim. The set of
accepting paths in M is denoted by II. Our proof of Theorem 2.1 consists
of six steps. The first four steps follow almost exactly the main lines of
the proof of [W93, Thms. 2.1 and 2.2]. The last two steps are applications
of Lemma 2.3.

(1) We define a set S of potential path specifications. The set S has
cardinality O (2P°%IMIly and can be computed in DTIME (2P Iy,

(2) We define a mapping ¢ : II — 25\{0} such that every o € ¢ (7)
acts as a specification of the path 7 € Il and the following holds. If ,
7' € Il realize (z, z), (z, 2') € &* x A*, respectively, and if ¢ (7) N (7)
is nonempty, then z and 2’ coincide.

(3) For every o € S we construct an NGSM M, realizing the set of
all (z, z) € £* x A* being realized by some n € II with o € ¢ (n).
These new machines each have size O (22“””M”) and can be computed in
DTIME (22"}, Their state sets coincide being of the form QD) x Q(2)
for some sets Q1) and Q) of cardinality O (22"™") and O (poly||M|)),
respectively. The sequence of the Q(l)—components of the states of any
accepting path in M, (o € S) is uniquely determined by the word consumed
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by this path. We define a mapping ¢7 : QW x Q® — @ which maps any
transition of M, (o € S) to a transition of M and any initial (final) state of
M, (o € S) to an initial (final, respectively) state of M.

(4) For every o € S we construct an NFA M), recognizing the set of
all x € ¥* such that there is no = € II consuming z with o € ¢ ().
These new automata each have size O (22"} and can be computed in
DTIME (22""""). Their state sets coincide being of the form Q1) x Q®)
where Q) = 29 x [3]. The sequence of the Q(1)-components of the states
of any accepting path in M), (¢ € S) is uniquely determined by the word
consumed by this path. Moreover, each new automaton meets the second
special case of Lemma 2.3 with a given subset of 20 of cardinality at
most (1 + 2#Q%)3,

From steps (1)-(4) it follows that T (M) equals {J,cg T (M), each
NGSM M, (o € S) is single valued, and each NFA M/, (o € S) recognizes
S\L (M,).

(5) For every o € S we transform the single-valued NGSM M, into an
equivalent UGSM M,,. These new machines each have size 0(22!'“”M’)
and can be computed in DTIME (22"""). Their state sets coincide being,
say, Q. We define a mapping 97 : Q — QW x Q® which maps any
transition of M, (¢ € S) to a transition of M, and any initial (final) state
of M, (0 € S) to an initial (final, respectively) state of M,.

(6) For every 0 € S we transform the NFA ]\7[(’, into an equivalent UFA
M. These automata each have size O (22™""") and can be computed in
DTIME (22™"""). Their state sets coincide.

Altogether, steps (1)-(6) prove the theorem. Note that N = #S. The
UGSMs M, (o € S) are playing the role of My, ..., My and the UFAs
M}, (o € S) are playing the role of Mj, ..., M}, The mapping 9 of the
theorem is obtained by concatenating 11 and 3.

Execution of step (1): Let us first introduce some notations. A state p € Q
is strongly connected with a state ¢ € @ if there are paths in M leading from
p to g and from ¢ to p, respectively. A class with respect to the so-defined
equivalence relation on () is a strongly connected component of M. Let us

fix an order Q1, @2, ..., Qr of the strongly connected components of M
such that if § N Q; x £* x A* x Q; is nonempty for some %, j € [k] then
1t < j. Foreach i € {1, ..., k} set n; = #Q;.
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We define a set S of potential path specifications by setting

S=J U U (QrN Qi)

1>0 1<i<...<i;<k 0<j1<...<ji<2n+1

{
<11 [{m X Qis.,
A=1

X (im(é)u{zeA* 2] < <n2 Z ni—1> -diff(é)}

1=tx_1

oftnnezx@ s (@ 2 1) ane)

izi,\—l
p is strongly connected with § (in M)}) X Qi;] X (QrNQy,).

The set S is defined exactly as in the proof of [W93, Thm. 2.1] where
it was shown that this set has cardinality O (2P°WIMIN It was further
shown in the proof of [W93, Thm. 2.3] that the set S can be computed
in DTIME (2r°WIIMIly,

Execution of step (2): Let us first introduce some notations for a word
x € X*. Letzy, ..., Tm € Usuchthatz =23 ... zpm. Letp € {0, ..., m}.
We define the sets

att (z, u) = {s € Q : forsomer € Q; and z € A*,
(r,z1 ... 24, 2, 8) €6}
and
der(z, u) = {r € Q : forsomes € Qp and z € A*,
(r, Zpt1 - Tm, 2, 8) € 6}.
The sets att (z, x) and der (z, ) denote the sets of states attainable from

Qr with z7 ... z, and derivable to Qp with z,41 ... Zm, respectively. We
define the set set(z, ) as att (z, p) Nder(z, u).

Let us fix a total order, say, “<” on 29. Let “<” be the corresponding
nonreflexive relation on 29. Given z = 1 ... Tm € X%, consider the

uniquely determined sets Aj, ..., Ag4q € 2¢, and words v1, . .., yg € L*
such that x = y1 ... yg, d + 1 is even, and (a)-(c) hold true. (a) For all
j=1,...,d+1, A =set(z, |11 ... yj—1]). ®) Forall j =1, ...,d,if j

is odd then |(y1 ... yj—1)y;| = max{p € {0, ..., m} : A; =set (z, u)}.
(¢) Forall j =1,...,d, if j is even then y; is in X. Thus, for each
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odd j € [d], the set A;y; is the “last occurrence” of A; in the sequence

set (z, 0), set (z, 1), ..., set(z, m). Clearly, d < 2"*1 — 1. Let us also
consider the uniquely determined sets Agyg, ..., Agn+1 € 29 such that
{A], ey Ad+1} N {Ad+2, R A2n+1} is empty and

Ad_|_2 = Ad+3 < Ad+4 = Ad+5 < oo < Agnti_q = Agnir.

Note that if z ¢ L(M) thend =1, A1 = A2 =0, 0 & {As, ..., Agnir },
and Az = Ay < As = Ag < ... < Agni1_q = Agni1.

Assume that 7 € II is an accepting path consuming z and producing
some z € A*. We are going to define the set ¢ (7) € 2 of specifications
of the path =.

Consider the uniquely determined paths 71, ..., 74 and the uniquely
determined words z1, ..., zg € A* and states p}, qi, ..., P}, ¢ € Q such
that 7 = m0...0my and, for each j € [d], 7; realizes (y;, 2;) and leads from
pj to ;. By construction, z = 21 ... zg, Py € A1 C Q1. gj_1 = Pj € 4
(1=2,...,d),q; € Ag+1 C Qr, and {z; : j € [d], j even} C im (§). We
define the set J = {j € [d] : p is not strongly connected with ¢;}. Note

that #J < k-1. Letl € {0,...,k—1}and 1 < j;1 <...< j; <d so
that J = {j1, ..., si}. Let 1 <4y <13 < ... <4 < k so that p} € Q;,,
p;-A € Qi,_,> q;A €Qi,(A=1,...,1),and ¢ € Q;,.

Let j be a positive integer. Let 7 be any path in M realizing some
(yo, 20) € ¥* x A* and leading from some state p € @ to some
state ¢ € Q. Let 1 < i(p) < i(q) < k so that p € Qi(p) and
g € Qi(g)- Set 7 = Z;g’i)(p) n;. We define ¢; (mp) € QATUZXQ® 1y
setting ¢; (mp) = {20} if j is even or |z| < (n®# — 1) - diff (6), and
wj (m) = {(t, §, §) € ZxQ* : |t| < (n* 7 — 1) -diff (§), p is strongly
connected with ¢ (in M), and there is a path 7 in M realizing (yg, 2) for some
Z € A* and leading from § to ¢ such that diff (mg, 7) < (n® — 1) - diff (6)
and ¢t = |zp| — |Z|}, otherwise.

We are now ready to define ¢ (1) € 25 by setting

l
o (m) = {p1} x [T Wia} x ), } x @), (m5,) x {45, 3] x {d3}-
A=1

The mapping ¢ : II — 25 is defined exactly as in the proof of [W93,
Thm. 2.1]. It was shown in this proof that for every m € II the set
@ (7) is nonempty and the following holds. If =, 7' € II realize (z, z),
(z, 2') € B* x A*, respectively, and if ¢ (7) N o (7') is nonempty, then
z and Z' coincide.
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"~ Execution of step (3): Let ¢ € S. We are going to construct an
NFT M, = (Qs, %, A, b5, Qr1,0, QF s), which realizes the set of all
(z, z) € ¥* x A* being realized by some 7 € II with o € ¢ (7) and which
has the property that any path in M, consuming ¢ also produces €. It is easy to
see that M, is equivalent to the NGSM M, = (Qs, &, A, b5, Q1.0, QF o)
where

QI,a = {q € @, : forsomep € QI70’, (p, &, e, Q) € (Sa)}

and

b0 ={(p, a, 2, ) € Qs X T X A* X Q, : forsomer € Qy,
(p, a, z, ) € 6, and (r, €, €, q) € (b,)}.
Having constructed M,, we will observe that it realizes the above

transduction and that M, has the other properties requested by step (3).
Let!>0,1<ip<...<y<kand0< j; <...<zj <2"*?! such that

g = (an (jla pgl" O3y q;l)') sy (jl7 p;'la [T q,;l)’ QF) where qr € QIﬂQio,
p;k € Qi ,» q}’\ € Qi (AN=1, e [), and gr € QF N Q;,. For each
J=Jx € {J1, ..., g1} set 5 = 372, m;. Define J = {71, ..., ji},

Ji={j€J:o0;€A*},and J, = {j € J: g5 € Z x Q*}. Note
that J = Jy UJy. Let j € Ji, and let zj € A* such that z; = o;. Then,
zj € im(8) or |z;| < (n*f; — 1) - diff (6). Let j € Jz, and let t; € Z and
Pj, ¢; € Q such that (¢, pj, G;) = oj. Then, [t;] < (n? nj — 1) - diff (6)
and p; is strongly connected with g;.

By construction of the mapping ¢ we know that the following holds.
If, for some j € Jp, j is even or if, for some j € J1, j is odd and
lzj| > (n*#; — 1) - diff (6) or j is even and z; ¢ im(§), then o does
not belong to ¢ (II). In this case we can select M, arbitrarily so that
T (M,) = 0 and M, has the other properties requested by step (3). Let us
therefore assume that, for every 7 € Js, j is odd and that, for every j € Ji,
either j is odd and |zj| < (n?fj — 1) - diff (6) or 5 is even and z; € im (6).

Instead of constructing the NFT M, in detail, we explain the desired
mode of operation of an arbitrary accepting path 7, in this machine. Assume
that the path 7, realizes (z, z) € X* x A*. Let z1,...,Zm € ¥ so
that £ = =i ... ;. The reader may recall from step (2) the definition
of the sets att (z, p), der(z, u), and set(z, u) (w = 0, ..., m), the
sets A1, ..., Agnir € 29, and the words yi, ...,y € U*. In particular,
T =19Y1...9Y4, d+ 1 is even, and d < 2"+ — 1,
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The path 7, consists of five components that correspond to five
components of @, the state set of M,. Let Q, = Q(l) X Q(z) where
QW makes up the first four components of ¢, and Q?) denotes the fifth
component of ). Roughly spoken, the QMW -components of 7, provide the
index j € [d] of the word y; currently consumed by 7,. These components
behave independently of ¢ and z. The Q(2)-component of m, guesses an
accepting path 7 € II realizing (z, z) and uses the “current index” j provided
by the Q(1)-components in order to verify “on line” that ¢ belongs to ¢ (7).
Note that 7, inherits its output word z from 7.

The first component of 7, constantly contains (A1, ..., Agnt1) €
(29)2""" . The tuple (Aj, ..., Agn+) is guessed at the beginning of 7.
We want to point out that the sets Agya, ..., Azn+: are only needed in
order to make the state set (, “well typed”.

The next three components of 7, drive a nondeterministic process, which
verifies the correctness of the sets Ay, ..., As~+1 and uses them in order to
provide the index j € [d] of the word y; currently consumed by 7. Assume
that, for some p € {0, ..., m}, 7, has consumed the prefix z1 ... z, of z.
Then, the second (deterministic) and third (nondeterministic) components of
7 contain the sets att (z, ) and der(z, p), respectively.

The fourth component of 7, contains some (j, ) € [d + 1] x [3] so that
the following holds. If @ = 1, then either 7 < d and m, can, after one
transition realizing (e, €), begin to consume the letters of y; or 7, guesses
that 7 = d+1 and accepts. In the latter case, of course, j is even, 7 > j;, and
Ajj1 = Aja < Ajy3 = Ajy < ... < Agning = Apnin. I € {2, 3},
then 7 < d. If a = 2, then j is even and 7, is ready to consume the only
letter of y;. If & = 3 and j is even, then y; has been completely consumed. If
o = 3 and j is odd, then either 7, is ready to consume the next letter of y; or
y; has been completely consumed, depending on the guess of 7,. Whenever
all letters of a word y; have been consumed, the path 7, increments j by 1
on a transition realizing (e, €). At the beginning of 7, its fourth component
contains (1, 1). The distinction between the values 2 and 3 for « is needed
in order to ensure that |y;| = 1 for all even j € [d].

The second and third components of w, are used in order to check
that, for each j € [d + 1], A; = set(z, |y1 ... y;—1]) and that, for each
oddj € [d], A;41 is the “last occurrence” of A; in the sequence set (z, 0),
set (z, 1), ..., set (z, m). Therefore, these components contribute to the
verification of the first and the fourth component of 7.
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We observe from the mode of operation of 7, that the sequence of the
Q(l)-components of the states of 7, and the sequence of words consumed by
its transitions are uniquely determined by x. According to the construction
of M, from M, this implies that the sequence of the Q(!)-components of
the states of any accepting path in M, is uniquely determined by the word
consumed by this path.

For the fifth component of 7, we first of all need, for every 7 € J, an
NGSM M, ; realizing the transduction

To,; = {(yo, 20) € * x A* : (yo, 20) is realized by some path
mo in M leading from pj to g so that o; € ¢ (mo)}.

Informally spoken, an accepting path in M, ; simply guesses (in its first
component) a path mg in M leading from pfj to q;-, realizes the same
(yo0, 20) € * x A* as mp, and verifies (on its three other components) that
o; belongs to ¢; (mg). The verification procedure directly arises from the
definition of ¢; in step (2). The detailed construction of M, ; is given in
the proof of [W93, Thm. 2.1]. The fifth component of Q,, Q(z), is set to
the state set of M, ;.

The fifth component of 7, verifies that, for some 7 € II realizing (z, 2), o
belongs to ¢ (7). Following the definition of the mapping ¢ this component
operates as follows. For every A € {0, ..., [}, while 7, consumes the
words ¥;, 41, -« -, Yj,,,~1, sSuccessively, it guesses and verifies (on the first
subcomponent of Q®?)ya path in M consuming ¥, 41 - .- ¥j,,,—1, producing
some words z;,+1, ..., Zj,,,~1 € A¥, successively, and leading from q}\
to pj,,,» where we set jo = 0, i1 = d + 1, g5 = g7, and P11 = qF- For
every j = jx € J (A € [I]), while 7, consumes the word y;, this component
guesses and verifies an accepting path in M, ; consuming y; and producing
some word z; € A*. The index j € [d] of the word y; currently consumed
by 7y is read from its fourth component. The path 7, inherits its output
word z = 21 ... zq € A* from the combination of the above paths.

From the description of the mode of operation of the path 7, given above
we conclude (informally) that the NFT M, realizes the correct transduction.
Moreover, every transition of M, consuming ¢ also produces £. The detailed
construction of M, is given in the proof of [W93, Thm. 2.1]. Our only
modification is in the definition of the set of final states where we add the
condition that Aj 11 = Aj19 < Aj13 = Ajpa < ... < Apntig = Agnnr.
Therefore, we can conclude (formally) from [W93, Thms. 2.1 and 2.3] that
M, realizes the correct transduction and that the size of M, and the time
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complexity for its computation are bounded as desired. Note that the purpose
of our modification is to distinguish certain accepting paths in M, from
other possible accepting paths.

The state set Q, = Q) x Q) of M, and M, is independent of o. The
detailed construction of M, yields that

QW = (292" x 29 x 29 x (2] x [3])
and
QP = Q x Q x [(n® — 1) - diff (6), (n® — 1) - diff ()]
x [0, max {iml (§), 1+ (n® — 1) - diff (6)}].
Note that Q1) and Q) have cardinality O (22™"™") and O (poly||M])),
respectively.
We define the mapping 7 : QM x Q) — Q as the projection to

the first Q-subcomponent of the Q(?)-component. We observe from the
detailed construction of M, that for any transition (r, a, z, s) of M, either
(a, 2) = (&, €) and Y (r) = b2 (s) or a € ¥ and (P2 (r), a, 2, P2(s))
is a transition of M. According to the construction of M, from M,, this
implies that v maps any transition of M, to a transition of M. Moreover,
we observe that ¢ maps any initial (final) state of M, to an initial (final,
respectively) state of M.

Execution of step (4): Let ¢ € S. Following the main lines of the
construction of M, in step (3), we are going to determine an e-NFA
M, = (Q5, %, A, &, Qf 5, QF ,) which recognizes the set of all z € &*
such that there is no 7w € II consuming z with o € ¢ (). It is easy to see
that M, is equivalent to the NFA M/ = (Q), %, A, &, _II,G’ Q% 5) where

QII,U = {q € Qla : for some p € QII,U’ (p7 € & Q) € (3:7)}

and

8 ={(p,a,¢e q€Q, xT x{e} xQ : forsomer € Q.,,
(p, a, &, 7) €6, and (r, ¢, ¢, q) € (&)}
Having constructed M, we will observe that it recognizes the above language
and that M/, has the other properties requested by step (4).

Let 0 = (q.h (j17 p;'1> Tj15 Q;1)7 HEIEEY (jl? p;'la T35 q;'l)7 QF) € S and J’
Ji, Jo, 1 (5 € J), z; (j € J1) and (¢, p;, §;) (7 € J2) be given as in step
(3). As in step (3) we also assume here that, for every 57 € Jp, 7 is odd
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and that, for every j € Ji, either j is odd and |z;| < (n? 7, — 1) - diff (§)
or j is even and z; € im (6).

We recall from step (3) the NGSM M, ; (j € J) with state set Q%)
realizing the transduction 75 ;. Let 5 € J. Using the well-known subset
construction we obtain from M, ; an NFA M, c’, ; Which is in fact deterministic
and which recognizes the language X*\L (My, ;). The state set of M, ; is
29 The detailed construction of MZ, ; is given in the proof of [W93,
Thm. 2.2]. According to the definition of T} j, the NFA M(’7 j Tecognizes
the set of all yg € X* such that there is no path my in M consuming 3o and
leading from p; to ¢} with o; € @; (7).

Instead of constructing the e-NFA M/ in detail we explain the desired
mode of operation of an arbitrary accepting path 7, in this machine.

Assume that the path n), consumes z € X*. Let z1,...,Zm € & $O
that x = x1 ... Zm. The reader may recall from step (2) the definition of
the words y1, ..., yg € =*. In particular, z = y; ... yq, d + 1 is even,

and d < 2"*! — 1. We further ask once again to recall the main lines of
the construction of the NGSM M, which has state set Q, = Q1) x Q(2),
in step (3).

The path =/, consists of five components that correspond to five
components of QF, the state set of M. The first four components
of Q! coincide with the ones of Q,, the state set of M,. Therefore,
Q' = QW xQB) where Q(® denotes the fifth component of Q' . Concerning
the Q(Y)-components, the path wl, operates exactly as an accepting path in
M, consuming z. In particular, the value (j, a) € [d + 1] x [3] of the
fourth component of =, if j < d, determines the index j of the word y;
currently consumed by 7. We observe as for M, that the sequence of the
QW -components of the states of ), and the sequence of words consumed by
its transitions are uniquely determined by z. According to the construction
of M/ from M this implies that the sequence of the Q1)-components of
the states of any accepting path in M, is uniquely determined by the word
consumed by this path. At the beginning (end) of 7/, its fourth component
contains (1, 1) ((d + 1, 1), respectively). One reason for ©/, to accept the
word x is that at its end j = d+ 1 < 7. Let us assume here that 7; < d+ 1.

The fifth component of 7/, verifies that there is no 7 € Il consuming z
such that o belongs to ¢ (7). Following the definition of the mapping ¢
this component verifies that (a) or (b), depending on its guess, holds true.
(a) For some (guessed) A € {0, ..., [} there is no path in M consuming
Yir+1 - - Yjxya—1 and leading from g} to v, ,,» where we set jo = 0,
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Jig1 =d+1, q(') = qr, and piH_l = gr. (b) For some (guessed) j = j\ € J
(A € [l]) there is an accepting path in M, ; consuming y;. Of course,
condition (a) is verified, as described below, while 7ré, consumes the words
Yjs+1s -+ Yjrsa—1» sSUuccessively, and condition (b) is verified by simulating
My, ; while 7, consumes the word y;. The index j € [d] of the word y;
currently consumed by 7/, is read from its fourth component.

Technically the fifth component of @', is Q®) = 29 x [3]. Recall that
2@ is the state set of M, ;(j € J). Assume that the path 77, contains
a state with Q(3)-component (B3, 8) € 29 x [3]. The value of 8 can
never decrease along 7l,. If 3 = 2, then =, is about to verify (a) or (b).
If 3 =1(68 = 3), then this verification still has to be done (is already
completed, respectively). If 5 € {1, 3}, then B3 = (). Assume that 3 = 2,
,, is about to verify (a) for some A € {0, ..., [}, and 7/, has consumed the
prefix y of yj, 41 ... yj,,,—1. Then B3 = {(g, ¢, 0, 0) : for some 2’ € A*,
(d),> s 7', @) € 6}. Assume that § = 2, 7, is about to verify (b) for some
j € J, and w, has consumed the prefix y of y;. Then Bs is the uniquely
determined state of M, ; reached from the initial state when consuming y.

From the description of the mode of operation of the path 7/ given
above we conclude (informally) that the e-NFA M, recognizes the correct
language. The detailed construction of M is given in the proof of [W93,
Thm. 2.2]. Our only modification is in the definition of the set of final
states where we add the condition that A; 11 = Aj12 < Ajp3 = Aj1a <
oo < Agniti_y = Agn+r. Therefore, we can conclude (formally) from [W93,
Thms. 2.2 and 2.3] that M/ recognizes the correct language and that the
size of M/ and the time complexity for its computation are bounded as
desired.

The state set Q) = QU x Q) = QM) x 29 x [3] of M/ and M
is independent of o.

In order to complete step (4), we need some routine observations about
the detailed construction of the e-NFA M, and the NGSM M. Consider
the set @ = {B € 29 : for every 8 € [3], # (BN (29 x {B})) < 1}.
Note that # Q' < (1 + 2#2™)3_ For every p € QU), the set B = {d €
QB . (p, ¢) e Q' .} belongs to Q' and, for every a € ¥, p, p' € Q(),
and B € @, the set

B'={s' € Q¥ : forsomes e B, ((p, s), a, ¢, (¢, s')) € 6.}

belongs to Q'. We have therefore observed that the NGSM M. meets the
second special case of Lemma 2.3 with the given subset Q' of 20
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Execution of step (5): Let o € S. Applying Lemma 2.3 to the single-
valued NGSM M, constructed in step (3), we obtain an equivalent UGSM
M, having size at most || My | - 2#9”’=1. The UGSM M, can be computed
in DTIME (poly (|| My|| - 2#9)). Note that || M, | and 2#@”~1 are of
order O (22",

Let us consider the new machine MU = (Q, 3, A, 3(,, QI,U, ng)
According to the proof of Lemma 2.3, the state set Q of Ma is a subset
of Q1 x Q) x 29 | which is independent of ¢. We define the mapping
P o Q — Q(l) X Q(2) as the projection to the Q(l) X Q(Z)-component. Let
(r, a, z, s) be a transition of M. Then, by construction of this machine,
(41 (1), a, 2, 91 (5)) is a transition of M,. Moreover, we observe that 11
maps any initial (final) state of M, to an initial (final, respectively) state
of M,.

Execution of step (6): Let o € S. Applying the second special case of
Lemma 2.3 to the NFA M[, constructed in step (4), we obtain an equivalent
UFA M), having size at most [[M.| - (1 + 2#9™)3. The UFA M), can
be computed in DTIME (poly (|| M, H (1 + 2#@)3)) Note that HM’H
and (1 + 2#@”)3 are of order 0(22 "1™y Since the state set of M),
independent of o, the state set of M", is independent of o as well.

This completes the proof of Theorem 2.1. [J

We now turn to the proof of Theorem 2.2. For this purpose we need the
following word lemma.

LEmMa 2.4: Let A be a nonempty, finite set. Let z1, ..., z6 € A* such
that the words z1 z3 z3 and z4 25 zg are distinct. Then, there is a nonnegative
integer \g such that for every integer A > Ao the words 21 z% z3 and z4 zg‘ 26
are distinct.

Proof: If |z3| # |z3]|, then there is at most one nonnegative integer A
such that |21 23 23] = |24 22 26|. Thus, we might choose Ag to be either
this A, if it exists, or 0, otherwise. If |z2| = |2z5| and |21 23| # |24 26| or
if 20 = 25 = &, then we can set A\g = 0. Let us therefore assume that
|z2] = |z5]| # 0 and |21 23| = |24 26|. Because of symmetry, we may further
assume that |21| < |z4|. Let j € [|21 22 z3]] be a position at which the words
21 22 z3 and z4 z5 2¢ differ.

We select \g to be the maximal integer A such that |z1|+ A+ |2z2] < |z425].
By our assumptions, Ag is nonnegative. Assume that, for some integer
A > Ag, the words 21 zé\ z3 and z4 zg‘ zg coincide. Hence, z; is a prefix of
24 and zg is a suffix of z3 implying that |z1]| < j < |24 25|. Let u be the
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maximal integer such that j + u - |z5] < |24 25|. Since j < |24 25|, p is
nonnegative. Since u is maximal, we have that |z4] < j + p - |25]. Since
|z1) + p - 22| <+ p- |2z5] < |za 25| and A9 was maximal, we know that
w< A < A—1. Since A > Ao, we further have that |z1]|+ A - |2z2]| > |24 25].
Hence,

lzal <G+ p-lzs] <G+ A =1)|z5| < |2a 22

and
| <j <G+l =j+u- |z < lazs] < o)
In summary, we can derive the following contradiction.

(212223) () = (2125 23) (j + (A= 1) - |22])
= (2428 26) (7 + (A — 1) - |5])
= (2423 26) (j + 1 |25))
=(z12523) (j + p-|2))
= (212 2) (§)
= (21 24 26) (j)
= (2425 26) (J)-

Consequently, for every integer A > ) the words 27 25 23 and 24 zg‘ 26
are distinct. [

Proof of Theorem 2.2: Let M = (Q, %, A, §, Q1, Qr) be an NGSM with n
states, and let k& be a positive integer such that the assumption of the theorem
holds true. Thus, there are accepting paths 71, ..., mp41 in M consuming
the same word (in X*) and producing the words z1, ..., zp41 € AF,
respectively, such that for any two distinct 41, %2 € [k+1] either diff (7; , 7, )
is greater than (n**! — 1) - diff (§) or 2;, and z;, are distinct. For any paths
1, ..., Tk4+1 10 M consuming the same word and producing the words
21, ..., Zr+1 € A%, respectively, we are going to study property (*).

(*) For any two distinct i3, 12 € [k + 1] either (i) or (ii) holds.

(i) There are factorizations 7; = m; 1om; 20m;3 (¢ =1, ..., k+1) such
that, for every j € {1, 2, 3}, the paths 71 j, ..., Tg41, j consume the same

word, the paths 71,2, ..., mr41, 2 are cycles, and the lengths of the words
produced by m;, 2 and m;, 9 are distinct.

(ii) The words z;, and z;, are distinct.
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We wish to prove Claims 1, 2, and 3.

Claim 1. There are accepting paths 71, ..., Tpy1 in M consuming the
same word and having property (¥*).

Claim 2: Let 71, ..., 741 be accepting paths in M consuming the same
word, say, v € ¥*, producing the words 21, ..., zx+1 € A¥, respectively,
and having property (*) such that the cardinality of {z1, ..., zxy1} is
maximal. Then, this cardinality is k¥ + 1. In particular, the valuedness of v
- in M is at least k + 1.

Claim 3: Let 71, ..., Tg41 be paths in M consuming the same word and
producing the words 21, ..., zry1 € A*, respectively. Let i1, 32 € [k+1] be
distinct such that assertion (i) does not hold for (71, ..., 7g41) and (41, é2).
Then, ||z;,| — |2i,]| is at most (nFt1 — 1) . diff (§).

The theorem directly follows from Claims 1 and 2. Using Claim 3, it is
easy to check that the paths 7y, ..., 41 given by the assumption of the
theorem have property (*). By this we have established Claim 1.

Our next goal is to prove Claim 3. This will be done by induction on the
length of the word v € 3* consumed by the given paths. Let 71, ..., Tg41
be paths in M consuming the same word v € ¥* and producing the words
21, -- -y 2k+1 € A, respectively. Let i1, i2 € [k + 1] be distinct such
that assertion (i) does not hold for (71, ..., mx4+1) and (i1, 32). The base
of induction is the case that |v| < n**1 — 1. In this case, we have that
llzia | = l2i, || < lv] - diff (8) < (n*+ — 1) - diff (6).

For the induction step let us assume that |u| > n*+1. Then, there are
factorizations m; = m;1 0 m 2 om;3 (1 = 1, ..., k+ 1) such that, for
every j € {1, 2, 3}, the paths 7 j, ..., mg41,; consume the same word,
say, v; € X%, the word vy is nonempty, and the paths 71 2, ..., Tky1,2
are cycles. Let us select any such factorizations where the length of the
word v; is minimal. Let z; ; € A* be the word produced by the path
m (i =1, ..., k+1, 5 =1, 2, 3). Since assertion (i) does not hold
for (w1, ..., mgy+1) and (%1, 2), the lengths of z;, 2 and z;, 2 coincide.
Consider the paths 7} = 7,1 07®13, ..., 7";;+1 = Tk41,1 © Tk41,3 in
M consuming the same word v/ = v1 vz € %* and producing the words
2y = z1,121,38 € A%, ..., z§5+1 = Zk+4+1,12k+1,3 € A%, respectively. It is
straightforward to check that if assertion (i) held for (7q, ..., 77,) and
(41, i2) then it would also hold for (71, ..., mx+1) and (¢1, 42). Therefore,
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we can apply the induction hypothesis to (77, ..., 7}, ) and (41, 42) which
yields that ||z} | — |z || is at most (nf+! — 1) - diff (6). Consequently,

lzi,| = 1zl = llziy,1 20,2 2y, 8] = 120,126y, 2 245, 3]l
= ||zi,,1 20,3 — |2i,,1 2y, 3]
= |lz;,| — |2, ]l

< (nFF — 1) - diff (6).

It remains to prove Claim 2. For this purpose let us consider accepting
paths 71, ..., mgy1 in M consuming the same word, say, v € £*, producing
the words z1, ..., 2g+1 € A*, respectively, and having property (*) such
that &' = #{z1, ..., 241} is maximal. Assume that at least two words in
{z1, ..., zx41} coincide, say, z1 = z2. We are going to construct accepting
paths 71, ..., Tx+1 consuming the same word, say, u € X*, producing
the words Zi, ..., Zg+1 € A, respectively, and having property (*) such
that 21 # Zp and, for any two distinct 41, 32 € [k + 1], z;, # zi, implies
that z;, # Z,. Consequently, # {Z1, ..., Zpp1} > # {21, ..., zeg1} = K
which contradicts the maximality of &'. Thus, &’ equals k + 1 as desired.

We construct the paths 71, ..., 7x4+1 as follows. Property (*) applied
to (w1, ..., mky1) and (i1, 22) = {1, 2) yields factorizations m; =
Ti1o0migom3 (¢ =1, ..., k+1) such that, for every j € {1, 2, 3},
the paths 7y j, ..., Tg41,; consume the same word, say, u; € X*, the
paths 71 2, ..., Tg41,2 are cycles, and the lengths of the words produced
by 71,2 and 79 2 are distinct. Let %, ; € A* be the word produced
by the path w; ; (# = 1, ...,k + 1, j = 1, 2, 3). By construction,
zi = Z1%2%.3 (¢ =1, ...,k +1). Let 41, 22 € [k + 1] be distinct
such that z;, # z;,. According to Lemma 2.4 there is a nonnegative integer
Ai,,i, such that for every integer A > JA; ;, the words Z;, 1 21-)‘172 Ziy,3
and Z;, 1 23‘2 .o %,,3 are distinct. Since |Z1,2] # |%2,2|, there is at most
one nonnegative integer A such that 3112 5213 = |32,1%3 5 22,3
Select A1, to be either this A, if it exists, or 0, otherwise. Fina].ly; define
Ay = max({/\l,z} U {)\,‘1,,‘2 D11, 42 € [k+ 1], z;, # 2i,}). Now, let us fix

some A > )y and define 7; = 7;,1 0 ﬁf‘gl oftjgomig (i=1,...,k+1),
u=wuujus, and % = % 122, %3 (i =1, ..., k+1). Note that the
path 7; arises from 7; by “inserting” ﬁ',i}‘;l after 71 (1 =1, ..., k+1).

Since A > Ao, we know that |Z1| # |22 and that, for any two distinct 41,
iy € [k + 1], zi;, # 2, implies that 2, # Z;,.

It remains to be shown that the paths 7, ..., fx41 have property (*).
By the above, it is sufficient to prove that, for any two different iy,
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iz € [k + 1], the validity of assertion (i) is inherited from (71, ..., Tk41)
to (71, ..., Tg+1). Let i1, @2 € [k + 1] be different. If the lengths of
Z;,,2 and Z;, o are distinct, then the factorizations 7; = ;1 © ﬁf:z o ;3
(=1, ..., k+ 1) guarantee assertion (i) for (71, ..., Tx4+1) and (é1, @2).

Otherwise, if %, 2 and Z;, 2 have the same length, let us consider
factorizations m; = m; 1 om 20 m,3 (¢ =1, ...,k + 1) such that, for
every j € {1, 2, 3}, the paths 7y j, ..., Tp41 ; consume the same word,
say, v; € X, the paths 71 2, ..., Tp41,2 are cycles, and the lengths of the
words produced by 7;,,2 and 7;, o are distinct. Then, having in mind how
7; arose from m; (1 = 1, ..., k + 1), it is easy to obtain from the paths
mi; (i =1,...,k+1,j =1, 2, 3) factorizations 7; = 7} ; 0 7} 5 0 7} 3
(i =1, ..., k+ 1) which guarantee assertion (i) for (71, ..., Tk+1) and
(i1, 92)-

3. DECOMPOSING k-VALUED TRANSDUCERS

In this section we use the outcome of Section 2 (Theorems 2.1 and 2.2)
in order to prove the main result of this article.

TuEOREM 3.1: Let M = (Q, I, A, §, Q1, QF) be a k-valued NGSM,
where k is a positive integer. Then, there are k UGSMs M, ..., Mk and
UFAs M1, .. Mk such that T (M) equals T (M) U...UT (My) and, for
every K € [k] M ' recognizes ©*\L (My). Each of these new machines has

size O (22p°1y(”M”+U) and can be computed in DTIME (227> ""*"y,

Informally, Theorem 3.1 states that a k-valued NGSM M is equivalent to
some effectively constructible “disjoint union” of k unambiguous NGSMs
of double exponential size. It turns out that these UGSMs are technically
quite complicated. While consuming the same input word, they need almost
their entire capability in order to carry out exactly the same “basic work”
upon which they decide “on line” which output word to produce. Intuitively
spoken these machines are doing so because the model of a “disjoint union”
of transducers does not allow any communication among them by which they
could coordinate their output words. The author believes that the missing
communication is one of the main reasons why the new machines are so
complicated.

Note that in the case k = 1 of Theorem 3.1 we can select the UGSM M;
to be of size at most || M]| - 2#9~1, using Lemma 2.3 for ny = 1. Moreover
it is known that M has at least 2#Q — 1 states in certain cases of M (Leung
[Le93], see Weber and Klemm [WK9S5, Prop. 2.2]). For £ > 2 it is open
whether or not the size of the UGSMs M, ..., M, in Theorem 3.1 can be
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substantially improved. We only know that, in certain cases of M, the sum
of the number of states of these UGSMs is at least 2#% — 1 (Leung [Le93]).
By reduction, Theorem 3.1 can be extended to NFTs.

THEOREM 3.2: Let M = (Q, ¥, A, 6, Qr, QF) be a k-valued NFT,
where k is a positive integer. Then, there are k unambiguous NFTs
M, ..., My and unambiguous e-NFAs Mj, ..., M}, such that T (M)
equals T (My) U ... U T (M) and, for every v € [k], M. recognizes
S*\L (My). Each of these new machines has size O (22" """y and
can be computed in DTIME (22°° ("I,

Since every k-ambiguous NFT is k-valued and every “disjoint union” of
k unambiguous NFTs is a k-ambiguous NFT, Theorems 3.1 and 3.2 directly
imply the following theorem.

THEOREM 3.3: For every positive integer k, the k-valued NFTs (NGSMs)
and the k-ambiguous NFTs (NGSMs, respectively) realize the same class of
transductions.

Theorem 3.3 was first established for £k = 1 (Eilenberg [E74] and
Schiitzenberger [Sch76], see Berstel [B79, Thms. IV.4.2 and 1V.4.5]). For
every fixed positive integer k, it is decidable in deterministic polynomial
time whether or not a given NFT is k-valued (Gurari and Ibarra [GI83]).
Consequently Theorem 3.3 implies that, for every fixed positive integer k,
it is decidable in deterministic polynomial time whether or not a given NFT
(NGSM) is equivalent to some k-ambiguous NFT (NGSM, respectively).

The remainder of this section is devoted to the proof of Theorems 3.1
and 3.2.

Proof of Theorem 3.1: Let M = (Q, ¥, A, 6, Qr, QF) be a k-valued
NGSM with n states, where k is a positive integer. Applying Theorem
2.1 to M, we obtain O (2P°ly"M") many UGSMs M, ..., My, and UFAs
M, ..., M) such that T (M) equals T (M;)U...UT (My) and, for every
i € |[N], M] recognizes ¥*\L (M;). In order to prove that Theorem 3.1
holds for M we roughly proceed as follows. Let € £* be an input word.
Using accepting paths in the “disjoint unions” of M; and M} (1 =1, ..., k)
all consuming z we define an undirected “neighborhood graph” for z with
vertices in [N]. The minimal vertices of the connected components of this
graph represent all values for z in M. By means of Theorem 2.2 it is shown
that the graph has at most k connected components. For every « € [k]
the new UGSM M, is then designed to obtain its value (for z) from the
minimal vertex having “rank” & in the neighborhood graph. If all vertices
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of this graph have “rank” less than k, then z is planned to be recognized
by the new UFA M!. ‘

According to Theorem 2.1, each of the machines Mi, ..., My
and Mj, ..., M) has size O(22""") and can be computed in
DTIME (22""'™"). Let Qo and Q}, be the state sets provided by Theorem 2.1.
Let M; = (QO’ DINVARETH Ql,ia QF,Z) and le = (Q6> 3, A, 6:a Q_I[’zﬁ iF',z)
(i € [N]). We may assume that Qo and @, are disjoint, i.e., Qo N Qp = 0.
For every ¢ € [N] we define the UGSM M;UM, = (QoU @y, T, A, §; U6,
QriVQr,;, QriV Q/F,i)’ where M; UM, denotes the disjoint union of
M; and M}. Let ¢ : Qo — Q be the mapping provided by Theorem 2.1
mapping any (accepting) path in M; (¢ € [N]) to an (accepting) path in M.

Let us fix the notation M = (M, My, ..., My). Let x € ¥* be an input
word. We define the neighborhood graph for x with respect to M and k,
denoted by NGy, 1, (z), to be the undirected graph (V, E) where

V={ie[N]:zeL(M)}

and E = {{i1, i2} € (‘2/) there are accepting paths 7;, in M;, and m;, in
M;, both consuming z and producing z;,, z;,, € A*, respectively, such that
diff (m;,, m;,) is at most n¥*1 . diff (§) and z;, and z;, coincide}.

FACT 3.4: For every word x € ¥* the graph NG g 1(x) has at most k
connected components.

Proof: Given z € X* |, let us consider the graph G = NG (z) = (V, E).
Assume that G has k 4+ 1 or more connected components. Then, there
are pairwise disjoint vertices %1, ..., ig+1 € V such that no edge in
E connects any two of them. By definition of G, there are accepting
paths 7, ..., m,, in M;,, ..., M;,,, respectively, all consuming x and
producing the words z;,, ..., z,,, € A*, respectively, such that, for any
two distinct A1, Ao € {i1, ..., ig41}, either diff (ry,, my,) is greater than
nF+1 . diff (6) or zy, and zy, are distinct. Thus, ¥ (7;,), ..., ¥ (7;,,,) are
accepting paths in M all consuming z and producing z;, ..., 2;,,, € A%,
respectively, such that, for any two distinct A1, Ay € {41, ..., ix+1}, either
diff (¢ (), ¥ (my,)) = diff (wy,, 7a,) is greater than n**+1 . diff (§) or
zy, and z,, are distinct. By Theorem 2.2, this implies that the valuedness
of M is greater than k, a contradiction. Therefore, the graph G has at most
k connected components. [

Let x € ¥* be an input word. Consider the undirected graph G =
NG, k(z) = (V, E). Note that V' C [N]. Let Uy, ..., Uy be the
connected components of G ordered by their minimal elements, i.e.,
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1 <minl; < mnl; < ... < minUp < N. From Fact 3.4 we know
that k" is at most k. For any vertex ¢ € V' its rank in G, abbreviated rkg (%),
is defined as the uniquely determined s € {1, ..., k'} such that 4 belongs to
Uy. Analogously, such ranks can be defined in any finite, undirected graph
having positive integers as vertices.

We are going to define, for each x € [k], a UGSM M, which realizes
the transduction

T. = {(z, z) € ¥* x A* : thereis a vertex of the graph
NG,k (z) having rank k and (z, z) € T (M;,)

where 7¢ is the minimal such vertex}

and a UFA M,’Q which recognizes the language

L, = {x € &¥* : all vertices of the graph
NGy, (z) have rank less than }.

We further require that each of our new machines has size O (22p°ly ("M"M))

and can be computed in DTIME (227> """ In order to see that these
machines are suitable for the proof of Theorem 3.1 let us first check that
T (M) equals T (M3)U...UT (Mj) and, for every & € [k], M/, recognizes
YA\L (My).

By definition of the set T}, every (z, z) € T'(M,) belongs to T'(M;,) for
some ip € [N] depending on z and x. Hence, every T (Mh) is included in
T (M). On the other hand, let (z, z) € T (M), and let ¢ € [N] such that
(z, z) € T (M;). Let  be the rank of 4 in the graph G = NGy, (z), and
let 7y be the minimal vertex of G having rank . Since i is connected with g
in G, the definition of G and the fact that all My, ..., M are single valued
yields that (z, z) also belongs to T (M;,), i.e., (z, z) belongs to T'(M,) by
definition of Ty. Consequently, T (M) equals T (M;) U ... U T (My). Let
% € [k]. According to the definition of the set L, every word z € L (M)
has a neighborhood graph containing no vertex of rank x. Thus, there is no
word z € A* such that (z, z) is in T}, i.e., z does not belong to L (M,). On
the other hand, for every word z € £*\L (M) the graph G = NGy, « ()
contains a vertex having rank at least x and, therefore, also a vertex having
rank exactly . Let ¢9 be the minimal vertex of G having rank x. Then,
the word z belongs to L (M;,) and, by definition of T}, also to L (M,).
Consequently, L (M) equals X*\L (M,) as desired. It remains to construct
the machines Mj, ..., M; and M{, ce ]\;[,’c as required above.
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Let us fix some & € [k]. In order to define the UGSM M, and the UFA
M ,’C we proceed as follows. First of all, we reformulate the definition of the
sets T,; and L, in a way independent of the neighborhood graph. Having the
new definitions in mind, we then explain the desired mode of operation of
accepting paths in M, and M ! After this, we define the machines M, and
M » in detail and check that they have the properties stated above.

Up to now, we only used the fact that the NGSMs M, ..., My are single
valued. Recall, however, that these machines are unambiguous. Let us con-
sider accepting paths 71, ..., 7y in the UGSMs MiUM], ..., MyUM},
respectively, consuming the same word x € ¥* and producing the words
z1, ..., ZN € A*, respectively. Note that such accepting paths exist for
every given input word z € X*. Since the transducer M; U M is a disjoint
union, the path m; is contained either completely in M; or completely in M
depending on whether its first state belongs to Qg or to Qf. Consider the
graph G = NGy, (z) = (V, E). Then, V = {i € [N] : x; is in M;} and
E = {{i1, iz} € (}) : diff (mi,, mi,) < nF+1. diff (6) and z;, = 2, ).

This implies that the sets T, and L, can be reformulated as follows.

o T, = {(z, z) € * x A* : there is an iy € [IN] and there are accepting
paths 7y, ..., 7x in My UM, ..., My U M), respectively, all consuming
z and producing the words z1, ..., zy € A*, respectively, such that z = z;,
and ¢ is the minimal vertex of the graph G = (V, E) having rank x where

V={i€[N]: misin M;} and B = {{ir, iz} € (¥ ) + diff (mi,, m,) <
L. diff (6) and z;, = z,}.

oL, = {x € X* : there are accepting paths mi,...,7x in
M, UM, ..., My UM}, respectively, all consuming z and producing the
words 21, ..., 2y € A¥, respectively, such that all vertices of the graph

G (V, E) have rank less than k where V = {i € [N] : m; is in M;} and
= {{i1, i} € ( ) ¢ diff (my,, mi,) < nFT.diff (8) and z;, = z;,}).

Let us next explain the desired mode of operation of arbitrary accepting
paths 7 in M,; and 7’ in M].. Assume that 7 realizes the pair (z, z) € * x A*
and that 7/ consumes the word z € X*.

The path 7 consists of three components that correspond to three

components of the state set M. The first component of 7 constantly
contains an integer 79 € [/N] which is guessed at the beginning of this

path. The second component of 7 guesses accepting paths 71, ..., 7y in
M1UM], ..., MxyUM]}, respectively, all consuming z and producing the
words 21, ..., 2y € A¥, respectively. The path 7 produces the same word
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as m;,, i.e., 2 = zj,. Whether 7; (i € [N]) is in M; or in M/ depends on the
guess of 7 at its beginning. Set V = {1 € [N] : m; is in M;}.

The third component of 7 provides at the end of this path the set
E = {{i1, 2} € (‘2/) o diff (my,, mi,) < nk+l - diff (6) and z;, = z;,}.
Thus, considering the graph G = (V, E), the path 7 can verify at its end
that 4 is the minimal vertex of G having rank x. In order to compute the
edge set E, the third component of 7 is divided into (1;/) subcomponents,
indexed by all possible {i1, iz} € ([1;7 1. The {41, i3 }-subcomponent checks
whether {i1, i2} belongs to the set E ({i1, i2} € ([];’])).

Assume that the path 7, having consumed some prefix z’ of z, is in state
p = (ig, (p1, ..., PN), P3). The meaning of ig € [N] is explained above.
Let @}, ..., @)y be the paths guessed so far by the second component of 7.
Then, every ) (¢ € [IN]) terminates at the state p; € Qo U Qp, consumes
7', and produces some preﬁx i of z;; moreover there is a path 7r such
that 7; equals 7r o 7r

The third component of the state P, ie., p3, is of the form
((y{zl,zz}va{zl 12})){21 Zz}E([Nl) where each (y{zl Zz}?a{ll,‘lg}) is in
ASESLARE) 5 [9]. Let {i, ia} € ( ]) Note that {p;,, pi,} is a subset
of Qo if and only if 7;, and =;, are in Mz, ie, {i1, iz} is a subset of V.
If {pi,, pi,} is not contained in Qo, then (y{;, i,}> ¥4y, i,}) = (€, 2). Thus,
in the case that {i1, 92} is not contained in V' the {41, ¢2 }-subcomponent
of the third component of 7 has the constant value (e, 2) which is set at
the beginning of 7. Now, let us assume that {pzl, pi, } is a subset of Qo
If diff («] , =] ) is at most n*+1 . diff (§) and z{ is a preﬁx of zj or zj
is a prefix of 2 s then (Y, i}» Oy, in)) = ((z )‘ zi,1). Otherw1se if
diff (m,, m) ) is greater than n*+1 . diff (6) or if 2 and 2 differ at some
posmon j € [min {|2] |, |2{_|}], then (y(4,,i,}»> @iy, i,)) = (€, 2). Therefore,
in the case that {i1, i2} is a subset of V the {i1, iz }-subcomponent of
the third component of 7 begins with the value (&, 1), continues with the
value (zgiff, 1) where zg € ASERT-dift (8) represents the “difference”
of the values produced so far by the paths m;, and m;,, and switches to
the constant value (e, 2) if this “difference” becomes either too large or
is not defined anymore.

Finally, let us consider the terminal state § = (40, (q1, - .-, gn), §3) of

where 3 is of the form ((y{ir,iz}va{ir,iz})){z‘l,iz}e([g])' For every ¢ € [N],

¢ € Qo U Qf is the terminal state of 7;. Let {i1, %2} € ([";’]). If {i1, 42} is
not contained in V or diff (7, , i, ) exceeds n*+1.diff (§) or 2;, and z;, differ
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at some position j € [min {|z;, |, |2;,]}], then (ygi, i), iy, i) = (&, 2).
Otherwise, (Y{i,,i,}s iy, ir}) = (zi_l1 Ziy, 1). Thus {i1, i2} belongs to E if
and only if (v, i}, iy, i,}) €quals (e, 1).

The path 7' behaves almost in the same way as 7. The only difference
is that the value of 4y is constantly 1, that @’ produces the empty word &,
and that at the end of this path it is only verified that all vertices of the
graph G have rank less than k.

Now we are ready to construct in detail the NGSM M, = (Q,
A, 6, Qr, Qr ) and the NFA M., = (Q, =, A, &, Qy, QF ) by setting

Q = [N] x (Qo U @p)N x (ASEW " ift(9) 5 19))(5),

S - {((ZOa (p17 ey p!\’)) ((y{il,ig}aa{il,ig})){ihiz}e([’;’]))) a, z,
(o, (a1, -5 aw)s (Wi i) A, i) i, iy e(41))
EQxXxIT XA xQ :
there are words z1, ..., zy € A* such that z = z,
for every i € [N], (pi, a, zi, ¢;) € §; U&,, and,
for every {i1, i2} € ([N])
either o, .1 = a{zl iy =1 andz Y{i, i} Zin = yl{il,ig}’
or O!{zl'z?} = 1, (y{il,i2}7 {il,ig}) —_ (6, 2),
and Zz'_l Y(ir in} % ¢ Aﬁink+l‘diﬂ(5),

or (y{ix-,iz}’a{ix,iz}) = (yiil,ig}’a/{il,iz}) = (57 2)},

Qr = {(io, (p1, -, px), (& @iy, i}))yiy, sy () € @
for every i € [N}, p; € Qr,; U Q/I,z and,
for every {41, i2} € ([f;?])a
{pir, Pi,} € Qo if and only if org;, 4,3 = 2},

Qr,x = {(io, (@1, -, an), ((Wgir, ia}> i, i) iy, i) e (1)) € Q:
for every i € [N], ¢i € QF,; U Q’FZ and 7g is the minimal
vertex of the graph G = (V, F) having rank
where V = {i € [N] : ¢i € Qo} and
E = {{i, iz} € 3 (ininy 24, ) = (& DI,
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& ={(r,a, e, 8)€QxTx{e}xQ : thereis
az € A*such that (r, a, ¢, s) € 6},

and

QF. x = {(io, (a1, -+, an), (Win,in)> ¥in, i) iy, 1)) € Q :
io =1, forevery i € [N], ¢ € Qr,; UQF ;,
and all vertices of the graph G = (V, F) have rank
less than x where V = {i € [N] : ¢ € Qo} and

E={{i1, 2} € (BN : (pin, iy i iny) = (& DI}

The NGSM M, works as desired. Thus, it is easy to establish formally that
.7\7.1',,3 realizes the transduction Tj. In order to check that M,i is unambiguous,
let us consider an arbitrary accepting path 7 in this machine consuming
the word & € ¥*. Since the disjoint unions My UM, ..., My UM}, are
unambiguous transducers, the second and third components of the states of
7 are uniquely determined by z. The first components of the states of 7
are uniquely determined by x and by the second and third components of
the terminal state of this path. Finally, since the NGSMs M, ..., My are
single valued, the word z and the states of & determine the sequence of
words produced by the transitions of 7. In summary, the path 7 is uniquely
determined by & and z. Hence, My is a UGSM. In the same way it can be
seen that M. is a UFA which recognizes Lj.

Note that for each transition (r, a, z, s) of M, there is an integer 4o € [N]
and there are states p, ¢ € Qo U @ such that (p, a, z, ¢) is a transition of
MiOL'JM{O. Recalling the mapping ¢ : Q¢ — @ and the properties of the
machines M, ..., My and M7, ..., M}, this implies that either p, ¢ € Qf
and z =€ or p, ¢ € Qo and (¥ (p), a, 2, ¥ (q)) is a transition of M. Having
this remark in mind it is straightforward to verify the upper bounds stated
in the following fact.

FACT 3.5: The following assertions on the machines M, and M. are true.
() # Q is of order O (227" "7,
(i) im (6) C im (8) and diff (§) < iml(8) < iml(6).
D) (18] < JI8]] < (# 2+ [16]]) - # Q2 and || My <("|A|/}/+f <l <MY (14
#Q?), ie., My and M. have size of order O (22" .

Given a finite, undirected graph G having positive integers as vertices, its
connected components and the ranks of all of its vertices can be computed
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in deterministic time linear in the number of vertices and edges of this graph
(see Cormen, Leiserson, and Rivest [CLR90, Sect. 23]). Usmg this result and
Fact 3.5, it is easy to see that the machines M, and M ' can be computed
in DTIME (22pony(uMu+k))

This completes the proof of Theorem 3.1. O

We now turn to the proof of Theorem 3.2. The proof will be by reduction to
Theorem 3.1. For this purpose we first of all adopt (Weber [W93, Props. 4.5
and 4.4 (ii)]) and then follow the main lines of the proof of (Weber [W93,
Thm. 4.1]).

ProrosiTioN 3.6 (Weber [W93, Props. 4.5 and 4.4 (i1)]): Let M =
(Q, X, A, 6, Qr, QF) be a finite-valued NFT with n states. Then, an
NGSM M' = (Q, ¥, A, &, Qr, QF), where &' = S U{ag}, effectively
exists such that the following assertions are true.

@ |M]| < IM']] £ IM]| +n+ 1.

(ii) The machines M and M’ have the same valuedness.

(iii) For any nonnegative integer m, for all xi, ..., Ty, € %, for all
nonnegative integers Ai, ..., Am+1, and for any z € A* we have that if
(ap* z1 . aé"“ Zm a(’}"‘“, zy € T (M'), then (z1 ... Tm, 2) € T (M).

@iv) For any nonnegative integer m, for all x1, ..., Ty € X, for any
z € A*, and for all integers A1, ..., Amy1 > n — 1 we have that if
(1 ... Zm, 2) € T(M), then (a())‘1 z1 ... ag‘"‘ Tm a(’)\m“, z) € T (M").

(v) The machine M' can be computed in DTIME (poly||M||).

Proof of Theorem 3.2: Let M = (Q, £, A, 6§, Qr, Qr) be a k-
valued NFT with n states, where k is a positive integer. Let M ) =
(Q, >, A, 5V, Qy, Qr) be the NGSM associated with M in
Proposmon 3.6. From this proposition we obtain that ©(1) = YU {ao}
and that M) is a k-valued NGSM of size © (||M]||) which can be
computed in DTIME (poly||M||). Applying Theorem 3.1 to M (1) we obtain
kuGsMs MY, ... M) and UFAs M, ... M such that T (M(D)
equals T(Ml(l)) U...uT (M,El)) and, for every x € [k], MP recognizes
(zMYy\L (M,(;l)). Each of these new machines has size O (22P°IY("M(1)"M))
and can be computed in DTIME (22"°’”“M“)u+k>)

Let & € [k]. Consider the UGSM MV = (@, =M, A, 5", Q") Q).
We associate with M( ) the NFT M, = (Q, , A, b, QI P QF x)
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by setting Qx = Q) x {0, ..., n— 1}, @1 = Q) x {0}, Qrn =
Q(l) x {n — 1}, and

SK» ={(lp,n—-1),0a,2(q0):a€X (paz q) € 6,&1)}
U {((p) J- 1)7 €, 2, (Q) .7)) SRS [’n - ]_], (p, ag, 2, q) c 55{1)}

Consider next the UFA M{» = (Q(Z) M, A, 8¢ Q?Zﬁ (2) ). We
associate with M the e- -NFA M. = (Q., %, A, 8, QI o QF <) by setting
3= QDX {0, ..o n=1}, O, = @) x 0}, B, = Q) x n—1),

and

SA' {((p) n-— 1)) a, g, (q, 0)) Lac 2, (p, a, €, q) = 65:2)}
(((p> .7 - 1)7 €, &, (qa .7)) : ] € ['I’L - 1], (p, ap, €, q) (S (5,&2)}

We observe that [[Mll < n - [|MP|| and M| < n - M),
Thus, the machines M, and M. are of size O (2? 2eety (i Y. Given
M,gl), the NFT M, can be computed in DTIME (poly (n + HM,(CI)II)).
Given M,S ), the e-NFA M’ can be computed in DTIME (poly (n +

|| M 2)H)) Therefore, the machines M, and M/ can be computed in
DTIME (22P°|Y (||M"+‘=))

Proposition 3.6 and the definition of the machines M, ..., My and
M, ..., M, yield for all 21, ..., zm € %, z € A*, and & € [k] that the
followmg assertions hold true.

o (z1...Zm, 2z) € T(M)
if and only if (a8~ 'z1 ... a} amal T, 2) € T (MM).

.(x]_...mrn, )ET(M)
if and only if (af 'z ... af Tt amal !, 2) € T(M,(;l)).

oz ...z, € L(M)
if and only if (af a1 ... a) P wmal ) € L (M,(f)).
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From this follows that T (M) equals T (M;)U...UT (My) and, for every
x € [k], M. recognizes ©*\L (M, ). Moreover, for every k € [k], it is easy
to see that the machine M, (M) inherits from M,El) (M,(f), respectively)
the property of being unambiguous. [
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