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Abstract. — This is a study on the class of FIM(X)-languages and its important subfamily consisting
of inverse automata languages (i-languages). Both algebraic and combinatorial approaches are
used to obtain several results concerning closure operators on (X U X ~1)*-languages, including
a classification of FIM(X)-languages by i-languages. In particular, it is proved that the i-closure
of a recognizable (X U X ~1)*-language is at most deterministic context-free. Infinite trees are
an essential tool in this process, and they are also helpful in producing counterexamples for other
closure problems. Applications to X*-languages are also produced, involving particular classes
of codes.

Résumé. — Nous étudions la classe des langages dans FIM(X) et la sous-famille importante des
langages a automates inverses (i-langages). Les approches algébrique et combinatoire sont utilisées
pour obtenir plusieurs résultats concernant la fermeture par certains opérateurs des langages de
(X UX™1)* et entre autre une classification des langages des FIM{X) par les i-langages. En
particulier, il est prouvé que la i-fermeture des langages reconnaissables de (X U X~1)* est au
plus algébrique déterministe. Les arbres infinis sont un outil essentiel dans cette démarche et ils
sont aussi utiles pour produire des contre—exemples pour les autres propriétés de fermeture. Des
applications aux langages de X* sont aussi exhibées dont des clases particuliéres de codes.

1. INTRODUCTION

The first connections between inverse semigroup theory and automata
theory are due to the work of W. D. Munn [11], who developed a description
of the free inverse semigroup in terms of finite labelled trees which turned
out to be finite automata. Unfortunately, this innovative approach had no
immediate followers and purely algebraic methods dominated the theory of
inverse semigroups for years to come.
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350 P. V. SILVA

However, the work of J. B. Stephen [15] in the late eighties revived the
spirit of Munn’s work and boosted combinatorial inverse semigroup theory as
one of the fashionable subjects in algebra, attracting the interest of computer
scientists, group theorists, logicians and others. His work related the study
of presentations of inverse monoids to a certain class of automata called
inverse. These are trim deterministic automata on a dual alphabet of the
form X U X!, and must satisfy a duality condition on their edges. Inverse
graphs (underlying graphs of inverse automata) were already a major tool
in other areas of mathematics such as combinatorial group theory [13],
and inverse automata have now acquired great relevance in several other
domains as well.

Stephen’s techniques produced great developments in recent years and
many of them are due to the work of S. W. Margolis and J. C. Meakin
([6] to [10]). Their methods and results brought together semigroup theory,
automata theory, combinatorics and logic, and created a new interest for
inverse monoids inside computer science itself.

This new emphasis on combinatorial methods in the study of inverse
semigroups forced consideration of free inverse monoid languages, since the
language of an inverse automaton can be viewed as a free inverse monoid
language. This study examines free inverse monoid languages from an
automata theoretic point of view. We answer several standard questions
concerning this class of languages, and consider various decidability
questions. Some of the methods and results are related to previous work by
the author [14]. It is expected that free inverse monoid languages will have
applications to classical language theory, and we provide some evidence
for this assertion.

2. PRELIMINARIES

The reader is assumed to be familiar with elementary language and
automata theories, [1], [2] and [3] being standard references. In particular,
we assume some knowledge about RecM, the class of all recognizable
languages L C M, where M is an arbitrary monoid [1].

Let M be a monoid. A subset L C M is said to be an M-language. Given
an M -language L, the syntactic congruence of L is defined as follows: for
all u, v € M, u ~pv if and only if

Vz,y € M, zuy €L & zxvy€ L.
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We say that L € RecM is and only if M/~ is finite. Alternatively,
L € RecM if and only if there exists a homomorphism ¢ : M — N into a
finite monoid N such that L = L$¢~!. It is a well-known fact that RecM
is closed for the Boolean operators (union, intersection, complement).

The reader is also expected to know elementary concepts and results
regarding finite Y-automata and languages in Rec¥* [2], where ¥ denotes
a finite alphabet and ¥* denotes the free monoid on 3. Such concepts
and results should include determinism, trimness, the subset construction,
the construction of the minimal automaton, Kleene’s Theorem, etc. We
use the following notation for automata: a X-automaton is a quadruple
A = (Q, i T, E), where @ is a nonempty set, ¢ € @, T' C @Q and
E C Q x ¥ x ; the X-language recognized by A is denoted by L (A); for
every p € Q, we denote the X-language L (Q, p, T, E) by p~1 T.

Now we introduce the basic definitions concerning inverse monoids and
free inverse monoids. For further details, see [12], or [4] for general
semigroup theory.

A monoid M is said to be inverse if

Vue M, Jlve M :uvu =wandvuv = v.

We say then that v is the inverse of u and denote it by u~!. Alternatively,
M is inverse if and only if

Vue M, JveM:uvu=u
Ve, fe E(M), ef=fe

both hold, where E (M) denotes the set of idempotents of M. It follows
easily that, in an inverse monoid M, (uv)™! = v lu~! and (v 1)1 = u
for all u, v € M.

Let M be an inverse monoid. A subset N C M is said to be an inverse
submonoid of M if N is a submonoid of M and u~! € N for every u € N.
Now let L be an arbitrary subset of M and let L™} = {u~! : u € L}.
It is easy to see that (L U L™!)* is the smallest inverse submonoid of
M containing L. We say that (L U L™1)* is the inverse submonoid of M
generated by L and denote it by (L).

Two relations play an important role throughout this paper. The equivalence
relation R on M is defined by

wRv & wu t=wv L
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352 P. V. SILVA

The natural partial order of M is defined by

u<lv & u=uu" .

In fact, this can be shown to be equivalent to having u = egvi e1...vpep
for some eg, ..., ep € E(M) and v1, ..., vp € M such that vy ... v, = v.
It follows easily that

u<v, v <V = wl <o,
u<lv = u‘ISv_l.

Such facts will be used later with no further comment.

Now let X denote a finite alphabet. We associate to X a set of formal
inverses X! = {27! : 2 € X} disjoint from X. We extend the operator ~!
to (X U X~1)* inductively by defining (z~!)~! = z for every z € X and
by using the rule (uv)™! = v~1u~!. The free inverse monoid on X [12] is
defined as the quotient (X U X~1)*/p, where p denotes the congruence on
(X U X~ 1)* generated by the relation

{(wu™u, uw) : we (XUXHY
Yuu™) s u, v e (XUXTH*)
The congruence p is known as the Vagner congruence on (X U X~1)* and
we denote the free inverse monoid on X by FIM(X).

The projection homomorphism (X U X~ 1)* — FIM (X) : u + up is
denoted by 6. For technical reasons, we shall favour the use of u 6 instead
of up.

U{(uu Y ov™t, vo~

3. FIM(X)-LANGUAGES

Some results in this section are probably well-known but, since no
appropriate references could be found, we include full proofs for the
sake of completeness. It is essential to relate FIM(X)-languages to
(X U X~1)*-languages, and the next results establish the basic connections.

LemmMa 3.1: Let L C FIM(X). Then

L € RecFIM(X) & L67" € Rec(X U X71)*.

Proof: Suppose that L € RecFIM(X). Since recognizable languages are
closed under inverse homomorphism, it follows that L6~ € Rec(XUX ~1)*.
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Conversely, suppose that L#~! € Rec(X U X~ 1)*. Suppose that u,
v € (X U X1)* are such that u ~g-1 v. Then, for all a, b € (X U X~1)*,
we have (a6)(u8)(b0) € L < (aub)d € L & aub € L™ & avb €
LO™! & (avb)f € L < (a8)(v8)(bh) € L. Hence uf ~pv 0 and since
~r,9-1 has finite index, it follows that ~; has finite index as well. Thus
L € RecFIM(X).

Given P C (X U X~1)*, we say that P is p-closed if P is a union of
p-classes (equivalently, P = Pg§~1).

THeEOREM 3.2: Let P C (X U X~L)*. The following conditions are
equivalent :

() P = L6 for some L C FIM(X);
1) p Cp;
(iii) (XUX1)*/ ~pisinverse and (z ~p)~! = 27! ~p forevery z € X;
@iv) P is p-closed.
Moreover, if P € Rec(X UX~1)*, then L € RecFIM(X) in (i).

Proof: (i)=(ii). Suppose that P = L#~! for some L C FIM(X). Let
(u, v) € p. Then, for all a, b € (X U X~1)*, we have aub € P < aub €
Lo & (aub)d € L & (ab)(ud)(b8) € L & (a)(vh)(b6) € L «
avb € P. Hence u ~pv and p C~p.

(ii)=(i1). Suppose that p C~ p. Then we can define a surjective

homomorphism ¢ : FIM(X) — (X UX™1)*/ ~p by (up)¢ = u ~p
for u € (X UX~1)*. Since (X U X~ 1)*/ ~p is a homomorphic image of
an inverse monoid, it must be inverse as well [4], and for every z € X,
we have (¢ ~p)~! = [(zp) ]} = [(2p)V]é = (™ p) b = &) ~p.
Thus (iii) holds.
(iii)=>(iv). Suppose that (X U X~1)*/ ~p is inverse and (z ~p)~! =
z7! ~p for every x € X. Then (u ~p)™! = u™! ~p for every
u € (X U X~H* It follows that, for all u, v € (X U X~1)*, we have
(uwu™u) ~p = u ~p and (vu"vv7!) ~p = (vv~  uu~!) ~p and so every
~p-class is a union of p-classes. Since P is a union of ~p-classes, it follows
that P itself is a union of p-classes. Thus P = P 66~ and (iv) holds.

(iv)=>(i). Suppose that P = P#9~! Let L = P#. Then LO~! =
Pos~l = P.

The final remark follows from Lemma 3.1.
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354 P. V. SILVA

COROLLARY 3.3: Given P € Rec(X U X~ 1)*, it is decidable whether or
not P = L6 for some L € RecFIM(X).

Proof: By Theorem 3.2, we only need to decide if condition (iii) in
the theorem holds for P. Since (X U X~1)*/ ~p is finite and effectively
constructible, we can certainly decide whether or not (X U X~ 1)*/ ~p is
inverse and (z ~p)~! = z~! ~p for every z € X.

4. i-LANGUAGES

In the last few years, inverse automata have become a very useful tool in
inverse semigroup theory [15]. They are naturally related to F'I M (X) by the
Munn description [11], they play a major role in the study of presentations
[9], [14], and so languages recognized by these automata induce a subclass
of FIM(X)-languages important in its own right.

A trim deterministic (X U X~!)*-automaton A = (Q, 4, T, E) is said
to be inverse if

(p,z,9) €E® (g7, p)€E

holds for all p, ¢ € Q and z € X (duality of edges). If A is inverse, it
follows easily that L (A) is p-closed [15].

A language L C FIM(X) is said to be an i-language if L~ = L(A)
for some inverse (X U X ~!)*-automaton A. Sometimes we will refer to the
language of an inverse (X U X ~1)*-automaton as an i-language too.

Given a language L C F'IM (X), we say that L is closed if

VYVueL, VveFIM(X), v>u = wveEL,

and we say that L is elastic if
Va, b€ L, aa"'belL.

TueOREM 4.1: Let L C FIM(X). Then L is an i-language if and only if
L is closed and elastic. '

Proof: Suppose that L is an i-language. Then L6~ = L (A) for some
inverse (X U X~!)*-automaton A. Let w € L, v € FIM (X) be such
that v > u. Then v = wu"lv. Let ¥/ € vf~! and «/ € w6~ 1. Then
(w'v'"1v') 8 = uu"l v = u and so u'v'~1 v labels a successful path in A.

Since A is deterministic, u'u'~! must label exactly one path starting at the
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ON FREE INVERSE MONOID LANGUAGES 355

initial vertex. Since A has duality of edges, that path must necessarily be a
loop. Therefore v’ also labels a successful path in 4, so v’ € L (A) = L§~!
and v = v'§ € L. Thus L is closed.

Now suppose that ap, bp € L for some a, b € (X U X~1)*. Then
a, b € L(A). Since A has duality of edges, aa~! must label a loop at
the initial vertex in A and so aa™!b labels a successful path in A. Thus
(af)(af)~1(b0) € L and L is elastic.

Conversely, suppose that L is closed and elastic. Let P = L6~!. We intend
to show that the minimal automaton of P, denoted by A = (Q, ¢, T, E), is
inverse. Since A is minimal, A is certainly trim and deterministic and so we
only need to prove duality of edges. Let (p, z, q) € E, with p, ¢ € Q and
z € X UX™!. Since A is trim, there is a path in A of the form

iSpSgSteT.

Hence uzv € P, and since P = P86~ !, we have uzz 'zv € P. Since A
is deterministic, it follows that A has an edge (¢, z™!, r) for some r € Q.
We want to show that » = p. Since A is minimal, this is equivalent to
pIT = r~ 1T [2].

Let w € v~} T. Then uzz~'w € P and so (uzz~!w)p € L. Since
(uzz™lw) p = (uzz 'u"l) p(uw)p and L is closed, it follows that
(uw)p € L and so uw € P. Since A is deterministic, it follows that
w€p 'T and so r 1T C p~ I T

Conversely, let z € p_1 T. Then uz € P. Since uzv € P and L is
elastic, it follows that (uzvv™lz W luz)p € L. Now (uzz~'z)p >
(uzvv~r 27w uz) p and so (uzz~! 2) p € L, since L is closed. Therefore
uzz™!z € P and we must have z € 7~! T. Hence p~1 T C r~! T and so
71T = p~!T. Thus A is inverse and L is an i-language.

It follows from the previous proof that L C FIM (X) is a recognizable
i-language if and only if L §~1 is recognized by a finite inverse (X UX ~!)*-
automaton. We denote by ¢RecFIM (X) the class of all recognizable
i-languages of FIM (X).

For L C FIM (X), let

LY ={ve FIM(X):v>uforsomeu € L}.

It is immediate that L“ is the smallest closed FIM (X )-language
containing L.

THEOREM 4.2: RecFIM (X)) is the Boolean closure of iRecFIM (X).
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356 P. V. SILVA

Proof: Since iRecFIM (X) C RecFIM (X) and RecFIM (X) is closed
for the Boolean operations, it follows that RecFIM (X) contains the
Boolean closure of iRecFIM (X).

Conversely, let L € RecFIM (X). Then there exists a finite inverse
monoid M and a homomorphism ¢ : FIM(X) — M such that
L = Loo™t.

Let u € M. Obviously, u* ¢! € RecFIM (X). We are going to show
that u“ ¢! is an i-language.

Let v € u* ¢! and let w € FIM (X) be such that w > v. Then
wo > v > u and so w € u¥ ¢~ !. Hence u® ¢~ ! is closed. Now
suppose that a, b € u* ¢~!. Then a¢ > u and b > wu. It follows that
(aa™'b)¢ > wulu = u and so aa"lb € u® ¢~'. Therefore u® ¢! is
elastic and, by Theorem 4.1, an :-language.

Thus u” ¢~! € iRecFIM (X) for all w € M.

Now L = L¢¢_1 = UuGLqS u(b_l = UueLd) [u’w¢—1\Uv>u (Uw ¢_1)]'
Thus L belongs to the Boolean closure of iRecFIM (X) and the result
follows.

Now we are able to define the i-closure of a language L C FIM (X),
which we prove to be the smallest i-language containing L. Let

L=[( U wu”)* L)~
uel
Now we have

TueoreM 4.3: Let L C FIM (X). Then L is the smallest i-language
containing L.

Proof: By definition, T is closed. Now let a, b € L. Then there exist
ULy ---y Untls U1y ---5 Um41 € L with

a> (urull) ... (un upt) ung

and

b> (v197Y) ... (Um vY) Ut
Thus

aa b > (urulh) ... (un upt) tnt1 u;}_l (tn uy )

X .oox (wurH (v orh) .. (m v ) Umyr € L.
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Since L is closed, we have aa™! b € L and so L is elastic. By Theorem 3.1,
it follows that L is an ¢-language.

It is immediate that L C L.

Finally, let L’ be an i-language containing L. Since L C L', and L' is
elastic, it follows that

(U w ) LCL.
uel

Since L' is closed, it follows that L C L' and so L is in fact the smallest
1-language containing L.

Let Rx denote the subset of all reduced words of (X UX ~1)*. We denote
bu¢: (XUX™1)* — Ry the reduction map which assigns to every word u
in (X U X~ 1)* the corresponding reduced word wue. It is well-known that
Rx under the binary operation defined by (u, v) — (uv): constitutes a
description of F'G (X), the free group on X. This perspective of Rx should
be kept in mind. Note in particular that every (free) subgroup of F'G (X)
corresponds to a subset P C Ry which is closed under this binary operation
and formal inversion. This is the correspondence that should be kept in mind
when we refer to such a set P as a subgroup of Rx.

We denote by I' (X) the Cayley graph of F'G (X) with respect to the
generators X U X 1. Therefore Ry is the set of vertices of I'(X) and
(p, z, q) is an edge of T' (X), with p, ¢ € Rx, z € X U X1, if and only if
g = (px)¢. We fix 1 as the initial vertex. Since I' (X)) has duality of edges,
we can turn I' (X)) into an inverse automaton by assigning to it a set 1" of
terminal vertices: provided T is nonempty, our automaton will be trim, and
determinism follows in any case. Moreover, if we replace I (X') by one of
its nonempty connected subtress containing 1, say I', the result is still an
inverse automaton. This automaton will be denoted by (I", T"), T' denoting
a nonempty subset of vertices of I'.

For every u € (X U X~ 1)*, we denote by MT (u) (the Munn
tree of w), the finite connected subtree of I'(X) defined by the path
beginning at vertex 1 and having u« as its label. It is well-known that
{(MT (u), w) : w € (X U X"1)*}, under the product defined by
(MT (u), uw)(MT (v), ve) = (MT (uv), (uv)1), constitutes a description
of FIM (X) [11]; in fact, it solves the word problem for p, since

wp=vp & (MT (u), w)=(MT (v), v).
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Now we can define MT (w) and we for w € FIM (X) as being respectively
MT (u) and ue for some u € wf~ L. It is easy to see that, for all u,
v € FIM (X),

@) uRv & MT (v) = MT (v);

(i) v > v & MT (u) is a subtree of MT (v) and ur = v,

i) L((MT (u), ut)) = u® 671,

A word u € (XUX™1)* is said to be a Dyck word if ut = 1. We denote the
language consisting of all Dyck words of (X U X~1)* by Dx. The language
Dy is a well-known example of a context-free (X U X ~!)*-language (CFL)
[1]. It is easy to see that, given u € (X UX~!)* up € E[FIM (X)] if
and only if u € Dx.

Now for P C (X U X~1)*, we define a connected subtree MT (P) of
I'(X) to be the union of all subtrees of the form MT (u), with v € P.

Finally, for L C FIM (X), we define MT (L) to be the union of all
subtrees of the form MT (w), with w € L.

TheorREM 4.4: Let L C FIM (X) and let A = (MT (L), L,). Then A is
an inverse automaton and L(A) = L~ 1.

Proof: 1t follows from previous remarks that A is inverse. Suppose
that w € LO~'. Then w € L((MT (w), wt)) and so w € L(A). Thus
L' C L(A) and so L C [L(A)]6. Since [L(A)]f is an i-language
containing L, it follows from the previous result that L C [L (A)] 6 and so
L6~! C [L(A)]66~! = L(A).

Conversely, suppose that v € L(A). Since A = (MT(L), L.,
there exist wuj, ..., wp € L such that v is in the language of
(MT (u1) U ... U MT (upn), unt). But now v is in the language of
(MT (w1 ul_l e Un—1 u;11 Un), (w1 ul_l e Up—1 u;ll up)t) and so if
follows that v8 > uuy ... un—1u, ) Un. But uyull .. up—1u;t up €
T and so, since L is closed, we obtain vp € L. Thus v € L6~! and the
theorem holds.

We note that, despite being inverse, the automaton A = (MT (L), L) is
not necessarily minimal, any infinite recognizable F'IM (X )-language being
a counterexample.

THEOREM 4.5: Let L be a finite FIM (X)-language. Then
(1) L is recognizable,
(ii) L is finite;
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ON FREE INVERSE MONOID LANGUAGES 359

(iii) ming,_, = (MT (L), L.);

(iv) L is an i-language if and only if there exist an R-class R of FIM (X)
and F C R such that L = F“;

(V) if L = {u}, then L is an i-language if and only if u is reduced.

Proof: (i) For every n > 1, the subset I, = {u € FIM (X) : MT (u)
has at least n vertices} is an ideal of FIM (X). The corresponding Rees
congruence 7, on F'IM (X) has I,, as one of its congruence classes, all the
others being singular, and so F'TM (X)/y is finite. Since L is finite, we have
L C FIM (X)\I, for some m > 1. Let ¢ : FIM (X) — FIM (X)/Tm
denote the projection homomorphism. It follows that . = Lp¢~! and so
L € RecFIM (M).

(ii) We have L = [L (A)] 6, where A = (MT (L), Lt). It follows that L is
contained in the subset F' consisting of all u € FIM (X) such that MT (u)
is a subtree of MT (L). Since L is finite, then F' is finite and so L is finite.

(iii) We know that Z#~! = L (A), where A = (MT (L), Lt), therefore
we only need to prove that A is a minimal automaton. Since A is inverse, it
is certainly trim and deterministic. By a well-known algorithm [2], we only
need to show that p~! T # ¢~ ! T for all vertices p, ¢ of A with p # q.
Let p, g be vertices of A.

Suppose first that there exists u € (X U X ~1)* such that u labels a path,
say, from p, but u labels no path from g. Then vu~'v € p~! T for some
v € (XUXD* but uulv ¢ ¢~ T, since uu™!v cannot label a path
from g in A. Thus p~!T # ¢~ T.

Now suppose that paths from p and paths from ¢ produce exactly the same
labels. Let w be a reduced word labeling a path from p to g. We show by
induction that w™ labels a path from p for every n > 1. It is true for n = 1.
Now suppose that w™ labels a path from p. Then w" labels a path from ¢
and so w™T! labels a path from p. It follows by induction that w" labels a
path from p for every n > 1. We can write w = aca™! for some words a,
¢ with ¢ cyclically reduced, therefore ac™ a~! is a reduced word labeling a
path from p for every n > 1. Since MT (L) is a finite tree, the length of a
reduced word labeling a path in A is clearly bounded. It follows that ¢ = 1
and so w = 1 and p = ¢. Thus A is minimal.

(iv) Suppose first that L is an i-language. Then L = L = [L (A)] 6§, where
A = (MT (L), L¢). Since L is finite, there exist u, vi, ..., Um € L
such that MT(L) = MT(u) and L. = {vie, ..., vme}. It follows
that L(4) = Uy L(MT(L), v) = U2y L(MT (w), vi) =
Ur, L((MT (uwu=tv;), (wu=lw;)i)). Therefore L = [L(A)]6 =
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UR, (wu™ o) = (UR, wu™tv)*. Since MT (uutv;) = MT (u) for
i=1, ..., m, it follows that the uu~!v; are all R-related.

Conversely, suppose that there exist an R-class R of FIM (X) and
F C R such that L = F*. Since L is closed by hypothesis, we only need
to show that L is elastic. Let a, b € L. Then there exist ¢, d € F such that
a > cand b > d. It follows that aa™' b > cc™'d = dd~'d = d € F. Thus
aa"'b € F* = L and L is an i-language. ,

(v) Suppose that L = {u}. By (iv), {u} is an i-language if and only if
{u} = F* for some subset F of an R-class of FIM (X). But then we must
have | F'| = 1 and this yields F = {u} and {u} = u“. It is easy to see that
{u} = v if and only if u is reduced.

In general, L € RecFIM (X) does not imply L € RecFIM (X), as the
next example shows. We remark that Lt = L¢ for every L C FIM (X).

ExampLE 4.6: Let X = {z, y} and let L = (zp) U {yp). Obviously,
we have (zp)0~! = (zUz™1)* € Rec(X U X™1)* and so (zp) €
RecFIM (X). Similarly, (yp) € RecFIM (X). Since RecFIM (X)
is closed for union, it follows that L € RecFIM (X). We prove that
L ¢ RecFIM (X) by showing that ~+ does not have finite index.

Let m, k > 1 with m # k. Since L is elastic, we have (z™ p)(z™™y)p €
L. On the other hand, (z¥ 2™ y) . & Lt = L. and so (z* p)(z=™y) p & L.
Hence (2™ p) ~p # (z* p) ~z- It follows that FIM (X)/ ~f is infinite
and so L ¢ RecFIM (X).

5. CLOSURES FOR (X U X~ !)*.LANGUAGES

In this section we discuss the FIM (X)-languages P and P@ for
P € Rec(XUX™1)*. We shall be forced to consider far more general classes
of languages than recognizable. We say that L C FIM (X) is context-
free (deterministic context-free, context-sensitive) if L~! is context-free
(deterministic context-free, context-sensitive) [3]. Note that these definitions
are compatible with the concept of recognizability.

It is easy to see that P4 is recursive for every P € Rec (XUX ~1)*.In fact,
given u € FIM (X), we have u € P§ if and only if PN (uf~!) # @. Since
{u} € RecFIM (X) by Theorem 4.5, we have uf~! € Rec(X U X~1)*.
But Rec(X U X~1)* is closed for intersection, therefore P N (uf~1) €
Rec(X U X~ 1)* and we can certainly decide whether or not this is empty.
It follows that we can decide whether or not v € P8 and so P4 is recursive.
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However, P does not have to be context-free, as the next example shows.

ExampLE 5.1: Let X = {z} and let P = z*. We show that P# is not
a context-free FIM (X)-language, that is, P#H~! is not a context-free
(X U X~ 1)*-language.

Suppose that P9~ is a CFL. Since z* (z71)* 2* € Rec(X UX~1)* and
the intersection of a CFL with- a recognizable language is still a CFL [3], it
follows that Q = (P#6~1) N [z* (z~1)* 2*] is a context-free (X U X ~1)*-
language. Since P60~ is the union of the languages of all inverse automata
of the form

It Ser...cim1ocqgeT

for d > 1 (the dual edges are ommited), it is easy to see that @ =
{g™z™2* : m > n and k > n}. By the Pumping Lemma for CFLs [3],
there exists N > 1 such that, for every u € Q with |u| > N, there exist
a, v, w, z, b € (X U X~1)* satisfying

@® vz # 1

@ii) [vwz | < N;

(i) avwzb = wu;

@iv) av" wz" b € Q for every n > 0.

Take u = 27V = 2V € Q and let a, v, w, 2, b satisfy the Pumping Lemma
conditions. If ™! occurs in v or z, it is easy to see that av? wz?b ¢ Q,
contradiction. On the other hand, if z~! does not occur in either v or z,
then awb ¢ @, contradiction again. It follows that @) is not a CFL and so
P9~ is not a CFL either.

In this particular example, it is not dificult to show that P is
context-sensitive, since P#A~1 is the intersection of two context-free
(X U X~ 1)*-languages. Whether or not P# is always context-sensitive is
an open question.

The remaining part of this section is devoted to the study of P8, the
t-closure of P. We can provide positive answers but some technical work
is required.

For every P C (XUX~1)*, we define PP" to be the (X UX ~1)*-language
consisting of all prefixes of words in P. If P € Rec(X U X~1)*, then it is
easy to see that PP" € Rec(X U X ™1)* as well, just by allowing all vertices
in the minimal automaton of P to be terminal.

Given an (X U X ~1)*-automaton A = (Q, I, T, E), we define L; (A) to
be the language recognized by the (X U X ~!)*-automaton (Q, I, Q, E).
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The words in L; (A) are said to label initial paths in A. Obviously, it is
always true that [L (A)|P" C L; (A). If A is trim, then the reverse inclusion
holds as well.

Lemma 5.2: Let P, N be (X U X~ 1)*-languages. Then P§ = N if and
only if PP = NP"y, and P. = Nu.

Proof: Let @ be an (X U X~ 1)*-language. It follows from Theorem 4.4
that Q0 is fully determined by MT (Q) and Q. Since MT (Q) is a tree,
it is determined by its geodesics, where a geodesic means the shortest path
connecting the initial vertex 1 to a certain vertex. Since M T (Q) has duality
of edges, it is immediate that the set of labels of these geodesics is precisely
QP" ¢. Thus PP", = NP"y and P+ = N . together imply P8 = N§.

Conversely, suppose that P§ = NG. Let u € PP".. Then u = v for some
v € PP". Hence v labels an initial path in MT (P) and so in MT (P§) as
well. Since P = N8 and MT (N@) has duality of edges, it follows that
u = vt labels an initial path in MT (N@). Hence u labels an initial path
in MT (w; wit... wy wy' wny1) for some wy, ..., wpp1 € N, n > 0,
and we can assume that such n is minimal. Since w is reduced and n is
minimal, it follows that u must label an initial path in MT (wn+1) and
s0 u € (wn4+1)P"¢ € NP"¢. Thus PP". C NP7, Similarly, we show that
NP"y C PP"y and so PP"y = NP7y

On the other hand, it follows from the definition that (Q8)c = Q: for
every (X U X~ 1)*-language Q, hence Pt = (P). = (N6): = N. and the
lemma is proved.

Next we present a slightly stronger version of Lemma 2.4 of [9], usually
related to Benois’ Theorem [1].

LEmMMA 5.3: Let P € Rec(X U X™')* be nonempty. Then we can
effectively construct a finite deterministic (X U X ~')*-automaton A such
that L (A) = P. and L; (A) = PP"..

Proof: Let B = minp = (Q, 4, T, E). For all ¢, ¢ € Q, we denote by
Lgq the set of labels of all paths in B from ¢ to ¢’. We define

Ao = (Qo, 0, To, Eo),

where Qo = [Q x (X UX DU {i}, To =T x (X UX™!) (we add 4 if
Dx NP #@)and Ey = {((q, v), =, (¢, ) 1z, y € XUX"L y#271,
0,9 €Q, Loy N(z™ 1) #DYU{(io, z, (¢, 2)):z € XUX, ¢ €Q,
Lig N (z71) # @}
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It is a well-known fact that the Dyck language Dx = 1.~ is a CFL [1],
and so is zv~1 = DxzDx for every x € X U X!, Therefore it is always
decidable whether or not these languages intersect recognizable languages
such as P or Ly 4, with ¢, ¢ € Q [3]. It follows that A is an effectively
constructible finite (X U X ~!)*-automaton.

Let u € PP"y. Since 1 € L; (Ap) and 1 € PP"y trivially, we can assume
that u # 1. Then there exist z1,..., 2, € X U X! and ey, ..., en,
e, € Dx such that w = 1 ...z, and e1 T1 €2 . ..€n Ty €, labels an initial
path in B. Let

be an initial path in B. We show that

i0 3 (g1, 71) B (g2, 22) .. 5" (gne1, Zae1) 5 (gn, Zn)

is a path in Ag.
In fact, e;x1 € L;q vyields (ip, z1, (g1, 1)) € Ep. For every

Jj €{2,..., n—1}, we have that z; # x]__ll (since z7 ...z, is reduced)
and e; x; € Lq;_,,q;. It follows that ((gj—1, ©;-1), zj, (g5, z;)) € Ep for
every j € {2, ..., n — 1}. Similarly, we prove that ((gn—1, Tn—1), Zn,

(gn, zn)) € Ep and so u = 1 ...z, labels an initial path in Ag.
Therefore PP"y, C L;(Ap). Now, if w € P, with u = z1 ...z, just as
before, then we can assume that g, € T. But then (gn, zn) € Tp and so
u € L(Ap). Finally, if 1 € Pi, then Dx N P # & and so i9 € Tp and
1 € L(Ap). It follows that P C L (Ag).
Conversely, let u € L; (Ap). We can assume that u # 1, say u = 21 ... Zn,
with 1, ..., Z, € X UX~!. Then u must label a path in Ag of the form

i 3 (a1, ©1) B (g2, @2) -5 (g1, @nm1) 2 (g, T)-

It follows from the definition of Ey that z1 € L;g4 ¢ and that, for all
JE{2,...,n}z; # a:]__ll and z; € Lg,_, 4,¢ Denoting i by go, we can say
that there exist v1, ..., vn € (X U X~1)* such that, for all j € {1, ..., n},
vj € Lq,_,, q; and vjt = zj. Now v = vy ... vy labels a path in B from 7 = qo
to gn and ve = (v1...vp)t = (Vit... Ul = (T1... Tp)L = X1 ... Tp = .
Hence v = ve € PP"y and L; (Ao) C PP".. Thus L; (Ag) = PP"..

Now if u € L(Ap), with u = z7...xz, just as before, we can assume
that (gn, zn) € Tp, that is, g, € T. It follows that v labels a successful
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path in B and so u = v¢ € Py. Finally, if 1 € L (Ay), then 39 € Tp and so
Dx N P # . Therefore 1 = v for some v € P, that is, 1 € P.. It follows
that L (Ag) C P¢ and so L(Ap) = P..

Now let A denote the (X U X !)*-automaton obtained by applying the
subset construction [2] to Ap and deleting the state corresponding to the
empty subset of Qp. Of course A is deterministic and L (A) = P..

Suppose that u € L; (Ap). Then u labels a path in Ap from ip to some
state k& € Q. If follows that w labels a path in A from {4} to some state
K which, as a subset, contains k. Thus u € L; (4) and L; (Ag) C L; (A4).

Conversely, let u € L; (A), and we can assume that v # 1. Then there
is a path in A of the form

{isg} =Ko B3 K1 B3 Ky... 3K,

with 1, ..., zp, € XU X! and z1...2, = u. Let k, € K,. For
Jj = n, ..., 1, we can successively choose k;_; € K,;_1 such that
(kj—1, zj, kj) € Ep. Since ko must necessarily be i, we obtain a path

i():k()gkl i—z)kzl—gkn
in Ap and so u € L;(Ap). Thus L; (A) C L;(Ap) and so L;(A) =
L;(Ap) = PP..

In a similar spirit to Corollary 4.3 of [9], we can now obtain the next result.

THEOREM 5.4: Let P € Rec(X U X ~1)*. Then P9 is deterministic
context-free and (P8) 071 is effectively constructible.

Proof: We assume that P is nonempty. By our previous lemma, we
can effectively construct a finite deterministic (X U X ~!)*-automaton
A =(Q, i, T, E) such that L (A) = P. and L; (A) = PP".. For every
A € E, we denote by | A| the label of A.

We define a pushdown (X U X ~1)*-automaton [3] A’ = (Q, i, T, T, s, 6),
where I' = E U {s}, s € E and ¢ is described by the following transitions,
withz €e XUX 19, d €eQ; N\, pe E:

z: (q, 8)F (q', As) if A =(q, =, q')
z: (g p (@, ) ifA=(q 2 ¢)and|p|#z7?
z: (gt (d,1) if u=(qd, 27", q).
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Obviously, A’ is an effectively constructible pushdown (X U X ~1)*-
automaton. Since A is deterministic, it folﬁws that A’ is deterministic as
well, and we shall prove that L (A') = (P8)6~!.

We are going to successively prove a few remarks, where we assume
that t € XUX L u,ve (XUX ), e€Dx;q.¢d € Q;teT;
)\17 ey )‘n € Ea Y 7/7 ’Y” eI,

*
@fu:(is)k (g An...\18), then | A\p|...| M1 is a reduced word.

This follows from the definition of &, namely the constraint | x| # 27!
for transitions of the form z : (g, u) F (¢, Ap).

* * *
@) If (i, 8) & (¢, v) and w = (¢,7) = (¢',7'), thenwu™" + (¢,7) F (g,7).
By a simple induction, it is enough to consider u € X UX ~!. Suppose then

*

that (4, s) F (¢,7) and z : (q,7) F (¢, '), withz € XUX 1. Suppose first

that v/ = My with A € E. Then A = (¢, z, ¢') and so 2™} : (¢, A) - (g, 1).
*

Thus zz~% : (g, v) F (g, 7). Now suppose that v = uy', with u € E.

Then p = (¢, 271, q). Let 4/ = Ay, with A € T. By (i), it follows

that either A = s or A € E with |A| # |~ | = z. Therefore we have
*

“1: (¢, ) F (g, pX) and so zz™! : (g, 7) - (g, ). Thus (ii) holds.
(iii) L(A’') is p-closed.
Let a, b u, v € (XUX~ 1)* Suppose that aub € L(A’) Then we have
a: (1, 3)‘_(%’7)7 : (g,7)F(d,)andb : (¢, )I*(t 'y”)forsomeq,
g e€Q;teT;v, v,y E*P+.‘ It follows from (ii) that uu=' : (g,7) - (g,7)

and so uu"tw ¢ (g, ) F (¢, ¥). Therefore auu™! ub € L (A’). Suppose
now that auu™! ub € L(A’). Since A’ is deterministic, it follows from (ii)
that aub € L (A’). Similarly, we show that auu~'vv™'b € L(A’) if and
only if avv ™ uu~1b € L(A’) and so L(A’) is p-closed.

(iv) If u, v € L(A"), then wu~tv € L(4").

By (ii), we have uu™! : (3, s) F (4, s) and so uu~lv € L(A").

(v) If vp > up and u € L(A'), then v € L(4").

Ifvp > up, then up = (uu™1v) p. Since u € L (A4'), thenuu= v € L (4')
by (iii).

Similarly to previous cases, it follows from (ii) that v € L (A’).

(vi) If w is reduced, then u € [L (A")]P" if and only if u € L; (A).
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Letu=1x1...2p, With 21, ..., 2, € XU X1 We have u € L; (A) if
and only if there is a path in A of the form

. 7 Ty T
t=q —q —q... — qdn-

Since u is a reduced word, it follows from the definitions that this is
equivalent to u : (i, s) lt (gn, (gn-1, ZTn, qn)-.-(q0, z1, q1) 8), which
is equivalent to have u : (i, s) Ii (g, v) for some g and -~y. Finally,
this is equivalent to u € [L(A')]P", because if u : (4, s) . (g, ), then
wu~lv € L(A") for any v € L(4").

(vii) If w is reduced, then u € L (A’) if and only if u € L (A).

Similar to the previous proof, considering ¢, € 7.

Now we know from (iii), (iv) and (v) that L (A’) is an -language. It follows
that [L (A")]P"e = [L(A)]P" N Rx and [L(A’)]t = L(A") N Rx. On the
other hand, since L (A') is an i-language, L (A4') = (P@) #~! is equivalent to
[L(A")]6 = P6. By Lemma 5.2, we must prove that [L (A")]P"NRx = PP",
and L(A’) N Rx = P.. Since PP", = L;(A), it follows from (vi) that
[L(A))P" N Rx = PP"., and since P, = L (A), it follows from (vii) that
L(A)YNRx = P.. Thus [L(A")])6 = PO, L(A") = (P) 9! and (PF) is
deterministic context-free.

Naturally, one can raise the question of determining exactly which
(deterministic context-free) i-languages can be obtained as z-closures of
recognizable (X U X ~!)*-languages. It is useful to consider the following
lemma, though quite obvious.

LEMMA 5.5: Let a, b, ¢ € Rx, with b prefix of c. Then (ab) ¢ is a prefix
either of a or of (ac)t.

Proof: If a = o' b~} for some o’ € Ry, then (ab). = o’ is a prefix of a.
Otherwise, we have (ac)¢ = (ab)e - ¢/. where ¢’ € Ry is such that ¢ = bc.

THEOREM 5.6: Let P C (X UX™1)* be an i-language. Then P = (N§) 671
for some N € Rec(X U X~1)* if an only if PP" 1, PL € Rec(X U X™1)*
and PP", C (PF). for some finite subset F' of Rx.

Proof: Suppose that P = (N6)#~! with N € Rec(X U X~ 1)*. Since
P = (N6)6', we have PP", = NP", and P, = N. by Lemma 5.2.
By Lemma 5.3, we have NP"y, Nt € Rec(X U X~ !)*. Therefore PPy,
Pi. € Rec(XUX1)*. Let A= (Q, 3, T, E) denote the minimal automaton
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of N.Fix t € T. Since A is trim, we can fix a path a4 from ¢ to ¢ for every
g € Q, and we denote by w, the label of ay. Let F = {w;! : ¢ € Q}.

Let w € PP"y. Then u € N?"y, and so u = vt for some v € NP" It
follows that v labels a path in A from ¢ to some ¢ € (. But then vwyq
labels a path in A from ¢ to ¢ and so vwy € L(A) = N. It follows
that (vwg)t € N¢ = Pu and so (vwg)e = z¢ for some z € P. Now
w=w = (vwgwy ') = ((vwg) rw; ) e = (zewg ') = (zwg!) e € (PF)
and so PP’y C (PF)..

Conversely, suppose that PP" ,, P, € Rec(XUX™1)* and PP" . C (PF).
with F C Ry finite, say F' = {uy, ..., un}. We define

n

N=PLU (U [PLﬁ(Pp"u;‘I)L]uiuz-_l).

=1

Since P is an i-language, we have P = (N) ! if and only if P§ = N§.
By Lemma 5.2, we must have P. = Nt and PP", = NP7, Since P. = N,
is obviously true, we only need to prove the last equality.

Let v € PP"y, say v = v/, with v/ € PP". Since PP"y C (PF). =
(Pv- F)1, we have v = (pu;)¢ for some p € Py and 1 € {1, ..., n}.
Hence p = (vu;!)e = (v'u; )¢ and so p € Pon (PP"u; b).. It follows that
pu; € NP" and so v = (pu;)t € NP7 .. Thus PP", = NP7y,

Conversely, let v € NP",. Then v = we for some w € NP".

Suppose first that w € (P¢)?". Then w € Rx and so v = w. Hence
v € (Pu)P" C PP7y.

Now suppose that w ¢ (P.)P". Then w = pa for some p € PN
(PP"u7l), i € {1, ..., n}, and some prefix a of w;u;'. Moreover,
p = (qui-_l)b for some ¢ € PP" and so v = we = (pa)e = (quila) =
[(ge)(u] " a)dle. Since a is a prefix of w;u; ' and u; € Rx, then (u;'a)
is a prefix of uz-_l. By Lemma 5.5, it follows that v is a prefix of either
qe or (qr.u; 1. = p. In any case, we obtain v € (PP"4)P" C PP"y and so
NPTy C PPy Thus PP", = N?"; and so P = (N@) 0™}, proving the result.

For P C Ry, let Stab(P) = {u € Rx : (uP). = P}. It is immediate
that Stab (P) is a subgroup of Rx and Stab(P) C P.

TueorEM 5.7: Let P C (X U X~ 1) be an i-language. Then P €
Rec(X U X~Y* if and only if PP"+ = (HF) . for some subgroup H of
Stab (P.) and some finite subset F' of Rx.
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Proof: By Theorem 4.4, the language P is recognized by the inverse
(X U X~1)*-automaton A = (MT (P), P.). If we write A = (Q, 4, T, E),
we know that P € Rec(X U X ~1)* if and only if the set {¢™! T; ¢ € Q} is
finite [2]. We can assume that Q = PP".. If follows from the definition of
Athat ¢71T = L((MT (¢g7' P), (g1 P)1)) = ((g~1 P)8)8~1 for every
q € PP"y. Therefore, for all a, b € PPy, we have a~!T = b~ T if and
only if (a=1P)§ = (b=1P)9 if and only if (a=!P)P", = (b~1 P)P",
and (¢! P). = (b"!P)e. Since (¢7'P)P". = (¢~ ! PP"), for every
q € PPy, it follows that P € Rec(X U X~1)* if and only if the sets
{(@='PP") : a € PP".} and {(a"!P). : a € PP".} are both finite. We
show that this holds if and only if PP" ¢ = (HF') . for some subgroup H of
Stab (P¢) and some finite subset F' of Rx.

Suppose that PP", = (HF). for some subgroup H of Stab(P.) and
some finite subset F' of Ry, say F = {f1, ..., fau}. Every a € PP",
is of the form a = (hf;). for some h € H and ¢ € {1, ..., n}, and
we have (a™'P)¢ = (f7A"1P) = (f7'P). as well as (a1 PP") =
(f A1 PPy = (7 RV HF) = (f-L HF) = (£7) PP). Tt follows
that the sets {(a™! PP"). : a € PP".} and {(a~! P). : a € PP"4} have at
most n elements each and are therefore finite.

Conversely, suppose that {(a=! PP"), : a € PP".} and {(a™!P): :
a € PP/} are both finite. Suppose that {(a=!PP"). : a € PP"\} =

{(@ PP, ..., (a;,} PP")i}, with m > 1. Let G = Stab (PP" 1) C PP,
and let Fy = {a1, ..., am}. We show that PP", = (GFp)t.
Leta € PP"u. Then (a™! PP"). = (o]} PP"). for some i € {1, ..., m}. It

follows that (aa; ' PP") = PP", and so (aa; ). € G. Hence a € (Ga;). C
(GEp)e.

Conversely, let g € G and let i € {1, ..., m}. We have (g7 1PP"), =
PP’y and so (aj'g ™ PP") = (a7 'PP").. Since 1 € (a;'PP")i, then
1€ (a7t g7 PP"), and so (ga;)t € PP"s. If follows that (GFp). C PP
Thus (GFy)e = PPy,

Now let H = G N Stab (P.). Then H is a subgroup of Stab (P.) C Pu.
Since {(a™'P). : a € PP".} is finite, we have {(¢"!P). : g € G} =

{67 P)e, ..., (b5 P)} for some k > 1 and by, ..., bp € G. Let
Fy = {b1, ..., bx}. We show that G = (HFy).. Since H, F; C G,
it is immediate that (HF;). C G. Conversely, for every g € G, we
have (¢7!P) = (bj“1 P). for some j € {1, ..., k}. It follows that

(gb;1 P). = Pi and so (gb]-_l):, € Stab(P:). Since g, b; € G, we have
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(gb;")e € H and so g € (Hb;j)e C (HF)e. Thus G C (HF)e and so
G = (HF)..

Let F' = (Fy Fp)e. It follows that PP"y = (GFy), = (HF1 Fo)e = (HF)e.
Since F' is a finite subset of Rx, the theorem follows.

6. ALGEBRAIC OPERATORS

Unfortunately, RecFIM (X) is not closed for most algebraic operators
and so this section consists mainly of counterexamples. By Example 5.1,
we know that RecFIM (X) is not closed for the star operator, since
zp € RecFIM (X) and (zp)* ¢ RecFIM (X). Next, we show that
RecFIM (X) is not closed for product either.

ExampLE 6.1: Let X = {z, y}. We saw in Example 4.6 that (zp),
(yp) € RecFIM (X), in fact they even belong to iRecFIM (X). Let
L = (zp)yp). We prove that L & RecFIM (X) by showmg that ~,
does not have finite index.

Let m, k > 1, with m # k. Then ((yy~'z™)p)(z "y)p =
(z™z~™y)p € L. It is easy to check that, for every u € L, the
edges labelled by y in MT (u) must form a connected subtree. Hence
((yy~'z*) p)(™y) p & L, and so ((yy~ ' 2™) p) ~1 # ((yy™' «*) p) ~.
It follows that FIM (X)/ ~r is infinite and so L ¢ RecFIM (X). Thus
RecFIM (X) is not closed for product.

Next we show that RecFIM (X) is not closed for taking inverse
submonoids.

ExampLE 6.2: Let X = {z, y}. Since the set {zp, (zy)p, (zyy~!) p} is
finite, we have {zp, (zy)p, (zyy~') p} € RecFIM (X) by Theorem 4.5,
and it is not difficult to see that {zp, (zy) p, (zyy~?!) p} is also an i-language.
Let L = (zp, (zy)p, (xzyy~1)p). We prove that L ¢ RecFIM (X) by
showing that ~;, does not have finite index.

For all m, k > 1, with m # k, it follows easily that

m, —1

((yz™) )z ™y 'z ) p= (a7 mya™ ™"y a7 ) p e L.

It is easy to check that, if v € L and an edge labelled by y occurs in
MT (u), then it must occur in a subtree of the form

z Y
= =,
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Hence ((yz*) p)(z=™ y~ 2= )p ¢ L and so ((yz™) p) ~¢ # ((yz") p) ~z.
It follows that F'IM (X)/ ~ is infinite and so L & RecFIM (X). Thus
RecFIM (X) is not closed for taking inverse submonoids.

This example can be used to produce another counterexample concerning
homomorphic images.

ExampLE 6.3: Let X = {z, y}. Let ¢ : FIM(X) — FIM (X)
be the homomorphism defined by (zp)¢ = zp and (yp)d = (zy)p.
Let L = FIM(X) € RecFIM (X). We have L¢ = (zp, (zy)p) =
(zp, (zy) p, (xyy~!)p) and so Lo ¢ RecFIM (X) by Example 6.2.

Now we present some nontrivial algebraic closure properties from
RecFIM (X).

THEOREM 6.4: Let L € RecFIM (X). Then L¥ € RecFIM (X) and is
effectively constructible.

Proof: Let P = L~ and let A = (Q, i, T, E) be the minimal automaton
of P. Considering

E'=FEU{(q,1,q) : ¢, 4 € Q; Ly NDx # D},

we can define an (X U X ~!)*-automaton A’ = (Q, 4, T, E).

Of course, A’ is a finite constructible (X U X ~1)*-automaton. We show
that L(A') = L6771,

Let u € L(A’). Then there exist ui, ..., up € (X U X~ 1)* and
€y, .--, en € Dy such that uy...up, = w and eguje;...upe, € P.
It follows that w6 = (u1...un)0 > (epure1...unen) € P = L. Hence
uf € L¥. If follows that u € L*0~! and so L (A') C L¥ 6~ L.

Conversely, suppose that v € L“8~1. Then uf > vé for some v € L and
so there exist u, ..., un, € (X UX1)* and ey, ..., en € Dx such that
uy...up = u and (eguiey ... unen) 0 = vb. Therefore equier ... une, €
v~ ' C L' =Pandsou=wu...u, € L(A"). Hence L® §~! C L (A)
and so L¥6~! = L(A’). Thus L* € RecFIM (X).

Given L C FIM (X), it follows easily that there exists a smallest
closed inverse submonoid of FIM (X) containing L, precisely (L )“.
Closed inverse submonoids of FITM (X) are becoming important for both
combinatorial inverse semigroup theory and combinatorial group theory, and
the reader is referred to [7] for detailed information.
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Given an (X U X ~1)*-automaton A = (Q, i, T, E), z € X U X! and
edges (p, z, q), (p, =, ¢'), with ¢ # ¢/, we can form a new automaton
from A by identifying the vertices ¢ and ¢'. We say that this automaton is
obtained by folding our two original edges.

The next result can be derived from Lemma 3.6 and Theorem 3.7 in [7],
but we give a direct proof for completeness.

THEOREM 6.5: Let P € Rec(X U X~ 1)*. Then (PO)* € iRecFIM (X)
and is effectively constructible.

Proof: Let L = (P8)“. Let A = (Q, %, T, E) denote the minimal
automaton of P, with T = {t1, ..., tm}. Let Ag denote the (X U X ~1)*-
automaton obtained from A by identifying the vertices ¢, t1, ..., t, and let
Ay denote the (X U X ~1)*-automaton obtained from Ag by adding to every
edge (p, x, q), with z € X U X!, a dual edge (q, ™, p) (if necessary).
Let Az denote the (X U X ~1)*-automaton obtained from A; by successively
folding edges until no more folding can be carried out. In these constructions
the new automaton has always fewer vertices than the original and it will
follow from this proof that his operation is confluent. It is immediate that
Ay is a finite inverse automaton. We shall prove that LO~! = L (A42).

By construction, Ay has duality of edges and successive folding forces Ao
to be deterministic as well, therefore Aj is an inverse (X UX ~1)*-automaton.
Since L(A) C L(Ap) C L(A1) C L(Ay), it is obvious that P C L (A).
Since Ay has a single terminal vertex which is also the single initial vertex,
duality of edges yields P~! C L (Ay), followed by (P U P~1)* C L (A2).
This yields (P) = (P8 U (P§)~1)* C [L(A2)]8. Since Ay is inverse,
[L (A2)]0 is closed and so L = (P6)¥ C [L(A2)]6. Further, L (43) is
p-closed and so LO™1 C [L(A2)]007! = L(Ay).

To prove the converse inclusion, we shall proceed by steps, considering
successively L (Ao), L (A1) and L (A).

Of course, since P C L, we have L(A) = P C L~ 1. Let u € L (Ay).

Then we can write u = u; ... u, Where, for every 5 € {1, ..., n}, we have
uj € Lpgq in A for some p, g € {¢, t1, ..., tm}.
If u; € L3, for some k € {1, ..., m}, then u; € P and so u;6 € L.

If u; € L, then for any v € P we have ujv € P and so (ujvv=1)6 € L.
Since L is closed, it follows that u; @ € L.

If uj € Ly, ; for some k € {1, ..., m}, then for any v € L;; we
have vujv € P and so (v_l VU; vv‘l) @ € L. Since L is closed, it follows
that u;6 € L.
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If u; € Ly, ¢, for some k, L € {1, ..., m}, then for any v € L;;, we have
vuj € P and so (v™!vu;)0 € L. Since L is closed, it follows that u;f € L.

Therefore u1 8, ..., un @ € L and so (u1...u,)8 € L. Thus u € L1
and so L(A4p) C LO~1.

Note that, since A is trim, Ay is also trim. Now we will show that given a
trim (X U X~ !)*-automaton B’ = (Q', ¢, 7', E') such that L (B') C L8},
then any automaton B” obtained from B’ by adding a dual edge also satisfies
L(B") C LO~!. Since the new automaton B” is certainly trim, successive
application of this fact yields L (A1) C L6~!. Suppose that (¢, ™1, p'),
with z € X U X1, is the edge added to B’ to form B”. We show that
L (B") C L6~! by induction on the number of occurrences of the new edge
in a successful path of B”. If u is the label of a successful path « where
(¢’, 271, p') does not occur, then « is also a successful path in B’ and so
u € L. Now suppose that the labels of successful paths in B” with no
more than % occurrences of (¢/, ™!, p') all belong to L#~!. Let « denote
a path in B” with k + 1 occurrences of (¢’, 71, p'), and let u denote the
label of o. Then o must be a path of the form

P q/ w_‘_: pl Uz o
for some uj, us € (X U X™1)*. Since B’ is trim, there exists in B’ a
path of the form

¢ =7

Since (p', z, ¢') € E', it follows that w;vuz and wujvzvuz both
label successful paths in B” with no more than k occurrences of
(¢, 27, p'). By the induction hypothesis, we now have wujvug,
wivzvuy € LA™Y Hence [(u;' v~ ult) (wavzvus)(uy v~ ur )8 € L
and so [(uy ' v~ up turvug)(uy ! zul ) (ur vuguy ot ult)]@ € L. Since
L is closed, we must have (uy ! xul_l) 6 € L. It follows that v =
urxz Y uye LA™ and so, by induction, we obtain L (B") C L6, Thus
L(A]) - Lo 1,

Now suppose that B’ = (@', i, i, E') is an (X U X ~1)*-automaton with
duality of edges such that L (B’) C L#~!. We show that any automaton B”
obtained from B’ by folding two edges also satisfies L (B") C L. Since
the new automaton B” also has duality of edges, successive application of
this fact yields L (Az) C L1,

Suppose then that (p', z, ¢'), (¢/, z, r') € E', with z € X U X! and
¢ # 7', and let ‘B" be obtained from B’ by identifying ¢’ and r'. Let
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u € L (B"). Since B' has duality of edges, ™! z labels paths from ¢’ to
r’ and vice-versa. It follows that there exist ug, ..., Uy € (X UX —1)*
such that ug...un, = u and wpz 'zu;...z7'zu, € L(B'). Now
uf = (ug---un)@ > (woz ‘zuy ...z 'zu,)0 € L. Since L is closed,
it follows that u# € L and u € L6~!. Hence L (B") C LO~1. Successive
application of this fact yields L (42) C L6~! and so L (Ay) = Lé~1. Thus
(P0)” =L € i RecFIM (X) and the theorem is proved.

CoROLLARY 6.6: Let L € RecFIM (X). Then (L)* € iRecFIM (X).

Note that, even though RecFIM (X) is closed for closed inverse
submonoids, it is not so for the closed product (A, B) — (AB)“,
Example 6.1 being an adequate counterexample.

7. APPLICATIONS TO THE THEORY OF CODES

Some classes of submonoids of X* are closely related to free inverse
monoids, and some of these classes are becoming a popular topic in language
theory, particularly in the theory of codes. We intend to give evidence of
this and show how FIM (X)-languages can play a role on this area.

A languages P C X* is said to be a zigzag language if

w, v, vw€e€P = wwelP

for all w, v, w € X*. The next result can be derived from [5], but we
give a direct proof.

THEOREM 7.1: Let P be a submonoid of X*. Then the following conditions

are equivalent:
(1) P is a zigzag language;

() P = (P)6~ 1 n X*,

(iii) P = LI~ N X* for some inverse submonoid L of FIM (X).

Proof: (i)=>(ii). Suppose that P is a zigzag language. Then P C
(P#)6~1NX* is obvious and so we only need to prove the reverse inclusion.

Suppose that u € { P)6~' N X*. Then uf € ( PA) and so we must have
uf = (po ql—l [ .q;l pr) 0 for some p;, gj € P,n > 0. We can assume that

such n is minimal. Suppose thatn > 1. Letr € {po, ..., pn}U{q1, ..., qn}
have minimal length in this set. Since u € X*, we must have |po | > |q1 |,
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|pn| > |gn|, and so we can assume that one of the following conditions
holds:

(1) 7 = p; for some i € {1, ..., n—1};

(2) r = g; for some j € {1, ..., n}.

Suppose that (1) is verified. By minimality of | p; |, we have |p; | < |¢; |
and |p;| < |git1]. Since (Pogi p1...¢;'pn)0 = ub and u € X*, it
follows that MT (q; Lo qi__}_ll) is linear and so ¢; = p; a and ¢;41 = bp; for
some a, b € Rx. Thus bp;, p;, p;a € P. Since P is a zigzag language, it
follows that bp; a € P. But bp; a = (gi+1 p:1 gi)t, SO

(bpia)0 > (git1p; " @)6 and (a7 p; 670> (7 pigjiy) 0

Therefore we have
(PO ql_l ce e Pi-1 (a—lp;-'l b_l)pi_H .. -pn) 7]
> (pogr'pre gy pn) 0 = ub.

Since v € X*, it follows that

wd = (pogyt ... pic1 (@ p7 0™ ) pig1 .. pn) 6,

contradicting the minimality of n. If (2) is verified, a similar situation arises
and the minimality of n is again contradicted. Therefore n = 0 and so
uf = pod. Since u; pp € X*, this yields u = pp and so u € P. It follows
that (P)0~1NX* C Pandso P = (PAY0~!1n X*.

(ii)=(iii). Immediate.

(iii))=(). Suppose that P = L6~ N X* for some inverse submonoid
L of FIM(X). Let u, v, w € X* be such that uv, v, vw € P.
Then (uv) 6, vf, (vw)6 € L. Since L is an inverse submonoid, we have
v™10 € L and (uwv)f(v"10)(vw)d € L, that is, (uvw)f € L. Hence
wow € LA~ N X* = P and so P is a zigzag language.

Now we consider a particular class of FIM (X)-languages which allow
us to characterize all X*-languages which have an inverse syntactic monoid.

A language L C FIM (X) is said to be positive if

VzeX, JveX* : (z71p) ~ (vp).

If L is positive and u € (X U X~1)*, it follows easily that (up) ~(vp)
for some v € X*.
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TueorREM 7.2: Let P C X*. Then X*/ ~p is inverse if and only if
P = L6~' n X* for some positive L C FIM (X).

Proof: Suppose that X*/ ~p is inverse. Let ¢ : X* — X*/ ~p
denote the projection homomorphism and let § be the restriction of 6
to X*. Since X*/ ~p is inverse, ¢ induces a surjective homomorphism
¥ @ FIM(X) — X*/ ~p such that §p = ¢. Let L = Pp~! and let
z € X. Since X*/ ~p is inverse, we have (z¢)~! = v¢ for some v € X*.
Hence (27" p) 9 = (zp) ' ¢ = [(wp) Y] 7" = (24) ™" = vo = (vp) ¥.

Let a, b € FIM (X). Then we have a(z ' p)b € L & a(zp)b €
Pgypt & (a)[(z71p) Yl(by) € P & (ag){(vo) YI(bY) € P¢
a(vp)b € Popyp™! < a(vp)b € L and so (z71p) ~p(vp). Thus L is
positive.

Finally, let v € LO~1 N X*. Then uf € L = P¢tp~! and so uby € Po,
that is, u¢ € P¢. Since P is ~p-closed, it follows that v € P and so
L6711 N X* C P. Since the converse inclusion is obvious, it follows that
P = L7  nX*.

Conversely, suppose that P = L#~' N X* for some positive L C
FIM (X).Let ¢ : X* — FIM(X)/ ~, be the homomorphism defined by
u¢p = (up) ~r. Since L is positive, we know that for every z € X there
exists v € X* such that (z7! p) ~r = (vp) ~. If follows that (zp) ~r,
(z71p) ~ € X* ¢ for every z € X and so ¢ is surjective.

Let u, v € X* and suppose that u¢ = v¢. Then (up) ~(vp) and so, for
all a, b € X*, we have aub € P & aub € LO~! & (ap)(up)(bp) € L &
(ap)(vp)(bp) € L < avb € LO~! & avb € P. Thus Ker ¢ C~p and so
X* ~p is a homomorphic image of FIM (X)/ ~r, hence inverse.

If the conditions of the theorem hold, it is obvious that L €
RecFIM (X) = L67! € Rec(X U X71)* = L1 N X* € Rec(X U
X1 = P € Ree(XUX™1)* = P € RecX*. Conversely, if P € RecX*,
then P¢ is finite and so when we choose I = P¢ih~! we obtain
L € RecFIM (X). Therefore we have P € RecX* < L € RecFIM (X)
is L is defined as in the proof of the theorem.

We note hat being a zigzag (free) submonoid is not enough to secure an
inverse syntactical monoid, as the next example shows.

ExampLE 7.3: Let X = {z, y} and let P = {z, zy}*. It is easy to check
that P is a zigzag submonoid of X*. Moreover, a simple verification shows
that X*/ ~p is a regular monoid. However, idempotents in X*/ ~p do
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‘not commute (namely, (zy) ~p and z ~p) and so X*/ ~p is not an
inverse monoid.

A language P C X* is said to be a cross language if

ab,cd,cbe P = ade€eP

holds for all a, b, ¢, d € P. If P is also a submonoid of X*, it is said
to be a cross submonoid.

Let P be a cross submonoid of X*. If we consider the particular cases
c=d=1and a = b =1, we obtain the implications
ab,be P = ad€eP
cd,ceP = deP.

If follows that P is a free submonoid and the basis of P is a bifix code [1].

THEOREM 7.4: Let P be a submonoid of X*. Then the following conditions
are equivalent:

(i) P is a cross language;
(i) P = (P67 n X*;

(iii) P = L~ N X* for some closed inverse submonoid L of FIM (X).

@iv) P = G N X* for some subgroup G of Rx.

Proof: ()=(ii). Suppose that P is a cross language. Let u € ( P8 )~ 61N
X*. Then uf > (poql_lpl ...q; 1 pn)@ for some p;, gj € P,n >0, and we
can assume that such n is minimal. Let v = pogy 'p1 ... ¢7 ! pn.

Suppose that n» > 1. Since (po ql_1 PL... @7 pn)t = we = u € X*, one
of the following must necessarily happen:

(1) (pi—1 qi_1 pi)t € X* for some 7 € {1,..., n};

2) (q]-__l1 Pi—1 qj_l)b € (X1)* for some j € {2, ..., n}.

Suppose that (1) is verified. Then there exist a, b, ¢, d € X* such that
pi—1 = ab, ¢; = cb and p; = cd. Hence ab, cd, cb € P and since P is
a cross language, it follows that ad € P. Since ad = (pi—1¢; 1 D)L, we
have (poq; 1 R P 11 (ad) qi_-l-ll ...pp)t = vt = u and it follows easily that
uf > (pogy’ ... qi__l1 (ad) ‘11_4-11 ...pn )0, contradicting the minimality of n. If
(2) is verified, then we have (g; pj__ll gj—1)t € X* and we proceed similarly
to the previous case, contradicting again the choice of n. Therefore n = 0
and so v € P. Now we have uf > vf and u, v € X*, hence u = v and
u € P. Thus ( P)* =1 N X* C P. Since the converse inclusion is trivial,
it follows that P = ( P)*9~! n X*.
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(ii)=(i11). Immediate.

(iii)=>(@v). Suppose that P = LO~1 N X*, where L denotes a closed
inverse submonoid of FIM (X). Let G = Lv C Rx. Since L is an inverse
submonoid of FIM (X ), we have 1 € L and so 1 € L. Further, let u,
v € G. Then there exist v/, v' € L such that v = %'+ and v = v’+. Hence
(wv)e = (W' o' € Le = G and w™! = (v0)™! = o/~ € Le = G. Thus'
G is a subgroup of Rx.

Let v € P. Then u € X* and uf € L. If follows that u = w = (uf)¢ €
Li =G and so P C GnNnX*.

Conversely, suppose that w € G N X*. Then « = v'¢ for some v’ € L,
and so uf > u' € L. Since L is closed, it follows that u# € L and so
welfTNX*=P. ThusGNX*CPandso P=GnNX*

(iv)=-(1). Suppose that P = GN X*, where GG denotes a subgroup of Ry.
Let a, b, ¢, d € X* be such that ab, cd, cb € P. Since P C G, we have
b=l ¢! € G and it follows that ((ab)(b™! c¢™!)(cd))e € G, that is, ad € G.
Thus ad € GN X* = P and so P is a cross language.

CoroLLARY 7.5: Let P be a cross submonoid of X*. Then P € RecX* if
and only if (P0)“ € iRecFIM (X).

Proof: If P € RecX*, then P € Rec(X U X™1)* and so (P#)* €
iRecFIM (X) by Theorem 6.5.

Conversely, suppose that ( P)* € iRecFIM (X). Then ( P6)“67! €
Rec(X UX1)*. Since X* € Rec(X U X~1)*, it follows that ( P8)*6~1 N
X* € Rec(X UX™1)* and so P € Rec(X U X~ 1)* by Theorem 7.4. Since
P C X*, it is immediate that P € RecX*.

We denote by ECom the pseudovariety of all finite monoids with
commuting idempotents.

TueoreM 7.6: Let P € RecX™ be a cross submonoid. Then X*/ ~p €
ECom.

Proof: Let L = (PA) and let M = (X U X~"1)*/ ~pg-1. By
Theorem 3.2, M is an inverse monoid. Since P € RecX™, it follows from
Corollary 7.5 that L € iRecFIM (X). Therefore L&~ € Rec(X U X ~1)*
and so M is a finite inverse monoid. Let N = {u ~jyp-1; u € X*}.
Obviously, N is a submonoid of M. We define a mapping & : N — X*/ ~p
by u® = u ~p, for u € X*.
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To show that ® is well-defined, let u, v € X* be such that v~ , , =
U~,,_,- Let a, b € X*. Suppose that aub € P. Then aub € L6~ and so
avb € LO~1. Since avb € X*, it follows from Theorem 7.2 that avb € P.
Similarly, we show that avb € P implies aub € P, hence u ~p = v ~p

and ® is well-defined.

Now it is immediate that ® is a surjective homomorphism and so X*/ ~p
is the homomorphic image of a submonoid of the finite inverse monoid M.
Since M € ECom, if follows that X*/ ~p € ECom.

The syntactic monoid of a recognizable cross submonoid of X* does not
have to be inverse, as the next example shows.

ExampL 7.7: Let X = {z, y, z} and let P = {22, y, zyz}*. It is easy
to check that P is a cross submonoid of X*. However, a simple verification
shows that X*/ ~p is not regular (namely, (zy) ~p is not a regular element).
Therefore X* ~p is not an inverse monoid.
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