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Abstract. — In this article finite-valued transducers are investigated in connection with their inner
structure, The transducer models considered are the normalized finite transducer (NFT) and the
nondeterministic generalized sequential machine (NGSM), which is a real-time NFT. It is shown
that a k-valued NGSM M can be effectively decomposed into k unambiguous NGSMs M\, . . . , Mk
such that the transduction realized by M is the union ofthe transductions realized by M\, . . . , Mk-
Each transducer M{ has double exponential size and can be computed in deterministic double
exponential time. This resuit can be extended îo NFTs. As a conséquence, the k-valued NGSMs
(NFTs) and the k-ambiguous NGSMs (NFTs, respectively) realize the same class of transductions.

Résumé. - Dans cette article, les transducteurs d'image bornée sont examinés en liaison avec
leur structure interne. Les modèles de transducteurs qui sont considérés sont les transducteurs finis
normalisés (NFT) et les NGSM, qui sont des NFT à temps réel. Il est démontré qu'un NGSM d'image
k-bornée M peut être effectivement décomposé en k NGSM non ambigus M\, . . . , M^ de telle
manière que la transduction réalisée par M soit égale à l'union des transductions réalisées par
Mi, . . . , Mfc. Chaque transducteur M{ a une taille doublement exponentielle et peut être calculé en
temps déterministe doublement exponentiel. On peut étendre ce résultat aux NFT. En conséquence,
les NGSM (resp. NFT) d'image k-bornée et les NGSM (resp. NFT) k-ambigus réalisent la même
classe de transductions.
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INTRODUCTION

The transducer is the classical model of a finite-state machine with output
device. Informally, a transducer M may be regarded as a finite, directed,
labeled graph. The vertices and edges of that graph represent the states
and transitions of M, respectively. The label of an edge is the pair of
words consumed and produced by the corresponding transition from the
one-way input tape and on the one-way output tape of M, respectively. The
machine M is called a normalized finite transducer, abbreviated NFT, if these
input words always have length 0 or 1 - or a nondeterministic generalized
sequential machine, abbreviated NGSM, if only length 1 appears, Le.,. M
is a real-time transducer. The computations in an NFT M are represented
by paths in the above graph. Every such path consumes an input word and
produces an output word along its edges. A computation is successful if it
corresponds to a path initiating and terminating at designated initial and final
states, respectively. Such paths are called accepting. The transduction (or
relation) realized by M is the set of pairs (x, z) of input/output words being
consumed/produced by any accepting path. For each such pair (x, z), z is
called a value for x in M. Two transducers are equivalent if the transductions
realized by them coincide, Le., every input word has the same set of values
in both machines.

The valuedness of an NFT M is the maximal number of different values
for an input word or is infinité, depending on whether or not a maximum
exists. For any positive integer k, the transducer M is called finite valued
(fc-valued, single valued) if its valuedness is finite (at most ft, at most 1,
respectively). It is said to be fc-ambiguous (unambiguous) if any input word
is consumed by at most ft (at most 1, respectively) different accepting paths
- and finitely ambiguous if it is ft-ambiguous for some k. Evidently, every
fc-ambiguous transducer is fc-valued and every finitely ambiguous transducer
is finite valued. The converse is in gênerai false.

It is decidable in deterministic polynomial time whether or not a given
NFT is finite valued (Weber [W90]) and, for any fixed positive integer ft,
whether or not it is fc-valued' (Gurari and Ibarra [GI83]). Since ambiguity is
a special case of valuedness (just replace the output word of any transition
by the transition itself), the two above results remain valid if "valued" is
replaced by "ambiguous". For further background on transducers the reader
may consult the textbooks (Berstel [B79]) and (Gurari [G89]).

The work presented in this article is motivated by the two following
structural theorems for finite-valued transducers.
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(1) A finite-valued NGSM (NFT) M can be effectively decomposed into
finitely many single-valued NGSMs (NFTs, respectively) Mi, . . . , Mjy such
that the transduction realized by M is the union of the transductions realized
by Mi, .. -, MN (Weber [W93]).

(2) A single-valued NGSM (NFT) M can be effectively transformed into
an equivalent unambiguous NGSM (NFT, respectively) M' (Eilenberg [E74]
and Schützenberger [Sch76], see Berstel [B79, Chapt. IV]).

In result (1), the integer N is always of exponential order. This is in the
optimal range if the vàluedness of M is exponentiaL Transducers with the
latter property exist (Weber [W90]). Each machine Mi in (1) has double
exponential size and can be computed in deterministic double exponential
time. The machine Mf in result (2) has exponential size, which is optimal
in certain cases of M, and it can be computed in deterministic exponential
time (Weber and Klemm [WK95], see Section 2).

The main result of this article (see Section 3) is the following theorem
combining results (1) and (2).

(3) For any positive integer k9 a &-valued NGSM (NFT) M can be
effectively decomposed into k unambiguous NGSMs (NFTs, respectively)
M\,...., Mfc such that the transduction realized by M is the union of the
transductions realized by Mi, . . . , M&.

We want to point out that result (3) improves down to optimality the
number of single-valued transducers in (1) and extends (2) from single-valued
to &-valued transducers. Every machine M% in (3) has double exponential
size and can be computed in deterministic double exponential time where k
appears in the second exponent each. Therefore, if the valuedness of M is
of polynomial order, then this theorem yields a décomposition of M into an
optimal number of unambiguous transducers, and each of them has about the
same size as each of the - exponentially many - single-valued transducers
provided by (1). For any fixed positive integer k result (3) states that a
fc-valued NGSM (NFT) M can be effectively transformed into an equivalent
fc-ambiguous NGSM (NFT, respectively) M' of double exponential size. In
certain cases of M the size of M' is necessarily exponential (Leung [Le93]).
In particular, the /c-valued NGSMs (NFTs) and the fc-ambiguous NGSMs
(NFTs, respectively) realize the same class of transductions (see Section 3).
Note that in gênerai we cannot expect in result (3) that the transductions
realized by Mi, . . . , M& are pairwise disjoint (Lisovik [Li91]).

Because of réduction our main task will be to prove theorem (3) for
NGSMs. Intuitively, we thus have to prove that a "difficult", Le., A:-valued
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3 8 2 A. WEBER

NGSM M is equivalent to some effectively constructible "disjoint union" of
"easy", Le,, unambiguous NGSMs Mi, . . . , M&. We want to point out that
one major problem for the machines Mi, . . . , M& is that the model of a
"disjoint union" does not allow any communication among them. Given an
input word x9 each M2 has to décide autonomously which of the values for
x in M it should produce as its own value. In order to do so, the transducer
Mi computes a "neighborhood" graph associated with x. The "minimal"
vertices of the connected components of this graph represent all values for
x in M. The machine Mi obtains its value from that minimal vertex having
"rank" i in the neighborhood graph.

In order to specify in more detail the construction of the unambiguous
NGSMs Mi, . . . , Mfc in theorem (3) we need two main tools (see Section 2).
The first one is a strengthening of resuit (1) where the single-valued NGSMs
are replaced by unambiguous ones without deterioating size or complexity
bounds. The second tool clarifies the notion of "neighborhood" used above.

Another method, apart from the above discussion about theorem (3), to
compare fc-valued and &-ambiguous transducers, for any fixed positive integer
fc, is to study their respective équivalence problems. The best procedure we
know for deciding the équivalence of fc-valued NFTs is derived from theorem
(1) and requires deterministic double exponential time (Weber [W93]). In
contrast to this, it is decidable in deterministic single exponential time
whether or not two &-ambiguous NFTs are equivalent (Gurari and Ibarra
[GI83]). Note that the first-mentioned procedure, deciding the équivalence
of &-valued NFTs, does not take advantage of the fixed k. A first step to
improve this procedure could be to pro vide in theorem (3) unambiguous
transducers of single exponential size. Concerning the équivalence problem
for fc-ambiguous NFTs, it should be interesting to find a polynomial-time or
-space algorithm. Equivalence problems for transducers are further treated
in the surveys (Karhumaki [K87]) and Culik [C90]).

Resuit (1) remains true when the valuedness of a transducer is replaced by
its length-degree (Weber [W92a]). It is an open problem whether a similar
extension exists for theorem (3). We want to point out that such an extension
would considerably improve the complexity of the best known algorithm for
deciding the équivalence of NFTs having length-degree at most fc, for any
fixed positive integer k (Weber [W92a]). Resuit (1) also remains valid when
transducers are replaced by bottom-up tree transducers (Seidl [Se94]). It is
an open problem whether a similar extension exists for theorem (3). Finally,
theorem (3) is used in order to show that, for any positive integer k, a
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certain (fc + l)-valued distance automaton is not equivalent to any fc-valued
distance automaton (Weber [W94]).

1. DEFINITIONS AND NOTATIONS

1.1. General

The set of all integers is denoted by Z. For any nonnegative integer m,
the set {1, . . . , m} is denoted by [m]. For any integers i and j , the set
{t £ Z : i < t < j} is denoted by [i, j] . For every set U the set of all
subsets of U having cardinality 2 is denoted by ( ^ ).

Let A be a nonempty, finite set. For every z G A* and j G [|z|], the
jth letter of the word z is denoted by z(j). Let zi, Z2 G A*, and let
j G [min {\zi |, \z2\}]. We say that the words z\ and z<i differ at position j
if z\ (j) and Z2 (j) are distinct. We write z\ C z<i if z\ is a prefix of 22 > t'.e.,
^l| < 1̂ 1 and, for every j G [|^i|], the letters ^1 (j) and 2̂ (j) coincide.

The free group generated by A, denoted by FG(A), is defined as the
quotient of the free monoid (A U A"1)*, where A"1 = {b'1 : b e A}, by
the congruence generated by the relations bb~1 = b~1b = e for every b G A.
A word z G ( A u A " 1 ) * is reduced if it contains no factor of the form
bb~l or b~~lb where b G A. It can be seen that every element of FG(A)
has a unique reduced représentative in (A U A"1)* (see Lyndon and Schupp
[LS77, Sect. I.l]). We can therefore identify in an obvious way FG (A) with
the set of reduced words in (A U A"1)*. Let z = bj1 . . . b]iï G (A U A"1)*
where b\, . . . , bm G A and 71, - . . , 7m G {1, —1}. Then, the inverse of z,
denoted by z"1, is 6m7m • • • b^Jl. The sets A* and (A"1)* are submonoids
of FG(A). For any nonnegative integer l the set {z G A* : \z\ < 1}
is denoted by A-* and the set {z G A* U (A"1)* : \z\ < 1} is denoted
by A - ^ . Let z = z\ ... zm G A* and zf — z[ . . . zf

m G A* where z\,
z[, . . . , zm, zf

m G A*. Then, z is a prefix of z1 or 2' is a prefix of 2 if and
only if, for every l G [m], zf1 . . . z^1 z[ . . . z[ is in A* U (A"1)*.

Let G be a finite, undirected graph. For any vertex p of G we dénote by
[P]G the connected component of G to which p belongs, Le., the set of all
vertices q of G being connected with p.

1.2. Transducers

Our model of a transducer is the normalized finite transducer, abbreviated
NFT. Formally, an NFT is a 6-tuple M = (Q, E, A, 5, Q/, QF ) where
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Q, S, and A dénote nonempty, finite, sets of states, input symbols,
and output symbols, respectively, Qj, Qp Ç Q dénote sets of initial
and final (or accepting) states, respectively, and S is a finite subset of
Q x (S U {e}) x A* x Q. Hère, £ is the input alphabet, A is the output
alphabet, and 6 is the transition relation. Each element of 8 dénotes a
transition. In gênerai, of course, the transducer M will be nondeterministic.
We say that M is a real-time transducer or, by historie reasons, a
nondeterministic generalized sequential machine, abbreviated NGSM, if S
is a finite subset of Q x E x A* x Q. In this article we mainly deal
with NGSMs. If S is a subset of Q x (S U {e}) x {e} x Q, then M is a
nondeterministic finite automaton with e-moves, abbreviated e-NFA. If 6 is a
subset of Q x E x {e} x Q, then M is a nondeterministic finite automaton,
abbreviated NFA. The latter définition is, of course^ isomorphic to the usual
one.

The mode of opération of M ïs described by paths. A path -K (of length
m) is a word

tel, xu zi) (gm, xm, zm)qm+i G (Q X (EU {e}) x A*)m Q

such that (ci, xi, z\, ç2), ••-, (qm, xm, zm, qm+i) are transitions. The
path 7T leads from q\ to qm+i9 consumes x — x\ . . . xm G E*, produces
z — z\ . . . zm G A*, and realizes (a:, ^) G S* x A*. It is accepting if
qi is an initial and gm+i is a final state. It is a cyc/e if q\ and çm + i
coincide. Whenever convenient we identify a transition (p, a, z, q) with the
path (py a, ^) ç of length 1 and vice versa. We define S as the set of all
(p, x, z, g) G <5 x S* x A* x Q such that (a:, ^) is realized by some path
leading from p to q. If M is real time, then 6 equals { fl Q x S x A* x Q.
In this case we rename 8 by 6. If M is an er-NFA, then 6 is a subset of
Q x T,* x {e} x Q. Let TTI = TT̂  CI and TT2 = 7r2 ̂ 2 be paths in M leading
from pi to gi and from pi to g2, respectively. If q\ and ^2 coincide, then
we define the path TTI O TT2 as TT̂  TT̂  #2- Note that the opération "o" on paths
is associative.

The transduction (or relation) realized by M, denoted by T (M), is the
set of pairs (in E* x A*) realized by the accepting paths in M. The language
recognized by M, denoted by L(M), is the domain of T{M)> Le., the set
of words (in S*) consumed by the accepting paths in M. Two NFTs are
equivalent if the transductions realized by them coincide.

If (x, z) G E* x A* belongs to T (M), then z is a value for x in M.
The valuedness of x G E* in M, abbreviated val^ (x), is the number of
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all different values for x. The valuedness of M, abbreviated val (M), is the
supremum of the set {val^ (x) : x £ S*}. Note that, for a given x E Ï * ,
valM (x) may be infinité (Weber [W90, Sect. 5]) whereas it is clearly finite
if M is an NGSM. The degree of ambiguity of M, abbreviated da(M),
is the minimal nonnegative integer k such that any x G £* is consumed
by at most k accepting paths or is infinité, depending on whether or not
such a k exists. Evidently, val(M) < da(M). Let fcbea positive integer.
The transducer M is finite valued {k-valued, single valued) if its valuedness
is finite (at most &, at most 1, respectively). It is finitely ambiguous (k-
ambiguous, unambiguous) if its degree of ambiguity is finite (at most k,
at most 1, respectively), Whenever convenient we abbreviate "unambiguous
NGSM" by UGSM and "unambiguous NFA" by UFA.

A state of M is useful if it appears on some accepting path. If all states
of M are useful, then this machine is trim.

Let Mo = (Qo> E, A, 60, Q/,o, QF,O) be another NFT. We define
some local structural parameters of M and MQ. The first one, diff (Sy So)
dénotes the minimal nonnegative integer k\ such that, for all pairs
((p, a, 2T, q), (p', a, zf, qf)) of transitions in M and Mo consuming the same
a G S U {e}, \\z'\ - \z\\ is at most k\. We set diff (S) = diff (S, 6). The set
of e and of all words (in A*) produced by the transitions of M is denoted
by im(6). We set iml(S) = max{|^.f : z G im(£)}.

The size of 6, denoted by \\S\\, is defined as 1 plus the sum of 1 + \z\ over
all transitions (p, a, z, q) of M. The size of M, denoted by ||M||, is defined
as # Q + # £ + # A + |j<5!|. Note that #im (5) < min {\\6\\, # (A< i m l (^ )} ,
diff (5, 8Q) < max{iml(^), iml(50)}, and diff (6) < iml(6) < \\S\\ - 1. If
M is an e-NFA, then ||5|f = 1 + #6.

Let x = xi . . . xm G E* where xi, . . . , xm G S U {e}. For any
two paths TT = (gi, x l r jsi) . . . (qmr xm, zm) qm+i in M and 7r' =
(gï, xii z[) . . . (g^, xm , z!

m) qf
m+i in Mo both consuming x "in the same

fashion" we define

diff (7T, TT7) = max{| |4 . . . z\\ - \z\ . . . ^ | | : 0 < / < m}.

Note that diff (TT, TT') is at most m • diff (6, SQ).

Let ^ : Qo -+ Q be some mapping. For any path TT =
(si» xi, zi) -.. ( ^ ï xm , z m ) s m + i in MQ we define the word

Note that in gênerai the word ^ (ie) is not a path in M. If ^ (TT) is a
path in M, then it realizes the same pair of words as TT. If moreover TT'
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is another path in MQ such that ij) (TT') is a path in M, then the equality
diff (^(TT), ^(TT')) = diff (TT, TT') holds.

2. MAIN TOOLS

In this section we prove the two following theorems.

THEOREM 2.1: Let M — (Q, S, A, 8, Qj, Qp) be a finite-valued
NGSM. Then, îhere are O (2PolyllMli) many UGSMs Mu . . . , MN and UFAs
M{, . . . , M'N such that T (M) equals T (Mi) U.. . UT (MN) and, for every
i E [N], M[ recognizes Y>*\L{Mi). Each of these new machines has size
O (22lin||M|1 ) and can be computed in DTIME (22Un|tM" ). The state sets of M%

and M[ are independent ofie [N]. Let QQ be the state set of M\, . . . , Mjy.
There is a mapping ip : QQ —> Q which maps any (accepting) path in
Mi (i E [N]) to an (accepting) path in M.

THEOREM 2.2: Let M = (Q, E, A, 5, QI} QF) be an NGSM with n
states, and let k be a positive integer. Assume that there are accepting paths
Tri, . . . , 7Tfc_|_i in M consuming the same word (in Y**) and producing the
words z\, . . . . Zk+l ^ &*> respectively, such that for any two distinct i\,
%2 E [k + 1] either diff (TT^ , -K^) is greater than (n^+1 - 1) • diff (6) or z^
and Zi2 are distinct. Then, the valuedness o f M is greater than k.

Theorems 2.1 and 2.2 turn out to be the main tools in order to prove the
main resuit of this article (Theorem 3.1) stating that a A;-valued NGSM can
be effectively decomposed into k UGSMs.

For every single-valued NGSM M with n states there is an equivalent
UGSM M1 having at most n • 2n~1 (at most 2n) states and size at most
||M|| • 2n~1 (at most ||M||5 • 27\ respectively); the UGSM M' can be
computed in DTIME (2linUMH) (Weber and Klemm [WK95, Prop. 2.1 and
Thm. 2.3]). Using either of these results, it is not difficult to dérive from
(Weber [W93, Thms. 2.1-2.3]) a weaker version of Theorem 2.1 where
the UGSMs M\, . . . , Mjsf and the UFAs M[, . . . . Mf

N each have size
n2linI|Ml| " o,Hn|fM|!

O(22 ) and can be computed in DTIME (22" ). Theorem 2.1
strengthens [W93, Thms. 2.1-2.3] by providing UGSMs MU...,MN

rather than single-valued NGSMs and UFAs M[, . . . , M'N rather than
NFAs without deterioating size or complexity bounds. In order to prove
Theorem 2.1, we strengthen, modify, and combine the proofs of [WK95,
Prop. 2.1] and of [W93, Thms. 2.1-2.3]. Theorem 2.2 has no special history
and is proved by means of pumping methods.
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In the remainder of this section we prove Theorems 2.1 and 2.2,
successively. For the proof of Theorem 2.1 we need the following lemma
which strengthens [WK95, Prop. 2.1].

LEMMA 2.3: Let M = (Qi x Q2, E, A, 6, Qj, Qjr) be a single-valued
NGSM such that the séquence of the Q\-components of the states of any
accepting path in M is uniquely determined by the word consumed by this
path. Set n% = #Qi (i = 1, 2). Then, there is an equivalent UGSM Ml

having at most n\ n2 2
n2~1 states and size at most \\M\\ • 2n<2~1. The UGSM

Mf can be computed in DTIME (poly (||M|| • 2™2)).

Proof: Let M = (Q\ x Q2, E, A, 8, Qj, QF)\ nu and n2 be as in
the lemma. Let us fix some total order on Q2. We construct the NGSM
M' = (Q', E, A, 6', Q;

7, Q'F) by setting

Q' - {(p, g, B)eQixQ2x 2Q> : g G S } ,

Q^ = {(p, q,B)EQ':B = {qf G Q2 : (p, (/) € Qj}} ,

Q'F - {(p, g, B) G Q' : g = min {g' G B : (p, g') G Q F } } ,

and

«' - {((p, «, 5 ) , a, z, (p', g7, B')) G g7 x E x A* x Q' :

((PÏ ç)i a : 7̂ (P'Ï </)) e ^ 9 = m i n {s G B : for some

y G A*, ((p, s), a, z', (p', g')) € «} î a ndB ' = {*' G Q2 :
for some s G B and ^ G A*, ((p, 5), a, z', (p', 57)) G

Obviously, # Q ; < ni n2 2
n 2" 1 = # Q • 2n 2"x , ||57|| < ||^|| • 2 n a - 1 , and

< ||M|| • 2n 2"1 . The machine M7 can be computed in DTIME (poly
(||M|| • 2n2)). Any accepting path in M1 realizing some (x, z) G E* x A*,
when restricting its states to their Q\ x (22-components, yields an accepting
path in M also realizing (#, z). Thus, T (M') is included in T (M). On the
other hand, it is easy to show that L{M) is included in L(Mf). Since M
is single valued, this altogether implies that M and M' are equivalent. It
remains to be shown that M' is unambiguous.

Let x G L (My), and let TT be an accepting path in M1 consuming x. Since
M1 is single valued, the path TT is uniquely determined by the séquence of
its states and by x. Restricting the states of TT to their Q\ x Q2-components,
the assumption of the lemma yields that the <3i- c o mPo n e n t s °f t n e states
of 7T are uniquely determined by x. By going through ?r from left to right,
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it is easy to see that the 2^2-components of the states of ?r are uniquely
déterminée! by the Qi-components and by x. By going through TT from right
to left, one observes that the <52-eomponents of the states of TT are uniquely
determined by the Q\~ and 2^2-components and by 'x. Thus, the path -K is
the only accepting path in M1 which consumes the word x. D

We want to look at two special cases of Lemma 2.3. The first one is that
n\ = 1. Then, the uniqueness assumption trivially holds true and can be
therefore omitted; the lemma and its proof coincide with [WK95, Prop. 2.1].
The second special case is as follows. There is a given subset Qf

2 of 2^2

such that, for every p £ Qi, the set B = {q! G Q2 '• (p, •</) G Qj] belongs
to Q!2 and, for every a G E, p, pf G Qi, and B G Q^, the set

B! = {s' G Q% : for some 5 G B and / e A * ,

((p, 5), a, ^ , (p', *')) G §}

belongs to Qf
2. Then, we observe that every useful state of the UGSM M1 is

in Q\ x Q2 x Q2- Using this fact, it is straightforward to replace M' by an
equivalent UGSM M" with state set Q/f = {(p, g, B) G Q\ x Q2 x Q'2 '•
q G 5 } and size at most ||M|| • #Q'2. The machine Mn can be computed
in DTIME (poly (||M|| • #Q/

2)).

Proof of Theorem 2.1; Let M = (Q, E, A, 5, Q/, Q,p) be a finite-
valued NGSM with n states. We may assume that M is trim. The set of
accepting paths in M is denoted by IL Our proof of Theorem 2.1 consists
of six steps. The first four steps follow almost exactly the main lines of
the proof of [W93, Thms. 2.1 and 2.2]. The last two steps are applications
of Lemma 2.3.

(1) We define a set S of potential path spécifications. The set 5 has
cardinality O (2PolyHMH) and can be computed in DTIME {ppo\y^M\\y

(2) We define a mapping </?:![—» 25\{0} such that every a G tp (TT)
acts as a spécification of the path TT G II and the following holds. If TT,
TT' G H realize (#, z)9 (x, zf) G S* x A*, respectively, and if tp (vr) n <p (TT7)
is nonempty, then z and z1 coincide.

(3) For every a G 5 we construct an NGSM Ma realizing the set of
ail (x, z) G E* x A* being realized by some TT G II with a G <p(ft).
These new machines each have size 0(22lm| |M") and can be computed in
DTIME (22lin1JM|!). Their state sets coincide being of the form Q^ X g(2)
for some sets Q^ and Q(2) of cardinality O(22Un||M") and O (poly||M||),
respectively. The séquence of the Q^-components of the states of any
accepting path in Ma (a G 5) is uniquely determined by the word consumed
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by this path. We define a mapping ty% : QW x Q^ —> Q which maps any
transition of Ma (er G S) to a transition of M and any initial (final) state of
Ma (a G S) to an initial (final, respectively) state of M,

(4) For every a G S we construct an NFA Ma recognizing the set of
all x G £* such that there is no ?r G II consuming x with a G (p (ir).
These new automata each have size O(22hn||M|1) and can be computed in
DTIME(22lin"M"). Their state sets coincide being of the form Q^ x Q<3)
where Q^ — 2^(2 x [3], The séquence of the QW-components of the states
of any accepting path in Ml

a (a G S) is uniquely determined by the word
consumed by this path. Moreover, each new automaten meets the second
special case of Lemma 2.3 with a given subset of 2^ 3 of cardinality at
most (l + #O(a)

From steps (l)-(4) it folio ws that T (Af) equals {jaeS T{Ma), each
NGSM M<j (a G S) is single valued, and each NFA Ml

a (a G S) recognizes

(5) For every a G S we transform the single-valued NGSM Ma into an
equivalent UGSM Ma. These new machines each have size O (22 M )
and can be computed in DTIME(22M1M|1). Their state sets coincide being,
say, Q. We define a mapping ipi : Q —> Q^ x Q^ which maps any
transition of Ma (a G 5) to a transition of Ma and any initial (final) state
of Mo (a G S) to an initial (final, respectively) state of Ma.

(6) For every a G 5 we transform the NFA Ma into an equivalent UFA
Mf

a. These automata each have size O (22'm M |) and can be computed in
DTIME(22Hri||M|1). Their state sets coincide.

Altogether, steps (l)-(6) prove the theorem. Note that N = # 5 . The
UGSMs Ma (a G S) are playing the rôle of M\, . . . , MN and the UFAs
Ma (a G S) are playing the rôle of M[, . . . , Mf

N. The mapping tj) of the
theorem is obtained by concatenating ip\ and ^2*

Execution of step (1): Let us first introducé some notations. A state p E Q
is strongly connected with a state q G Q if there are paths in M leading from
p to q and from q to p, respectively. A class with respect to the so-defined
équivalence relation on Q is a strongly connected component of M. Let us
fix an order Qi, Q2, • • • ; Qk °f the strongly connected components of M
such that if 6 n Q% x S* x A* x Qj is nonempty for some i, j G [k] then
i < j . For each i G {1, . . . , k} set m =
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We define a set S of potential path spécifications by setting

11<,u u

i

x
A = l

(im(6)u(ze A* : \z\ < (n2 ^ n* - lV diff (.5) j
\ V \ „' — „' / J

h
U i (*, p, q) E Z x Q2 : \t\ < (n1 ^ J n% - 1 ) • diff I

pisstrongly connected with ç (in M) > J x Qi;

The set 5 is defîned exactly as in the proof of [W93, Thm. 2.1] where
it was shown that this set has cardinality O (2polyHMH). It was further
shown in the proof of [W93, Thm. 2.3] that the set S can be computed
in DTIME(2P°lyllMH).

Execution of step (2): Let us first introducé some notations for a word
x E S*. Let rri, . . . , xm E S such that x = x\ . . . xm. Let ji E {0, . . . , m}.
We define the sets

att (x, /z) = {5 E Q : for some r £ Qj and 2 E A*,

(r, x\ ... x^, zr s) E S}

and

der (#, jj) ~ {r E Q : f°r some 5 E QF and 2 E A*,

The sets att (xKfï) and der (a:, /x) dénote the sets of states attainable from
Qj with a;i . . . x^ and derivable to QF with rc^+i . . . xm, respectively. We
define the set set(#, JJ) as att (a;, /x) nder(x, /x).

Let us fix a total order, say, "<" on 2^. Let "<" be the corresponding
nonreflexive relation on 2^. Given x = x\ . . . xm E S*, consider the
vmiquely determined sets Ai, . . . , Ad + 1 E 2®, and words 3/1, . . . , s/d G E*
such that x = yi . . . y^, d + 1 is even, and (a)-(c) hold true. (a) For ail
j — 1, . . . , d + 1, Aj = set (#, |yi . . . 3/j_i |). (b) For ail j = 1, . . . , d, if j
is odd then \(yi . . . y j _ i ) ^ | = max{^ E {0, . . . , m} : Aj = set (x, fi)}.
(c) For ail j = 1, . . . , d, if j is even then y; is in E. Thus, for each
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odd j G [d], the set Aj+i is the "last occurrence" of Aj in the séquence
set (x, 0), set (x, 1), • . . , set (x, m). Clearly, d < 2n+1 ~ 1. Let us also
consider the uniquely determined sets A<$+2> • •• ï ^2^+1 G 2^ such that
{Ai, . . . , A(i+i} n {A^+2, • •., A2n+i} is empty and

Ad+2 =

Note that if a; £ L (M) then d = 1, Ai = A2 = 0, 0 £ {A3, . . . , A2~+i},
and A3 = A4 < A5 = A6 < . . . < A2n+i_i = A2n+i.

Assume that 7r G II is an accepting path consuming x and produciiig
some z G A*. We are going to define the set tp(ir) G 2 5 of spécifications
of the path ir.

Consider the uniquely determined paths TTI , . . . , TT̂  and the uniquely
determined words z\, . . . , z^ G A* and states p[, q[, . . . , pf

d, q
f
d G Q such

that 7T = Tri o . . .OTT^ and, for each j G [d], TT̂  realizes (y^, ^ ) and leads from
Pj to ^-. By construction, z — z\ . . . ^ , p'x G Ai Ç Q / s Q^-_1 = ^ G A^
(j - 2, . . . , d), g^ G A^+ i Ç Q F , and {^ : j G [d], j even} Ç im (6). We
define the set J — {j ^ [d] : p}- is not strongly connected with ^ } . Note
that # J < A; - 1. Let l G {0, . . . , A; - 1} and 1 < j i < . . . < j t < d so
that J = O*i, . . . , i / } . Let 1 < io < i.i < . . . < i/ < A; so that ^ G Qi0,
Vn ^ Q ü - ^ 4 e Qlx (À = . 1 , . . . , / ) , and q!

d G Q ï f .

Let j be a positive integer. Let TTO be any path in M realizing some
(2/0 ) ^0) G S* x A* and leading from some state p G Q to some
state q € Q. Let 1 < i (p) < i (g) < fc so that p G Q Î ( P ) and
q G Qi(g ) . Set n - E - i ^ ) n». We define ^ (TT0) G 2 A * u 2 x « 2 by
setting ipj (TTO) = {^0} if i is even or |^Q| < (n2 n — 1) * diff (5), and
<Pj (^0) = {(*, P, ç) G Z x Q2 : |t| < (n2 n - 1) • diff (6), p is strongly
connected with q (in M), and there is a path jt in M realizing (2/0, ̂ ) for some
z G A* and leading from p to g such that diff (TTO, TT) < (n3 - 1) - diff (5)
and t = |j?o| — | ^ | } , otherwise.

We are now ready to define cp (TT) G 2^ by setting

/

VW - {Pi} x I ] «JA} x {j/h} x W A (TTJJ x {4}] x {^}.

The mapping </? : II —• 2 5 is defined exactly as in the proof of [W93,
Thm. 2.1]. It was shown in this proof that for every TT G II the set
C/9(TT) is nonempty and the following holds. If 7r, TT' G II realize (#, 0),
(a;, zf) G S* x A*, respectively, and if tp (?r) n ^(TT7) is nonempty, then
z and 2/ coincide.
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Execution of step (3): Let a E S. We are going to construct an
NFT Ma = (Q<7, E, A, Sa, Qit<n QKta), which realizes the set of all
(x, z) G S* x A* being realized by some ir G II with a G ̂ (TT) and which
has the property that any path in Ma consuming e also produces e. It is easy to
see that Ma is equivalent to the NGSM Ma = (Qa, S, A, Sa, QI,G, QF,C)
where

Ql,a = {<? e Q a : for some p G Q7jff, (p, e, s, q) G (£,)}

and

* 2) ç) G Q<r x S x A* x Q a : for some r G Qa,

0 , a, 2, r ) G 6a and (r, e, e, ç) G (<5cr)}.

Having constructed M f f , we will observe that it realizes the above

transduction and that MG has the other properties requested by step (3).

Let l > 0, 1 < zo < • . . < il < k and 0 < j \ < . . . < j ; < 2n+1 such that

( <7j1} g^),- - . . , ÜV, P ^ , «TJ,, ^ ) , ̂ ) where ^7 G QinQio9

3x j x G QZA (A - 1, . . v / ) , and ^ G Q ^ n Q v For each

3 = JA ^ { i l , - . . , i / } set nj = E Î L Û . ! ni- Define J = { j i , . . . , # } ,
J l = { j G J : Oj G A * } , and J 2 = { j G J : a3 G Z x Q 2 } . Note
that J = J i Ù J2. Let j G J i , and let ^ G A* such that ZJ = a j . Then,
2j G im (5) or | ^ | < (n2nj - 1) • diff (5). Let j G J2, and let i j G Z and
Pi» 9j G Q s u c r i ^ ^ (*iî Pi» Qj) — Gr Then, | ^ [ < (n2 n3 - 1) • diff (S)
and pj is strongly connected with qj.

By construction of the mapping tp we know that the following holds.
If, for sorne j G J2, j is even or if, for some j G J i , j is odd and
N I > ( ^ 2 ^ i - 1) * diff (S) or j is even and zy ^ im(5) , then a does
not belong to <p(II). In this case we can select Ma arbitrarily so that
T {Ma) — 0 and Ma has the other properties requested by step (3). Let us
therefore assume that, for every j G J2, j is odd and that, for every j G J i ,
either j is odd and \ZJ | < (n2 ny - 1} • diff (S) or j is even and ZJ G im (S).

Instead of constructing the NFT Ma in detail, we explain the desired
mode of opération of an arbitrary accepting path -Ka in this machine. Assume
that the path TÏV realizes (x, z) G E* x A*. Let x\, . . . , xm G S so
that x = x\ ... xm* The reader may recall from step (2) the définition
of the sets a t t (#, /x), der (a;, /x),. and set (x, /i) (/x = 0, . . . , m) , the
sets A i , . . . , A2n+i G 2e?, and the words 2/1, . . . , j/d G E*. In particular,
a; = 2/1 . . . 2/d, d + 1 is even, and d < 2 n + 1 - 1.
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The path TIV consists of five components that correspond to five
components of QG, the state set of Ma, Let Qa — QW x Q(2) where
QW makes up the first four components of Qa and Q^ dénotes the fifth
component of Qa. Roughly spoken, the QW-components of iva pro vide the
index j G [dj of the word yj currently consumed by TÏV. These components
behave independently of a and z. The Q^-component of wa guesses an
accepting path ir E TL realizing (#, z) and uses the "current index" j provided
by the Q^-components in order to verify "on line" that a belongs to tp (TF).
Note that iïa inherits its output word z from TT.

The first component of ?!> constantly contains (A\7 .... ,A2«+i) G
(2^)2n+1. The tuple (Aj, . . . , ^2^+1) is guessed at the beginning of ixa.
We want to point out that the sets A^+2ï • • •, ^2^+1 are only needed in
order to make the state set Qa "well typed".

The next three components of -KG drive a nondeterministic process, which
vérifies the correctness of the sets A\.t . . . , A^+i and uses them in order to
provide the index j e [d] of the word yj currently consumed by ita. Assume
that, for some JJL E {0, . . . , m}, na- has consumed the prefix x\ . . . x^ of x.
Then, the second (deterministic) and third (nondeterministic) components of
TTCT contain the sets att (x, JJL) and der(x, /x), respectively.

The fourth component of 7ra contains some (j, a) G [d + 1] x [3] so that
the following holds. If a = 1, then either j < d and ira can, after one
transition realizing (e, e), begin to consume the letters of yj or iïa guesses
that j = d + 1 and accepts. In the latter case, of course, j is even, j > jf/, and
A J + i = Aj+2 < ^-i+3 — ̂ + 4 < •.. < A2n+i_i = A2-+1. If a e {2, 3},
then j < d. If a = 2, then j is even and TT̂  is ready to consume the only
letter of yj. If a = 3 and j is even, then yj has been completely consumed. If
a = 3 and j is odd, then either %a is ready to consume the next letter of yj or
yj has been completely consumed, depending on the guess of -Ka. Whenever
all letters of a word yj have been consumed, the path TTV incréments j by 1
on a transition realizing (e, e). At the beginning of na its fourth component
contains (1, 1). The distinction between the values 2 and 3 for a is needed
in order to ensure that \yj\ = 1 for all even j G [d].

The second and third components of ixa are used in order to check
that, for each j G [d + 1], Aj = set (x, \yi . . . 2/y-i|) and that, for each
odd j G [d], Aj+i is the "last occurrence" of Aj in the séquence set (x, 0),
set (x, 1), . . . , set (Xj m). Therefore, these components contribute to the
vérification of the first and the fourth component of TI> .
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We observe from the mode of opération of 7i> that the séquence of the
Q^-components of the states of 7ca and the séquence of words consumed by
its transitions are uniquely determined by x. According to the construction
of Ma from Ma this implies that the séquence of the Q^-components of
the states of any accepting path in Ma is uniquely determined by the word
consumed by this path.

For the fifth component of 7ra we first of ail need, for every j E J, an
NGSM iW(7) j realizing the transduction

Taj — {(Z/OÎ ^o) G S* x A* : (2/0, ^0) is realizedby some path

7To in M leading frompy to qfj so that UJ E (pj (TTO)}.

Informally spoken, an accepting path in Maj simply guesses (in its first
component) a path TTO in M leading from p'- to </-, realizes the same
(yoi ^0) £ 5]* x A* as 7TQ, and vérifies (on its three other components) that
<jj belongs to ipj (TTO). The vérification procedure directly anses from the
définition of tpj in step (2). The detailed construction of Maj is given in
the proof of [W93, Thm. 2.1]. The fifth component of Qa, Q(2\ is set to
the state set of Ma>J.

The fifth component of -Ka vérifies that, for some -K G H realizing (a;, z), a
belongs to (p (?r). Following the définition of the mapping cp this component
opérâtes as follows. For every À E {0, . . . , / } , while ?ra consumes the
words J/JA+I, . . . , J / J A + 1 - I , successively, it guesses and vérifies (on the first
subcomponent of Q^) a path in M consuming yjx+i .. - Vjx+l-i, producing
some words ^ \ + i , .. -, £jA+1~i G A*, successively, and leading from qf-
t o Pjx+i> w h e r e w e s e t 30 = 0, jî+i = d + 1, go = Qi> a n d Pd+i = 9F• For
every j = j \ G J (X £ [l]), while TT̂- consumes the word y7, this component
guesses and vérifies an accepting path in Ma_ j consuming y.j and producing
some word ZJ E A*. The index j E [d] of the word yj currently consumed
by TTcr is read from its fourth component. The path 7va inherits its output
word z = z\ . . . zc\ E A* from the combination of the above paths.

From the description of the mode of opération of the path na given above
we conclude (informally) that the NFT Mo- realizes the correct transduction.
Moreover, every transition of Ma consuming e also produces e. The detailed
construction of Ma is given in the proof of [W93, Thm. 2.1]. Our only
modification is in the définition of the set of final states where we add the
condition that Aj+\ — Aj+2 < -Aj+3 = Aj+4, < . . . < A2«-+*-i ~ ^n+i .
Therefore, we can conclude (formally) from [W93, Thms. 2.1 and 2.3] that
Ma realizes the correct transduction and that the size of Ma and the time
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complexity for its computation are bounded as desired. Note that the purpose
of our modification is to distinguish certain accepting paths in Ma from
other possible accepting paths.

The state set Qa = Q^ x Q^ of Ma and Mo is independent of a. The
detailed construction of Ma yields that

+1 x 2 g x 2 « x ([2n+1] x [3])

and

Q(2) = Q x Q x [-(n3 - 1) • diff (<S), (n3 - 1) • diff (6)}

x [0, max {iml (6), 1 + (n3 - 1) - diff (5)}].

Note that Q^ and Q^ have cardinality O(22lin||M") and O (poly||M||),
respectively.

We define the mapping ^2 : Q^ x Q ^ —> Q as the projection to
the first Q-subcomponent of thè Q^-component. We observe from the
detailed construction of Ma that for any transition (r, a, z, 5) of M^ either
(a, z) = (e, e) and ^2 (r) — tp2 {$) or a E E and (^2 (r), a, 2;, ^2 (5))
is a transition of M. According to the construction of Ma from Ma, this
implies that ^2 maps any transition of Ma to a transition of M. Moreover,
we observe that tp2 maps any initial (final) state of Ma to an initial (final,
respectively) state of M.

Execution of step (4): Let a E S. Following the main lines of the
construction of Mo in step (3), we are going to détermine an e-NFA
M{

a - (Q;, E, A, S'a, Q
!
I(T, Qf

Fa) which recognizes the set of all x e E*
such that there is no ir G II consuming x with a E </? (?r). It is easy to see
that Mf

a is equivalent to the NFA M!
a = (Q'a, E, A, ^ , Q'7 ^, Q'F a ) where

QfL,a = &£ Qa ' fcrsomep E Q ^ , (p, e, e, q) E ( ^ )}

and

K = {(PÏ a^ £
5 g) G Q^ x E x {e} x Q'a : for some r E Q7

a,

(p, a, e, r) E £ and (r, e, e, q) E ^

Having constructed Ma, we will observe that it recognizes the above language
and that Mf

a has the other properties requested by step (4).

Let a = (g/, (ju p ^ , a^, g^), . . . , (jh pf
n, <r3n g^), gF) E 5 and J,

«/ï, h, rij (j E J) , ZJ (j E Ji) and (t3, p3, q3) (j E J2) be given as in step
(3). As in step (3) we also assume here that, for every j G J2, j is odd
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and that, for every j G J\, either j is odd and \ZJ\ < (n2 hj — 1) * diff (ë)
or j is even and Zj G ini(<5).

We recall from step (3) the NGSM Maj(j G J) with state set Q^
realizing the transduction Taj. Let j G J. Using the well-known subset
construction we obtain from Ma. 3 an NFA M'a which is in f act deterministic
and which recognizes the language T,*\L(Maj). The state set of Mf

a • is
2° ( 2 ) . The detailed construction of M^ • is given in the proof of [W93,
Thm. 2.2]. According to the définition of Ta.j, the NFA Mf

a • recognizes
the set of ail yo G £* such that there is no path TTQ in M consuming yo and
leading from J/J to q!- with OJ G (fj (TTO).

Instead of constructing the e-NFA M!
a in detail we explain the desired

mode of opération of an arbitrary accepting path 7rf
a in this machine.

Assume that the path TT̂  consumes x G £*. Let xi, . . . , xm G S so
that x — x\ . . . rrm. The reader may recall from step (2) the définition of
the words yi, . . . , ^ 6 S*. In particular, x — yi . . . y^, d + 1 is even,
and d < 2 n + 1 — 1. We further ask once again to recall the main Unes of
the construction of the NGSM M a , which has state set Qa = Q^ x Q&\
in step (3).

The path TT̂  consists of five components that correspond to five
components of Qf

a, the state set of Ml
a. The first four components

of Qf
a coincide with the ones of Qa, the state set of MG. Therefore,

Q!
a = qW x Q(3) where Q^ dénotes the fifth component of Qf

a. Concerning
the QW-components, the path Tv!

a opérâtes exactly as an accepting path in
M(j consuming x. In particular, the value (j, a) G [d -f 1] x [3] of the
fourth component of %!

G if j < d, détermines the index j of the word yj
currently consumed by nf

a. We observe as for Ma that the séquence of the
Q^-components of the states of -Kf

a and the séquence of words consumed by
its transitions are uniquely determined by x. According to the construction
of Mf

a from M^ this implies that the séquence of the <3^-comPcments of
the states of any accepting path in Mf

a is uniquely determined by the word
consumed by this path. At the beginning (end) of -ïïf

a its fourth component
contains (1, 1) {{d + 1, 1), respectively). One reason for TT̂  to accept the
word x is that at its end j = d + 1 < j(. Let us assume here that ji < d + 1.

The fifth component of TT̂ . vérifies that there is no n G II consuming x
such that a belongs to ^(TT). Following the définition of the mapping tp
this component vérifies that (a) or (b), depending on its guess, holds true.
(a) For some (guessed) ÀG {0, . . . , i } there is no path in M consuming
Vjx+i "' Vjx+i-i a n d dading from qf

Jx to p ^ + i , where we set j 0 = 0,
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=d+l, q'o = qj, and p^ — qF. (b) For some (guessed) j = j \ E J
(À E {/]) there is an accepting path in M*a j consuming yj. Of course,
condition (a) is verified, as described below, while TT̂  consumes the words
yjx+ii - . . , yjx+1-i, suceessively, and condition (b) is verified by simulating
Mf

a j while TV^ consumes the word yj. The index j E [d] of the word yj
currently consumed by -K!

G is read from its fourth component.

Technically the fifth component of Qf
a is Q^ = 2Q(2) x [3]. Recall that

2Q{2) is the state set of Mf
a 3 (j E J) . Assume that the path ^a contains

a state with Q(3)-component (S3, ff) E 2Q(2) x J3]. The value of 0 can
never decrease along TT̂ .. If /? — 2, then TT̂ . is about to verify (a) or (b).
If ƒ? = 1 (/3 = 3), then this vérification still has to be done (is already
completed, respectively), If f3 E {1, 3}, then ,83 .= 0. Assume that f3 — 2,
7T̂  is about to verify (a) for some À E {0, . . . , /} , and w;

a has consumed the
prefix y of %A+i . . . %A + 1- i- Then S 3 = {(<?, g, 0, 0) : for some z1 E A*,.
{4JXÏ V*> z') ^) £ £}• Assume that /3 = 2, TT̂  is about to verify (b) for some
j E J, and TT^ has consumed the prefix y of t/y. Then S3 is the uniquely
determined state of Mf

a reached from the initial state when consuming y.

From the description of the mode of opération of the path TT̂  given
above we conclude (informally) that the e-NFA Mf

a recognizes the correct
language. The detailed construction of Mf

a is given in the proof of [W93,
Thm. 2.2]. Our only modification is in the définition of the set of final
states where we add the condition that Aj+i ~ Aj+2 < Aj+3 — Aj+4 <
. . . < A2-n+i_i = A2n+i. Therefore, we can conclude (formally) from [W93,
Thms. 2.2 and 2.3] that Mf

a recognizes the correct language and that the
size of M!

a and the time complexity for its computation are bounded as
desired.

The state set Q'a = QW X Q(3) = Qi1) X 2Q{2) X [3] of Mf
a and Mf

a

is independent of a.

In order to complete step (4), we need some routine observations about
the detailed construction of the e-NFA M!

a and the NGSM Ml
a, Consider

the set Q' - {B E 2^(3) : for every p E [3], # (B n {2Q{2) x {&})) < 1}.
Note that #Q' <_(1 + 2#^(2))3- For every p E Q{1\ the set B - {q! E
<2(3) : (p, qf) E Q'La] belongs to Q' and, for every a E S, p, j / E g W ,
and 5 E Q;, the set

B' = {5' GQ ( 3 ' : for some 5 E 5 , ((p, 5), a, e, {p\ sf)) E ^ }

belongs to Q'. We have therefore observed that the NGSM Ml
a meets the

second special case of Lemma 2.3 with the given subset Qf of
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Execution of step (5): Let a E S. Applying Lemma 2.3 to the single-
valued NGSM Ma constructed in step (3), we obtain an equivalent UGSM
Ma having size at most \\Ma\\ • 2

# ^ ( 2 ) " 1 . The UGSM Ma can be computed
in DTIME(poly(| |Ma | | • 2#QC2))). Note that ||Ma|| and 2*Q{2)'1 are of
order O ( 2 ^ " ) .

Let us consider the new machine Ma — (Q, S, A, 6a, Qi^a, QF,G)-

According to the proof of Lemma 2.3, the state set Q of Ma is a subset
of Q^ x Q^2) x 2(2(2), which is independent of a. We define the mapping
ipi : Q -* Q^ x Q^ as the projection to the Q^ x Q^-component. Let
(r, a, z, s) be a transition of Ma, Then, by construction of this machine,
(^i (r), a, 2, -01 (5)) is a transition of Ma. Moreover, we observe that ij)\
maps any initial (final) state of Ma to an initial (final, respectively) state
of Ma.

Execution of step (6): Let a G S. Applying the second special case of
Lemma 2.3 to the NFA Ma constructed in step (4), we obtain an equivalent
UFA Ma having size at most \\Ma\\ • (1 + 2# Q ( 2 ))3 . The UFA Ma can
be computed in DTIME(poly(||M^|| • (1 + 2#Qmf)). Note that \\Mf

a\\
and (1 + 2#« (2 ))3 are of order O (22lin|1""). Since the state set of Ma is
independent of <r, the state set of Ma is independent of a as well.

This complètes the proof of Theorem 2.1. •
We now turn to the proof of Theorem 2.2. For this purpose we need the

following word lemma.

LEMMA 2.4: Let A be a nonempty, finite set. Let z\, . . . , ZQ G A* such
that the words z\ Z2 £3 and Z4 z§ z§ are distinct Then, there is a nonnegative
integer Ao such that for every integer À > AQ the words z\ z\ z% and z± z\ ZQ
are distinct.

Proof: If I221 / l^sl) then there is at most one nonnegative integer A
such that \ziZ2Z$\ = \z±z\ ZQ\. Thus, we might choose Ao to be either
this A, if it exists, or 0, otherwise. If \z2\ ~ \z$\ and \z\ z$\ ^ \Z4ZQ\ or
if Z2 = z§ = e, then we can set Ao = 0. Let us therefore assume that
|̂ 21 = |^s| 7̂  0 and \z\z$\ = \z^ ZQ\. Because of symmetry, we may further
assume that \zi\ < \z±\. Let j G [\z\ Z2 231] be a position at which the words
z\ Z2 Z3 and 2:4 z$ ZQ differ.

We select Ao to be the maximal integer A such that \z\\ + A• \z2\ < \z^z^ .
By our assumptions, Ao is nonnegative. Assume that, for some integer
A > Ao, the words z\ z\ £3 and z± z§ ZQ coincide. Hence, z\ is a prefix of
Z4 and ZQ is a suffix of z% implying that \zi\ < j < \z4Zb\- Let JJL be the
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maximal integer such that j -\- \x • \z§\ < \z4z^\. Since j < \z4z^\, \i is
nonnegative. Since \x is maximal, we have that \z4\ < j + /i • \z$\. Since
\z\ I + M * \Z21 < j + M * 1̂ 5 j < 1̂ 4 ^51 and Ao was maximal, we fcnow that
M ̂  Ao < A — 1. Since À > Ao, we further have that \z\ | + A • \z2 \ > |^4 251.
Hence,

and

k l | <j<j + V>' 1̂ 2 I = J + M * k s | < |^4 2s | < k

In summary, we can dérive the following contradiction.

(*i ^2 ^3) (j) - (^i ^2 ^3) U + (A - 1) • \z2\)

= (z4z£ze)U + (*-l)-\zb\)

= {z4z£ z6) (j + ft • \zs\)

= (zi Z2 z$) (j + IJ, - \z2\)

Consequently, for every integer A > AQ the words z\ z\ ^3 and z4 z^ ZQ
are distinct. D

Proof of Theorem 2.2: Let M = (Q: E, A, 6, Qj, QF) be an NGSM with n
states, and let A; be a positive integer such that the assumption of the theorem
holds true. Thus, there are accepting paths 7ri, . . . , ftk+i m M consuming
the same word (in E*) and producing the words zi, . . . . 2&+i G A*,
respectively, such that for any two distinct i\,%2 G [k+l] either diff (TT^ . 7r?;2)
is greater than (n f c+1 — 1) • diff (6) or z-ix and Zi2 are distinct. For any paths
7Ti, . . . , 7Tfc+i in M consuming the same word and producing the words
z\. . . . , Zk+i G A*, respectively, we are going to study property (*).

(*) For any two distinct i\, i2 G [k + 1] either (i) or (ii) holds.

(i) There are factorizations TTJ = TT*. 1 o -K% 2 o 7rz. 3 (i = 1, . . . , A; + 1) such
that, for every j G {1, 2. 3}, the paths vri.j, . . . , 7Tfc+i ^ consume the same
word, the paths TTI.2, • • •, ftk+i. 2 are cycles, and the lengths of the words
produced by ?r;l52 and TTÏ2.2 are distinct.

(ii) The words z%1 and Zi2 are distinct.
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We wish to prove Claims 1, 2, and 3.

Claim 1: There are accepting paths TTI, . . . , TT^+I in M consuming the
same word and having property (*).

Claim 2: Let TTI, ....,. TT^+I be accepting paths in M consuming the same
word, say, v G £*, producing the words z\, . . . , 2^+1 G A*, respectively,
and having property (*) such that the cardinality of {z\% . . . ,2fc+i} is
maximal. Then, this cardinality is k + 1. In particular, the valuedness of v
in M is at least k + 1.

Claim 3: Let %\1 . . . , 7r&+i be paths in M consuming the same word and
producing the words z\, . . . , z/e+i G A*, respectively. Let i\r %2 G [A;-1-1] be
distinct such that assertion (i) does not hold for (TTI , . . . , TT^+I) and (ii , «2)-
Then, H^J - \zi2\\ is at most (n f c+1 - 1) • diff (<5).

The theorem directly follows from Claims 1 and 2. Using Claim 3, it is
easy to check that the paths iz\, . . . , TT&+I given by the assumption of the
theorem have property (*). By this we have established Claim 1.

Our next goal is to prove Claim 3. This will be done by induction on the
length of the word v E E * consumed by the given paths. Let TÏ\ , . . . , Tr^+i
be paths in M consuming the same word v E £* and producing the words
z\, . . . , Zk+i € A*, respectively. Let i\, %2 G [fe + 1] be distinct such
that assertion (i) does not hold for (TTI, . . . , TT^+I) and ( i i , 12). The base
of induction is the case that |^| < n^1 — 1. In this case, we have that
K I - \zi2 II < \v\ • óiS(S) < (n f c+1 - 1) • diff (6).

For the induction step let us assume that \v\ > nkJrl. Then, there are
factorizations TT2- = TT^I O 7r^2 ° ^ , 3 (i = 1,. . . . , k + 1) such that, for
every j G {1, 2, 3}, the paths TT^J, . . . . , TTfĉ î - consume the same word,
say, VJ G E'*, the word ^2 is nonempty, and the paths 71-1,2, . . . , "̂fc+1.,2
are cycles. Let us select any such factorizations where the length of the
word v\ is minimal. Let zij G A* be the word produced by the path
TCij (i — 1. . . . , k + 1, j — 1, 2, 3). Since assertion (i) does not hold
for (TTI, . . . , TTfc+i) and ( i i , 12), the lengths of ^ 1 ; 2 and Zi2,2 coincide.
Consider the paths TT^ = TTI^ 0 ^ 3 , . . . , 7Tf

k+1 = 7rfc+i,i ° ^fc+i,3 m

M consuming the same word vl = v\ v$ G S* and producing the words
A = 21,121,3 G A*, . . . , 4 + 1 = % i , i ^ + i , 3 ^ A * ' respectively. It is
straightforward to check that if assertion (i) held for (TT^ ...., ?r^+1) and
( i l , Z2) then it would also hold for (7r i , ' . . . , TT^+I) and (zi, 12). Therefore,
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we can apply the induction hypothesis to (TV[, , 7r^+1) and (i\, 12) which
yields that |]^J - \z[2\\ is at most (n*^1 - 1) • diff (£). Consequently,

2*1,3'I - 1^2,1 zi2,$\

= lk'. -
<(nk+l - 1 ) - diff (6).

It remains to prove Claim 2. For this purpose let us consider accepting
paths 7Ti, . . . . TTfc+i in M consuming the same word, say, v G S * , producing
the words z\, , Zk+\ G A*, respectively, and having property (*) such
that kf = # { z ± , . . . , Zk+i} is maximal. Assume that at least two words in
(zi , . . . , Zk+i} coincide, say, z\ — z<i. We are going to construct accepting
paths 7fi, . . . , 7ffc+i consuming the same word, say, u G S*, producing
the words 5j , . . . , %+i G A*., respectively, and having property (*) such
that z\ ^ Z2 and, for any two distinct i\, i-2 G [k + 1], z^ ^ Zi2 implies
that Z{Y / Zi2.. Consequently, # { i i , , üfc+i} > # {^i, . . . , z^i} •= k!

which contradicts the maximality of k!. Thus, kf equals k + 1 as desired.

We construct the paths iri, , 7r&4-l as follows. Property (*) applied
to (TTI, . , . , 7Tfc+i) and (zi, ^2) == (1 , 2) yields factorizations ivi —
^1,1 ° ïïï,2 ° ^"Ï',3 (* — 1) ...., fc + 1) such that, for every j G {1, 2, 3},
the paths nij, . - . , Trjfc+i.j consume the same word, say, tij G S*, the
paths 7Ti52, • • • > TTfc+1,2 are cycles, and the lengths of the words produced
by 7Ti,2 and TT2,2 are distinct. Let zij G A* be the word produced
by the path ïïij (i — 1, . . . , k 4- 1, j = 1, 2, 3). By construction,

^ = Zi^Zi,2Zi,3 (i = 1, , fc + 1). Let n , «2 € [fc + 1] be distinct
such that z%1 ^ Zi2. According to Lemma 2.4 there is a nonnegative integer
Aj1}i2 such that for every integer A > A^^ 2 the words z%1^\ z\ 2 i ^ . ^
and i?j2ïi 5^ 2 ^ 2 , 3 are distinct. Since ]ii,2J / 1^2,21, there is at most
one nonnegative integer A such that ]£i. i i?^ 2 £1.3] = |^2.i z^ 2 ^2.3J-
Select Ai;2 to be either this A, if it exists, or 0, otherwise. Finally, define
Ao = max({Ai ,2} U {\%Y^%2 : i i , ^2 G [k + 1], 2^ 7̂  ^ 2 } ) - Now, let us fix
sorae A > Ao and define TT? = TT^I O Trf^1 o ^ 2 ° ^ ' .3 (* — 1? •. •, A; + 1) ,
1/ — 1/1 ith 111 piTiH ?• — '?• 1 r ^ y- n (ö — 1 £• -U 1 ) NFote tha t H I P
Ld Uil U/O U/-1 « dllv-L X^Ï /i/<> \ AJ' Q >^? \ \ v 1 , . . . . r\j \^ _•_ J -» l ^ l U l v LllClL L11O

path 7Tj arises from TT; by "inserting" ^ "^1 after TT^I (i = 1, . . . , k + 1).
Since A > Ao, we know that \z\\ ^ ji2J and that, for any two distinct i\,
%2 G [k + 1], £fx / 2ïj2 implies that zH ^ Zi2.

It remains to be shown that the paths TTI, . . . , TT -̂J-I have property (*).
By the above, it is sufficient to prove that, för any two different n ,
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%2 G [k + 1], the validity of assertion (i) is inherited from (TTI, . . .
to (TTI, . . . , TTfc+i)- Let i i , %2 G [A; + 1] be different If the lengths of
ii l s2 and zï2;2 are distinct, then the factorizations îïi = TT^I O 7f£2 ° ^ , 3
(i = 1, . . . , & + 1) guarantee assertion (i) for (TTI, . . . , 7^+1) and (̂ 1» ^ ) -

Otherwise, if i^.2 and Zi2i2 have the same length, iet us consider
factorizations 7r« = TTU 0 ^ 2 ° ^ , 3 (i — 1) . . . , A; + 1) such that, for
every j G {1, 2, 3}, the paths TTIJ, . . . , ftjc+ij consume the same word,
say, VJ G S*, the paths 71-1,2, . . . , ^+1,2 are cycles, and the lengths of the
words produced by 7rZl;2 and Tii2,2 are distinct. Then, having in mind how
iti arose from TT̂  (i = 1, . . . , k + 1), it is easy to obtain from the paths
nij (i = 1, . . . , A; + 1, j = 1, 2, 3) factorizations TTÏ = ^ 1 ° ^ 2 ° ^ . 3
(i = l, . . . , & + l ) which guarantee assertion (i) for (TTI, . . . , TTU+I)

 anc*
(H, «2).

3. DECOMPOSING A;-VALUED TRANSDUCERS

In this section we use the outcome of Section 2 (Theorems 2.1 and 2.2)
in order to prove the main resuit of this article.

THEOREM 3.1: Let M = (Q, S, A, 5, Qj , QF ) Z?e a k-valued NGSM,
where k is a positive integer. Then, there are k UGSMs M\, . . . , M& and
UFAs M{, . . . , M'k such thaï T (M) equals T (Mi ) U . . . U T (Mk) and, for
every K E [k], Mf

K recognizes Y>*\L(MK). Each of these new machines has
S^ / o 2 P o l y ( l l M l l + fc)\ J 7 J • T ^ r p T I V / m / o 2 p o I y CIIMH + fc)\

sue O (2Z ) and can be computed in DTIME (2Z ).
Informally, Theorem 3.1 states that a A;-valued NGSM M is equivalent to

some effectively constructible "disjoint union" of k unambiguous NGSMs
of double exponential size. It turns out that these UGSMs are technically
quite complicated. While consuming the same input word, they need almost
their entire capability in order to carry out exactly the same "basic work"
upon which they décide "on line" which output word to produce. Intuitively
spoken these machines are doing so because the model of a "disjoint union"
of transducers does not allow any communication among them by which they
could coordinate their output words. The author believes that the missing
communication is one of the main reasons why the new machines are so
complicated.

Note that in the case k = 1 of Theorem 3.1 we can select the UGSM M\
to be of size at most | |M|| • 2*®"1, using Lemma 2.3 for n\ = 1. Moreover
it is known that M\ has at least 2 ^ — 1 states in certain cases of M (Leung
[Le93], see Weber and Klemm [WK95, Prop. 2.2]). For k > 2 it is open
whether or not the size of the UGSMs M\.t . . . , M& in Theorem 3.1 can be
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substantially improved. We only know that, in certain cases of M, the sum
of the number of states of these UGSMs is at least 2#Q - 1 (Leung [Le93]).
By réduction, Theorem 3.1 can be extended to NFTs.

THEOREM 3.2: Let M = (Q, E, A, 6, QIy QF) be a k-valued NFT,
where k is a positive integer, Then, there are k unambiguous NFTs
Mi, .. . ,M/c and unambiguous e-NFAs M[, . . . , M*. such that T (M)
equals T(Mi) U . . . U T(Mfe) and, for every K G [k]9 M

l
K recognizes

E*\L(MK). Each of these new machines has size O (22
poly(l|M|i+fc)) ünd

can be computed in DTIME (22P°ly(i|M|l+k)).

Since every fc-ambiguous NFT is fc-valued and every "disjoint union" of
k unambiguous NFTs is a /c-ambiguous NFT, Theorems 3.1 and 3.2 directly
imply the following theorem.

THEOREM 3.3: For every positive integer fe, the k-valued NFTs (NGSMs)
and the k-ambiguous NFTs (NGSMs, respectively) realize the same class of
transductions.

Theorem 3.3 was first established for k = 1 (Eilenberg [E74] and
Schützenberger [Sch76], see Berstel [B79, Thms. IV.4.2 and IV.4.5]). For
every fixed positive integer k, it is decidable in deterministic polynomial
time whether or not a given NFT is fc-valued (Gurari and Ibarra [GI83]).
Consequently Theorem 3.3 implies that, for every fixed positive integer k,
it is decidable in deterministic polynomial time whether or not a given NFT
(NGSM) is equivalent to some A;-ambiguous NFT (NGSM, respectively).

The remainder of this section is devoted to the proof of Theorems 3.1
and 3.2.

Proof of Theorem 3.1: Let M = (Q, E, A, 6, Qj, QF) be a fc-valued
NGSM with n states, where k is a positive integer. Applying Theorem
2.1 to M, we obtain O (1PO^\\M\\) many UGSMs M i , . . . , MN, and UFAs
M[, . . . , M'N such that T (M) equals T (Mx ) U. . . U T (MN) and, for every
i E [N], M[ recognizes E*\L{Mi). In order to prove that Theorem 3.1
holds for M we roughly proceed as follows. Let x G S* be an input word.
Using accepting paths in the "disjoint unions" of Mi and M[ (i — 1, . . . , k)
all consuming x we define an undirected "neighborhood graph" for x with
vertices in [TV]. The minimal vertices of the connected components of this
graph represent all values for x in M. By means of Theorem 2.2 it is shown
that the graph has at most k connected components. For every K G [k]
the new UGSM MK is then designed to obtain its value (for x) from the
minimal vertex having "rank" K, in the neighborhood graph. If all vertices
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of this graph have "rank" less than «, then x is planned to be recognized
by the new UFA Mf

K.

According to Theorem 2.1, each of the machines Mi, ...., MJ\T
and M[, . . . , Mf

N has size Ô(22hn||M|1) and can be computed in
DTIME (22hn||M|1 ). Let Qo and Qf

0 be the state sets provided by Theorem 2.1.
Let Mî = (Qo, E, A, fc, Q / ;Z, QF;2) and M/ = (Q'o, S, A, %, Q!

Ll1 Q'FJ
(i G [N]). We may assume that Qo and Q'o are disjoint, Le., Qo n Q'o = 0.
For every i G [N] we define the UGSM MiÙM? = (Qo U Q'o, E, A, ^ U 6[,
Qj t U Qfj ^ Qp,i U Qf

F ^), where Mi ÙM- dénotes the disjoint union of
Mi and M^. Let ij) : Qo —> Q be the mapping provided by Theorem 2.1
mapping any (accepting) path in Mi (i G [N]) to an (accepting) path in M.

Let us fix the notation M = (M, Mi, . . . , Mj$). Let x G E* be an input
word. We define the neighborhood graph for x with respect to M. and fc,
denoted by NG^,/ , (x), to be the undirected graph (V, E1) where

V = {i£ [N] : x e

and E' = {{«ij Z2} G (^) : there are accepting paths TT̂  in M2l and 7ri2 in
Mi2 both consuming x and producing zi19 Zi2 G A*, respectively, such that
diff(7r2l, 7Tl2) is at most nk+x • diff (£) and z^ and zi2 coincide}.

FACT 3,4: For every word x G E* the graph NG^JcC^) ^as at most ^
connected components.

Proof: Given x G S* , let us consider the graph G ~ NG^, fc(x) = (V, E).
Assume that G has fe + 1 or more connected components. Then, there
are pairwise disjoint vertices ii> . . . , ijt+i G T̂  such that no edge in
E connects any two of them. By définition of G, there are accepting
paths 7Ti1 j ...-, 7Tik+1 in M%i. . . . . M{fc+1, respectively, ail consuming x and
producing the words Z{x, . . . , ^ f̂c+1 G A*, respectively, such that, for any
two distinct Ai, A2 G {û, . . . , ifc+i}, either diff {yt\^ KX2)

 1S greater than
nfc+1 * diff (6) or z\l and ^ 2 a16 distinct. Thus, ip (nH). . . . , ij) (^ik+1) are
accepting paths in M ail consuming x and producing zîl, . . . , ^fc+1 G A*,
respectively, such that, for any two distinct Ai, A2 G' {ii, . • • -, ife+i}, either
diff ( ^ ( T T ^ J , ^(TTAJ) = dîff(7FA1, 7T\2) is greater than nfc+1 • diff (S) or
^x and ^A2

 a r e distinct. By Theorem 2.2, this implies that the valuedness
of M is greater than fe, a contradiction. Therefore, the graph G has at most
k connected components. D

Let x G S* be an input word. Consider the undirected graph G =
NGJW,*(Z) = (V, E). Note that V Ç [N]. Let Ui,...7Uk, be the
connected components of G ordered by their minimal éléments, Le.,
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1 < min U\ < min V% < - • - < min U^ < N. Frorn Fact 3.4 we know
that k1 is at most k. For any vertex i G V its rank in G, abbreviated AQ (i),
is defined as the uniquely determined re G {1, . . . , k'} such that % belongs to
UK. Analogously, such ranks can be defined in any finite, undirected graph
having positive integers as vertices.

We are going to define, for each re G [k], a UGSM M& which realizes
the transduction

TK = {(xr z) e E* x A5N : there is a vertex of the graph

NGyvi.k (x) having rank n and (x, z) E T (Mi0)

where ÏQ is the minimal such vertex}

and a UFA Ml
K which recognizes the language

Lfz — {x G S* : all vertices of the graph

NG^vt. k (x) have rank less than K}.

We further require that each of our new machines has size O (22P°y )
and can be computed in DTIME(22P°lyCI|M|l+fc)). In order to see that these
machines are suitable for the proof of Theorem 3.1 let us first check that
T(M) equals T(Mi) U. . .UT(M k) and, for every K G [k]t M

;
K recognizes

By définition of the set TK> every (x, z) G T (MK) belongs to-T(Mio) for
some tQ G [N] depending on x and re. Hence, every T (MK) is included in
T(M). On the other hand, let (x, z) G T (M)r and let i G [N] such that
(x, z) G T(Mi). Let re be the rank of i in the graph G = NG^fc (a?), and
let zo be the minimal vertex of G having rank re. Since i is connected with io
in G, the définition of G and the fact that all Mi, . . . , Mj\r are single valued
yields that (x, z) also belongs to T(MlQ), Le., (2, 2) belongs to T(MK) by
définition of TK. Consequently, T (M) equals T ( M i ) U . . . U T (Mfc). Let
re G [k\. According to the définition of the set LK9 every word x G L (Mf

K)
has a neighborhood graph containing no vertex of rank re. Thus, there is no
word z G A* such that (x, z) is in TK, f.e., x does not belong to L (MK). On
the other hand, for every word x G E*\L(Mf

K) the graph G = NG/4tjt(a;)
contains a vertex having rank at least re and, therefore, also a vertex having
rank exactly re. Let z'o be the minimal vertex of G having rank re. Then,
the word x belongs to L(MlQ) and, by définition of TK, also to L(MK).
Consequently, L (M'K) equals X*\L (MK) as desired. It remains to construct
the machines M\, . . . , M& and M{, . . . , M£ as required above.
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Let us fix some K G [k]. In order to define the UGSM MK and the UFA
M!

K we proceed as follows. First of ail, we reformulate the définition of the
sets TK and LK in a way independent of the neighborhood graph. Having the
new définitions in mind, we then explain the desired mode of opération of
accepting paths in MK and Mf

K. After this, we define the machines MK and
Mf

K in detail and check that they have the properties stated above.

Up to now, we only used the fact that the NGSMs M\, . . . , MN are single
valued. Recall, however, that these machines are unambiguous. Let us con-
sider accepting paths 7ri, . . . , TT/V in the UGSMs MiÙM{, . . . , MNÙM*N,

respectively, consuming the same word x G E* and producing the words
zi, . . . , ZN G A*, respectively. Note that such accepting paths exist for
every given input word x G E*. Since the transducer Mi ÙMj is a disjoint
union, the path ni is contained either completely in Mi or completely in M[
depending on whether its first state belongs to QQ or to Q'o. Consider the
graph G = NGM,fc O) = (V, E). Then, V = {i G [N] : TT, is in Mx} and
E = {{iu *2> E (V

2) : diff (TTH, TTÏ2) < nfc+1 • diff (5) and z%1 = zï2}.

This implies that the sets TK and LK can be reformulated as follows.

• TK — {(x, z) G E* x A* : there is an ÏQ G [JV] and there are accepting
paths 7Ti, . . . , TTJY in Mi Ù M-[, . . . , M ^ Ù M'y, respectively, all consuming
x and producing the words zi, . . . , zj\r G A*, respectively, such that z = z2o

and zo is the minimal vertex of the graph G = (F, E1) having rank AC where
F = {z G [N] : TT» is in Mi} and E = {{iu i2} G ( ^ ) : diff (TT^ , TT22) <
nk+l • diff(«) a n d ^ - z i a}.

• LK = {x G E* : there are accepting paths 7ri, . . . , T̂ y in
Mi Ù M{, . . . , M/y Û Mjy, respectively, all consuming x and producing the
words 21, . . . , £j\r G A*, respectively, such that all vertices of the graph
G = (F, E) have rank less than K where V — {% G [iV] : 7̂  is in M^} and
E = {{iu 12} e (V

2) : diff K , TT12) < nfc+! • diff («) and Zil = ^ 2 }} .

Let us next explain the desired mode of opération of arbitrary accepting
paths TT in MK and TT' in Mf

K. Assume that TT realizes the pair (x, z) G E* x A*
and that x7 consumes the word x G E*.

The path TT consists of three components that correspond to three
components of the state set MK. The first component of TT constantly
contains an integer z'o G [N] which is guessed at the beginning of this
path. The second component of TT guesses accepting paths TV\ , . . . , TTJV in
MiÙM{, . . . , MjvÙM^y, respectively, all consuming x and producing the
words z\, . . . , ZN G A*, respectively. The path jt produces the same word
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as 7Ti0, Le., z — ziQ. Whether ixi (i E [N]) is in Mi or in M[ dépends on the
guess of 7T at its beginning. Set V = {i E [N] : 7rz is in Mi}.

The third component of jt provides at the end of this path the set
E = {{iu 12} e (V

2) : diff fo, 7Ti2) < n f c + 1 • diff (S) and Zil = z%2}.
Thus, considering the graph G = (V, E), the path TT can verify at its end
that zo is the minimal vertex of G having rank «. In order to compute the
edge set E, the third component of TT is divided into (7

2 ) subcomponents,
indexed by all possible {21, 12} E ( 2 )• The {z'i, i2}-subcomponent checks
whether {z'i, 22} belongs to the set E ({z'i, 2*2} € ( 2 ))•

Assume that the path ?f, having consumed some prefix xf of x, is in state
P = (*0Ï (pij • • • ) PJv)) P3)« The meaning of io € [^] i s explained above.
Let 7TJ, . . . , 7rf

N be the paths guessed so far by the second component of n.
Then, every -K\ {% G [N]) terminâtes at the state pi E Qo U QQ, consumes
x\ and produces some prefix z\ of zn moreover there is a path TT" such
that Tri equals ?r̂  o TT".

The third component of the state p, i.e., p$, is of the form
w h e r e e a c h (^i^}'^!,^}) i s i n

x [2]. Let {ii, ?2} G ( [ ^ ] ) . Note that fet, pt-2} is a subset
of Qo if and only if 7r2l and TTZ2 are in M^ Le., {ii , ^2} is a subset of F .
If {p^, p j j is not contained in Qo, then (y{iui2}yOi{ilii2y) = (e, 2). Thus,
in the case that {i\, 12} is not contained in V the {û , z2}-subcomponent
of the third component of ir has the constant value (er, 2) which is set at
the beginning of vf. Now, let us assume that {p2l, pi2} is a subset of Qo-
If diff (7^ , 7r[2) is at most n f c+1 • diff (6) and 2^ is a prefix of z[2 or 2;̂
is a prefix of 2^ , then (y{tul2}^{Zlj2}) = ( ( ^ - J " 1 ^ 3 , 1 ) . Otherwise, if
diff (71^, 7r̂ 2) is greater than nk+1 * diff (6) or if ^ and z[2 differ at some
position; E [ m i n j l ^ l , | ^ J } ] , then ( ^ { û . i a } , ^ ^ ^ } ) = (e, 2). Therefore,
in the case that {i i , 22} is a subset of F the {zi, Z2}-subcomponent of
the third component of ?r begins with the value (e, 1), continues with the
value (2fdiff) 1) where Zdifï G ^<±^fc+1difï(5) r e p r e s e n t s the "différence"
of the values produced so far by the paths TT^ and TT 2̂, and switches to
the constant value (e, 2) if this "différence" becomes either too large or
is not defined anymore.

Finally, let us consider the terminal state q = (zo, ((Zi, • • -1 QN)I QS) °f %

where q3 is of the form ((y{t1,ia}^{i1,»a})){i1)t-2}€(^])- F o r e v e r Y i ^ iNl

q% E QÖ U QQ is the terminal state of 7r2\ Let {ii , «2} E ( 2 )• ̂  (*1J ^2} is
not contained in V or diff ( 7 ^ , TTJ2 ) exceeds n f c+1 -diff (5) or ^ x and zi2 differ

vol. 30, n° 5, 1996



408 A. WEBER

at some position j G [ m i n f l ^ J , \zi2\}], then (y{iui2},<*{iui2}) = (e, 2).
Otherwise, Û/{z1 ;i2},a^ l jZ2}) = 0*"1 ^ 2 ) 1). Thus {n , z2} belongs to £ if
and only if Û/{2l;z2}>a{2l.?2}) equals (e, 1).

The path TT' behaves almost in the same way as TT. The only différence
is that the value of io is constantly 1, that TT7 produces the empty word e,
and that at the end of this path it is only verified that all vertices of the
graph G have rank less than K.

Now we are ready to construct in detail the NGSM MK — (Q, E,
A, l QI} QF,K) and the NFA M'K = (Q, S, A, <5', Q/ , Q ^ J by setting

Q = [JV] x (Qo U Q'o)^ x (A^^fc+1-dlff W x [2])(?>,

^ - { ( ( * o , ( P i , • • • , P N ) ,

(io, (qu - . . , ÇJV)

€ Q x E x A* x Q :

there are words z\, . . . , Ziv ^ ^ * such that 2r = Zi0,

for every i G [iV], (pj, a, ^ j , <#) € ^ U ^-, and,

for every {ii , «2 } ^ ( '^ ' ) ;

e i t h e r a { i l ï i a } = a ;
{ i i ï i a } = 1 and z~l y{%^l2} zl2 = y } i l ( i 3 } 3

Ql = { («0, ( P l ? . . . , PAO: ( ( ^ Î
 a { ï i ,

for every i E [TV], ^ G Q/,» U Q / ^ and,

for every { n , i%] € {^ ' ) ,

{Pu, p ï 2 } ^ Qoif andonlyi f a{2i5,2} =^2},

for every i G [iV], g-i G QF. i U Q!F % a n ( i 0̂ is the minimal
vertex of the graph G — (V, E) having rank n

where V = {% G [JV] : ft G Qo} and

S = {{H, <2> € {'?') : (V^ . i , } ,^ , , . , } ) = (e, 1)}},
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6' = {(r, a, e, 5) G Q x E x {e} x Q : thereis

az G A* suchthat (r, a, e, 5) G £},

and

io = 1, for every i G [TV], « j

and all vertices of the graph G = (F, E) have rank

less than n where V = {i G [AT] : <& G Qo}

The NGSM MK works as desired. Thus, it is easy to establish formally that
MK realizes the transduction TK. In order to check that MK is unambiguous,
let us consider an arbitrary accepting path TT in this machine consuming
the word x G E*. Since the disjoint unions M\ ÙM{, . . . , M/v ÙM!

N are
unambiguous transducers, the second and third components of the states of
ir are uniquely determined by x. The first components of the states of TT
are uniquely determined by K and by the second and third components of
the terminal state of this path. Finally, since the NGSMs M\, . . . . Mjy are
single valued, the word x and the states of TV détermine the séquence of
words produced by the transitions of TT. In summary, the path TT is uniquely
determined by K and x. Hence, MK is a UGSM. In the same way it can be
seen that Mf

K is a UFA which recognizes LK.

Note that for each transition (r, a, z, s) of MK there is an integer io G [N]
and there are states p, q G Qo U QQ such that (p, a, 2, ç) is a transition of
Mi0ÙMf

îQ, Recalling the mapping ip : Qo -^ Q and the properties of the
machines Mi, . . . , Mj\r and M{, . . . , M'N this implies that either p9 q G Q'o
and z = e or p, g G Qo and (ifj (p), a, z, tjj (q)) is a transition of M . Having
this remark in mind it is straightforward to verify the upper bounds stated
in the following fact.

FACT 3.5: The following assertions on the machines MK and Mf
K are true.

(1) # Q is of order ö\l ).

(ii)im(5) Ç im(5) and diff (6) < iml(6) < iml(5).

(iü) ll^ll < ll̂ ll < (# S + ||«||) • # Q2 ató | |K | | < \\MK\\ < \\M\\ • (1 +
# Q 2 ) , Le., MK and M'K have size of order O (22poly(l |M|l+fc)).

Given a finite, undirected graph G having positive integers as vertices, its
connected components and the ranks of all of its vertices can be computed
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in deterministic time linear in the number of vertices and edges of this graph
{see Cormen, Leiserson, and Rivest [CLR90, Sect. 23]). Using this resuit and
Fact 3.5, it is easy to see that the machines MK and M' can be computed
inDTIME(22P°Iy(i |M|l+fc)).

This complètes the proof of Theorem 3.1. D

We now turn to the proof of Theorem 3.2. The proof will be by réduction to
Theorem 3.1. For this purpose we first of ail adopt (Weber [W93, Props. 4.5
and 4.4 (ii)]) and then follow the main Unes of the proof of (Weber [W93,
Thm. 4.1]).

PROPOSITION 3.6 (Weber [W93, Props. 4.5 and 4.4 (ii)]): Let M =
(Q, E, A, <5, Qj, Qp) be a finite-valued NFT with n states. Then, an
NGSM M' = (Q, S', A, «', Q7, QF), where E' = EÙ{a0}, effectively
exists such that the following assertions are true.

(i) |]M|| < IIM'II < ||M|| + n + 1.

(ii) The machines M and M1 have the same valuedness,

(iii) For any nonnegative integer m, for ail xi , . . . , xm G S, for ail
nonnegative integers Ai, . . . . Àm+i, and for any z G A* we have that if
(afrxi ...a$mxm%m+\ z)eT(M'),then(xi ...xm, z)eT(M).

(iv) For any nonnegative integer m, for ail #i , . . . , xm G S, for any
z G A*, and for ail integers Ai, . . . , Am+i > n - 1 we have that if
(xi . . . xm, z) G T{M), then (a^1 x\ , . . a^Xma^1, z) G T(Mf).

(v) The machine M1 can be computed in DTIME (poly||M||).

Proof of Theorem 3.2: Let M = (Q, S, A, 6, Q7, QF) be a k-
valued NFT with n states, where k is a positive integer. Let M^ =
(Q, E^1), A, 6^\ Qu QF) be the NGSM associated with M in
Proposition 3.6. From this proposition we obtain that E ^ = EÛ{ao}
and that M^ is a fc-valued NGSM of size O(||M||) which can be
computed in DTIME(poly||M||). Applying Theorem 3.1 to AfW we obtain
k UGSMs M { 1 } , ..'., M^ and UFAs M[2\ . . . , M^] such that T (M^)
equals T (M[1)) U. . . .UÎ 1 (Af^) and, for every K G [k], M^2) recognizes
(E(1))*\L (MP). Each of these new machines has size O (22P°ly (1|M(1)|!+fe))
and can be computed in DTIME (22P°ly{i|M(1)fl+fc)).

Let K G [*]. Consider the UGSM M^} = (Q$\ E^1), A, S^^Q^Q^J.

We associate with M^ the NFT MK - (Q« ,S , A, 6K, Q7iK, QF%K)
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by setting QK = Q^ x {0, . . . , n - 1}, Qj.K = Q{^K x {0}, QF,K =

SK = {((p, n - 1), a, z, (q, 0)) : a G S, (p, a, z, g) G 6^}

U {((p, j - 1), e, z, (g, j )) : 3 € [n - 1], (p, a0, 2, g) G

Consider next the UFA M^ = {Q^\ T,^\ A, 6?\ Q^K, Q(£K). We

associate with M^} the e-NFA M'K = ((&, S, A, S'K, Q'IK, Q'FK) by setting

4) < ^ > ̂
and

^' {((p, n - 1), o, e, (q, 0)) : a G S, (p, a, e, g) G <$P

f ((p, j - 1), e, e, (q, j)) : j G [n - 1], (p, a0; e, q) G $i2)}.

We observe that ||MK|| < n • \\MP\\ and HM |̂j < n • | |Mi2) | | .
Thus, the machines MK and ii^. are of size 0(22 P°y ). Given
Mil\ the NFT jQ^ can be computed in DTIME(poly{n + HM^^IJ)).
Given M^\ the e-NFA M'K can be computed in DTIME (poly (n +
\\MK II)). Therefore, the machines MK and M'K can be computed in
DTIME(22POly(l|M|l+fc>).

Proposition 3.6 and the définition of the machines M\, . . . , Mk and
M[, ..., M'k yield for ail xi , . . . , xm G S, z € A*, and K G [A;] that the
following assertions hold true.

• (x! ,..xm,z)eT(M)

if and only if (ajp1 xi . . . a ^ 1 xTO a^"1, Z ) É T

• (XI . . . xm , 2) GT(MK)

if and only if (a^1 xi . . . a^"1 xm < ~ a , z ) e T

• xi .,. xm G L (M'K)

if and only if (a^1 xx ... a ^ 1 xTO a ^ 1 ) G L
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From this follows that T(M) equals T(M\)U...UT(Mfc) and, for every
« G [fc], M£ recognizes E* \L(M«) . Moreover, for every K e [k]9 it is easy
to see that the machine MK (Mf

K) inherits from M^ * (Mk \ respectively)
the property of being unambiguous. D
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