
INFORMATIQUE THÉORIQUE ET APPLICATIONS

PAOLA ALIMONTI

STEFANO LEONARDI

ALBERTO MARCHETTI-SPACCAMELA
Average case analysis of fully dynamic reachability
for directed graphs
Informatique théorique et applications, tome 30, no 4 (1996),
p. 305-318
<http://www.numdam.org/item?id=ITA_1996__30_4_305_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1996__30_4_305_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 30, n° 4, 1996, pp. 305-318)

AVERAGE CASE ANALYSIS OF FULLY DYNAMIC
REACHABILITY FOR DIRECTED GRAPHS t (*) (**)

by Paola ALIMONTI, Stefano LEONARDI and Alberto MARCHETTI-SPACCAMELA

Communicated by G. AUSIELLO

Abstract. - We consider the problem of maintaining the transitive closure in a directed graph
under edge insertions and deletions front the point of view of average case analysis. Say n the
number ofnodes and m the number ofedges. We present a data structure that supports the report of
a path between two nodes in O (n • log n) expected time and O (1) worst case time per update, and
reachability queries in 0 ( 1 ) expected time and O (n • log n) expected amortited time per update.
If m, > n 4 / 3 then reachability queries can be performed in O (1) expected time and O (log3 n)
expected amortized time per update. These bounds compare favorabiy with the best bounds known
us ing worst case analysis. Furthermore we consider an intermediate model between worst case
analysis and average case analysis: the semi-random adversary introduced in [3],

Résumé. - On considère le problème de préserver la fermeture transitive d'un graphe orienté
pendant l'insertion et l'élimination d'arêtes du point de vue de l'analyse du cas moyen. Soit n le
nombre de sommets et m le nombre d'arêtes. Nous introduisons une structure de donnée qui permet
de supporter soit la recherche d'un chemin ente deux sommets en temps moyen O (n - log n) et
en temps O (1) pour chaque mise à jour dans le cas pire, soit de requette concernent l'existence
d'un chemin entre deux sommets en temps moyen O (1) et en temps moyen amorti pour chaque
mise à jour. Les bornes précédentes deviennent O (1) et O (log3 n) respectivement dans le cas où
•m > n 4 / 3 . Les bornes obtenues sont meilleures vis-à-vis des bornes qu'on obtient dans l'analyse
du pire cas. Enfin on considère un modèle d'analyse au milieu entre l'analyse du cas moyen et
ranalyse du pire cas : l'adversaire « semi-random » introduit en [3).

(*) Received September 1995.
(**) Work supported by: the ESPRIT Basic Research Action No. 7141 (ALCOM II); the Italian

Project "Efficienza di Algoritmi e Progetto di Strutture Informative", Ministero dell'Université
e délia Ricerca Scientifica e Tecnologica; the Italian Project "Progetto Finalizzato Trasporti 2",
Consiglio Nazionale délie Ricerche, Italy.

(î) Preliminary version of this work in [2].
C) Dipartimento di Informatica e Sistemistica, Università di Roma "la Sapienza", Italy.

E-mail:{alimon, leon, alberto}@athena.dis.uniromal.it

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/96/04/$ 7.00/© AFCET-Gauthier-Villars



306 P. ALIMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA

1. INTRODUCTION

Significant progess has been recently made in the design of algorithms
and data structures for dynamic graphs [1, 5, 6, 8, 11-13, 16-21, 24]. These
data structures support insertions and deletions of edges and/or nodes in a
graph, in addition to several types of queries. The goal is to compute the
new solution in the modified graph without having to recompute it from
scratch. Usually, the séquence of insertions/deletions of edges is not known
in advance and each opération must be completed before the next opération
is known. If the data structure supports only insertions or only deletions then
it is said partially dynamic, while a data structure is said fully dynamic if it
supports both insertions and deletions.

The problem of dynamic maintenance of edge and vertex connected
components in undirected graphs has been widely studied. However for
directed graphs, the problem of maintaining the transitive closure appears
much more difficult than the problem of maintaining simple connectivity in
undirected graphs. Let n be the number of vertices and m be the number of
edges. Consider the partially dynamic problem in which insertion of edges
and connectivity queries for undirected graphs, and reachability queries for
directed graphs are allowed. The amortized time per opération is O (n) for
directed graphs, instead of O (a) for undirected graphs.

Then, for an arbitrary séquence of insertions and connectivity (for
undirected graphs) or reachability (for directed graphs) queries between
a pair of vertices, the update amortized time for directed graphs is O (n)
instead of O (a (n, n)) for undirected graphs [16, 19, 23]. If we consider
deletions of edges there are solutions for special classes of graphs such
as directed acyclic graphs [17]. The fully dynamic problem has also been
studied [11, 19, 21] but, to the best of our knowledge, no fully dynamic data
structure exists for gênerai directed graphs that, in the worst case, achieves
a bound of o (m) for reachability queries and update opérations. Conversely,
if we look to undirected graphs, the fully dynamic problem can be solved
in O{nll2) per opération [7].

In this work we deal with the problem of on-line maintaining the transitive
closure in a fully dynamic directed graph from the point of view of average
case analysis rather than worst case analysis. This kind of analysis has
been already applied to undirected graphs: in [20] a data structure that
supports fully dynamic opérations in O (log3 n) amortized expected time is
presented. The authors introduced the concept of stochastic graph process
to model the évolution of a random graph under a séquence of random

Informatique théorique et Applications/Theoretical Informaties and Applications



FULLY DYNAMIC REACHABILITY FOR DIRECTED GRAPHS 307

insertions/deletions of edges. We extend their approach to directed graphs
and we consider two different kinds of queries: d) report-path queries that
report a path between two nodes if it exists; b) reach queries that report the
information on reachability between two nodes.

We present algorithms and data structures that support the following
opérations:

• report-path queries in O (n • logn) expected time and O (1) worst case
time per update;

• reach queries in a dense graph (m > A * n • log n, with A constant) in
O (1) expected time and O (n • log n) expected amortized time per update;

• report-path queries in O (n1/2) expected time and O (1) worst case time
per update for a graph with m > n3/2;

• reach queries in O (1) expected time and O (log3 n) expected amortized
time per update, for a graph with m > n4/3 .

Our algorithms perform favorably with the best known algrithms for
Computing the transitive closure in random graphs [14, 15]. In fact Karp
proposed an algorithm for Computing the transitive closure of a sufficiently
dense directed graph (with m > A • n • log n, with A constant) in O (n)
expected time and linear space [14]. Notice that this algorithm answers only
connectivity queries but does not allow the report of a path.

Finally, we consider an intermediate case between worst case analysis
and average case analysis, the so-called semi-random graph model [3]. In
this model the starting graph and the séquence of insertions and deletions is
created by an adversary each of whose décisions is reversed with some small
probability p. Our data structure supports report path queries in O (n*log2 n)
for low reverse probability p — n""1/2.

The paper is organized as follows. In Section 2 we introducé the model
and we discuss some basic results from random graphs theory conceming
the model. In Section 3 fully dynamic algorithms and data structures are
given for report-path and reachability queries. In Section 4 the semi-random
digraph model is defined and discussed. Section 5 outlines conclusions and
présents open problems.

2. PRELIMINARIES

We first recall some standard notations. The model used for average case
analysis is the Standard random directed graph model [4]. Let D — (V, E)
be a directed graph with n = | V | nodes and m = \ E | edges. Let Dn^m be

vol. 30, n° 4, 1996



3 0 8 P. ALIMONTI, S. LEONARD!, A. MARCHETTI-SPACCAMELA

the set of all the directed graphs with n nodes and m edges in which all the
graphs have the same probability, and let Dn%p be the set of all the directed
graphs with n nodes, in which the edges are independently chosen to occur
with probability p. In order to analyze randomly changing undirected graphs
a stochastic graph process has been introduced [20]. We extend this notion
to capture randomly changing directed graphs:

DÉFINITION 2.1: A stochastic digraph process (sdp) on a set of vertices
V = {1, 2, . . . , n} is a Markov chain D* = {Dt}™ whose states are
directed graphs on V. The process starts with Do being some directed graph
on V.

Let D = (V, Et) be the state of a sdp at time t\ then we indicate by E$
all the possible edges not in Et.

DÉFINITION 2.2: A stochastic digraph process on V — {1. 2, . . . . n} is
called fair (fsdp) if

1. DQ is the empty graph.

2. There is a t\ > 0 such that V* < t i , Dt is obtained from A - i by an
addition of an edge uniformly at random among ail edges in E$ (up to t\,
an edge is added at each t < ti).

3. If Dt-i, t > <i, is a clique (empty graph) then Dt is obtained from
Dt-i by the deletion (addition) of a random edge; else

4. Dt is obtained from Dt-\ by either an addition of one new edge which
happens with probability 1/2 (and ail not existing edges are equiprobable),
or by the deletion of one existing edge which happens with probability 1/2
(and ail existing edges are equiprobable).

In the following we extend fondamental results of random graph theory
to directed graphs.

LEMMA 2.1: Let D* be a fsdp on {1, 2, . . . , n}. Let Dt = (V, Et), with
| V | = n and \Et\ = m, be the state of the process at time t, then Dt is
a random digraph from Dn^m.

Proof: By induction on the number of edges. D\ is a random digraph from
I}n,iï since it is obtained from the empty graph Do by randomly inserting
an edge chosen with probability (n * (n — l ) ) " 1 among all possible edges.
Assume that A - i is a random digraph obtained from Dnj-\ through the
insertion of an edge uniformly chosen at random among all edges in E^_x.
Since | E^_x \ — n • (n - 1) - (t - 1), every edge in Ef_x is chosen with

Informatique théorique et Applications/Theoretical Informaties and Applications



FULLY DYNAMIC REACHABILITY FOR DIRECTED GRAPHS 309

probability (n • (n — 1) — (t — l ) ) " 1 . Furthermore, any digraph with t edges
can be obtained from t different graphs with t — l edges. Since every digraph
is equiprobable in Dt-i> the probability of a given digraph in Dt is

that is the probability of any digraph in Dn^.

In the case of deletion, assume \Et\ = m and | Ek-\ | = m + 1 . We prove,
again by induction that Dt is a random digraph from Dn^n, Suppose that
Dt-i is a random digraph from Z?n,m+i- A digraph with m edges can be
obtained from n * (n — 1) — m digraphs with m + 1 edges by deleting one

edge. Any digraph from Dn^m+\ has probability f n'f£+i ) to occur, and

every edge in a digraph from Dt-i is deleted with probability (m + l ) " 1 .
Then, the probability of any digraph in Dt is

\ m + 1 /
(n - (n - 1) - m)

m + 1 \ m

that is the probability of any digraph in Dn%m. D

In this paper we are mainly concerned with reachability, which is a
monotone property (Le. a property maintained while new edges are inserted).
Next lemma extends to random directed graphs a resuit given in [4] for
random graphs. The proof is omitted.

LEMMA 2.2: Ifa monotone property holdsfor the model Dn%m then it also
holds for the corresponding model DnjP, with p ~ ~.

The following lemma, by Karp [14], shows that certain known results
about random graphs obtained through any standard sequential algorithms,
such as breadth-first search or depth-first search,xan be directly converted
to results on random digraphs.

LEMMA 2.3: Let G be drawnfrom GUjP and D be drawnfrom Dn%p. Then
the random variables representing the number of vertices in the connected
component of G containing vertex 1 and the number of vertices reachable
from vertex 1 in D are identically distributed.

Next result is a well known fondamental theorem proved by Erdös and
Rényi [10] (see also [4]).

vol. 30, n° 4, 1996



310 P. ALIMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA

LEMMA 2.4: Let c G R be fixed, and p = l o g + c
n

+ o ( 1 ) . Then

Prob (G^pis connected) —• e~e \

If c is not constant then from [4] the following bound is derived.

LEMMA 2.5: Let p = A * -^p and A > 1 is an appropriate constant. Then

Prob (GnjP is not connected) < n~ + 1 .

/ - Letp - iog^+c+o(i) w i t h c = ^ . i j j o g ^ T h e r l 5 f r o m l e m m a 2.4,

Prob {Gn,p is connected) > e"6"^"^ - e-e~^-^^ > x _ n - ( A - i ) t

Hence the probability that Prob (Gn^p is not connected) < n~^~1\ D

Using the previous lemma, we are able to extend the resuit on threshold
connectivity from random graphs to random directed graphs.

LEMMA 2.6: Let D be drawn from Dn#. If p > A • ^ p , with A > 2
appropriate constant, then the digraph D is almost surely strongly connected
with probability greater than 1 — n~ A + 2 .

Proof: Let p = A • ̂ * By lemmas 2.3 and 2.5 we have:

Prob (vertex 1 does not reach ail vertices in Dn^v)

= Prob (GniP is not connected) < n~ A + 1

Therefore

Prob (DUip is strongly connected)

= 1 — Prob (3 a vertex that does
not reach ail vertices) > 1 — n~ A + 2 . D

Finally, observe that the following property holds for the expected degree
of a node: the expected number of edges leaving or entering a node is ^ .

3. FULLY DYNAMIC DIRECTED GRAPHS CONNECTIVITY

In this paper we consider two kinds of opérations on directed graphs:
updates and queries. Namely we have:

• report-path (i, j): returns a path from node i to node j if such a path
exists;

• reach (i, j): returns the information on reachability from node i to
node j ;

Informatique théorique et Applications/Theoretical Informaties and Applications



FULLY DYNAMIC REACHABIUTY FOR DIRECTED GRAPHS 3 1 1

• insert: inserts a random edge;

• delete: deletes a random edge.

Now we introducé a data structure that allows to perforai efficient
reachability queries while edges are inserted and deleted. The underlying idea
is to perforai reachability queries in a subgraph randomly drawn from the
original graph. Namely, we randomly extract a subgraph DK = (VK, EK)
from the digraph D = (V, i?), where:

• VK is a set of k = - • logn independent nodes VK — {^i, • - -, ^fc},
randomly chosen from V = {1, . . . , n}, where p = ^J and c is an
appropriate constant (see Section 3.1);

• EK = {(g} h) £ E : g, he VK}.

We refer to the graph DK = (YR, EK) as the black graph, and we will
use it in place of the original graph D to perform connectivity queries.
Furthermore we call the set of vertices VK, the set of edges EK, and. the
set of remaining vertices V — VK> the sets of black nodes, black edges, and
white nodes respectively.

Finally we associate to each white node i £ V — VK :

• a double linked list Li = {(i, g) € E — EK \ g G VK} of outgoing edges
whose ending node is black;

• a double linked list Ei = {(#, i) G E — EK | 9 G VK} of entering edges
whose starting node is black.

With each edge we associate a pointer to the relative position in a list.

The time complexity of building the data structure is O (m), and it takes
O(m) space.

In the following of this section we will study the expected time complexity
of a fully dynamic algorithm for report-path queries, and the expected time
complexity of a fully dynamic algorithm for reach queries.

3.1. Report-path query

The algorithm for report-path query first looks for a path formed only by
edges in the black graph DK possibly except the first and the last edge.

Let us first consider the case in which i and j are white nodes. If both
Li and Ej are not empty, then let (i, g) be an edge in Li and (/i, j) be an
edge in EJ: the algorithm searches for a path P from g to h in DK, and,
if P exists, it returns the path ( (i, <?), P, (hy j ) ) . If either Li is empty,
or Ej is empty, or there is no path from g to h in DK, then the algorithm

vol. 30, n° 4, 1996



3 1 2 P. ALIMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA

searches the whole graph for a path from i to j . We will show that the last
case happens with very low probability. The other cases are analogous with
the following exceptions: if i is black then a path in DR starting from i is
searched; if j is black then a path in DK arriving in j is searched.

To study the expected computational cost for report-path query we need
the following preliminary lemmas.

LEMMA 3.1: Let ïbe a white node. The probability that either Ei or L{ is
empty is smaller than 2 • n~c.

Proof: Consider the set E^ The probability that Ei is empty is equal to
the probability that does not exist any edge from i to a black node, that is

Since k — | • log n, follows that Ei is empty with probability smaller than
e-c.logn = n - c T h e s a m e h o l d s for L . D

Furthermore, we must ensure that with high probability there exists a path
between any pair of black nodes.

LEMMA 3.2: If c > A then the graph DR is strongly connectée with
probability greater than 1 — n ~*~2.

Proof: By lemma 2.6 it is sufficient to show that pj(, the edge probability
of Dj{ satisfies pjç > A • -̂f—, where it is easy to show that PK = P-> the
edge probability in D. The inequality is satisfied for k > A • -^—. Since we
choose k — ~ - logn, we must take c > A. m

Then, the following lemma gives the computational cost for report-path
query.

LEMMA 3.3: Ifc>A>4 then the expected cost for report-path query in a
directed graph with m > A • n • log n edges is O f ~ • log n J.

Proof: We say A the event "the algorithm searches the whole graph". The
expected cost x of a query can be bounded as follows:

E[x]<E [x h A] + E[x\A]- P r o b (A).

E [x \^A] is O ( ^ • (log2 n) ] . In fact in this case the running time of the
algorithm is dominated by the expected number of edges in D%. The average

Informatique théorique et Applications/Theoretical Informaties and Applications



FULLY DYNAMIC REACHABILITY FOR DIRECTED GRAPHS 313

degree of a node in DK is p • n • ̂  — p • k. Hence, the average number of

edges in DK is O (k2 • p), that is O (^ • (log2 n)j, since p - $ .

On the other side by lemmas 3.1 and 3.2 Prob(^4) < n~ A + 2 + 2 - n~c;
moreover in this case the running time of the algorithm is O (m). Hence if
c > A > 4 we have E [x \ A] • Prob (A) = O (1). D

The data structure must be updated while edges are inserted and deleted.
If an edge whose extreme nodes are both black is inserted or deleted then
the edge is inserted or deleted in the black graph Dj{. If and edge from
a white note i to a black node is inserted then the edge is inserted in Li,
vice-versa if the edge is deleted, it is deleted from Li. Analogously for an
insertion or a deletion of an edge from a black node to a white node. All
these updates are performed in constant time since we use doubled linked
list and we maintain a pointer from any edge to its position in a list.

Furthermore, the structure must be rebuilt when the number of edges is
either excessively increased or decreased. In the former case, by choosing
a smaller number of black nodes, a lower query time is possible, while in
the latter case the structure no longer satisfies the requirements stated in
Lemmas 3.1 and 3.2.

Now let m* be the number of edges in the graph when the structure is
built. The same structure is used until m is within a range between ^ and
2 -m*. To satisfy the condition stated by Lemma 3.1, we take k = 2 • | *logn,
and we rebuild the data structure from scratch when m is outside the range.
Since the structure is used for at least O (m) updates, and the cost to build
the data structure is O(m)^ the amortized cost per update is 0 (1 ) . This
amortized bound can be made worst case by using the following device.
When the data structure for a given m is used for the first time, we also
start to construct the data structure for both y and 2 m. This is done only
a part for each step, and reflecting insertions/deletions of edges. When the
number of edges reaches either y or 2 m, the appropriate data structure has
been already built and can be used. The other one is now discarded.

Then we can state the following theorem:

THEOREM 3.4: There exists a data structure such that the expected cost for
report-path query in a directed graph with m > A • n • logn is O (n • logn), and
that can be updated in 0(1) worst case time for each insertion or deletion.

Since our analysis applies only to graphs with number of edges greater
than A • n • log n, the expected computational cost for report-path query is

vol. 30, n° 4, 1996



314 P. ALÏMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA

O {n - log n). Clearly, also for m < A • n • log n the computational cost for
a report-path query is O (n - log n).

COROLLARY 3.5: There exists a data structure such that the expected cost
for report-path query in a directed graph is O (n • log n), and that can be
updated in 0 (1) worst case time for each insertion or deletion.

Notice that for a directed graph with number of edges m > n3/2 the
expected computational cost for report-path query is O(nll2).

3.2. Connect query

In the following of this section we present an algorithm to perforant
reach queries between any pair of nodes in a dense directed graph {Le.
m > À • n • log n). In this case the report of a path that connects the pair
of nodes is no longer required.

Our algorithm is based on an algorithm performing the transitive closure
in dense directed graphs in O (n) expected time, given by Karp [14]. The
transitive closure is represented in a compact form with O (n) expected space
requirement. This data structure allows reach queries in 0 (1) expected time,
but, it does not support report-path queries.

The data structure is a slight modification of the data structure for report-
path query; namely by representing in compact from the transitive closure of
the black graph DK • The algorithm proposed for report-path queries is then
modified for reach queries in this way: instead of visiting DK, check in its
transitive closure, with 0 (1) expected time. The query reach (i, j) returns
yes if there exists a path from node % to node j in DK possibly except the
first and the last edge, otherwise it searches the whole graph D.

As we have shown in the previous section this is very unlikely to happen
if c and À are large enough.

A straightforward analysis of this algorithm gives the following resuit:

LEMMA 3.6: If c > A > 4 then the expected cost for reach query in a
directed graph with m > A • n * log n is O (1).

Next, we consider the expected cost for updating the data structure when
edges are inserted or deleted. The main problem concerns updates that modify
the black graph DK- In fact the transitive closure of the black graph must
be updated and we are forced to rebuild it from scratch.

Informatique théorique et Applications/Theoretical Informaties and Applications



FULLY DYNAMIC REACHABIUTY FOR DIRECTED GRAPHS 315

LEMMA 3.7: The amortized expected cost to update the data structure for
each insertion or deletion is O f —^ • log3 n J.

Proof: Since the probability that a random edge is black is ^-, and the
expected cost for Computing the transitive closure is O(k)y then the expected
computational cost for Computing from scratch the transitive closure after any
insertion or deletion i s O f ^ J = O (^ • log3 n). Moreover the amortized
cost per update is 0(1) since the data structure is used for at least O (m)
insertions or deletions and the cost to re-build it from scratch is O (m).

LEMMA 3.8: There exists a data structure such that the expected cost per
reach query in a directed graph with m > A-n *logn is 0(1) , and that can be
update in O (n • log n) amortized expected time for each insertion or deletion.

For a directed graph with m > n4/3 we state the following corollary.

COROLLARY 3.9: There exists a data structure such that the expected cost per
reach query in a directed graph with m > n4/3 edges is O (1), and that can be
update in O (log3 n) amortized expected time for each insertion or deletion.

4. SEMI-RANDOM DIRECTED GRAPHS

In this section we consider the problem of performing efficient connectivity
queries in a semi-random graph. In this case we consider an intermediate
model bet ween worst case analysis and average case analysis.

In the semi-random graph model each décision about the graph is not taken
by a worst case adversary, but by an adversary each of whose décisions is
reversed with small probability p. This type of adversary is derived from
the semi-random source of Santha and Vazirani [22] and has been applied to
approximate coloring of 3-chromatic graphs by Avrim Blum [3].

The décisions of the adversary regarding whether or not to include an
edge in the starting graph, and the inclusion of any insertion or deletion of
an edge in the séquence of updates, are accepted with probability 1 — p and
rejected with probability p by the algorithm.

Notice that if the adversary would propose the repeated deletion of an
edge, after a certain number of trials the probability that an edge is in the
graph would be negligible. Then, the deletion (insertion) of an edge can
be repeated only after the re-insertion (re-deletion) of the same edge. The
insertion of an edge already existing or the deletion of an edge not existing
does not modify the graph at all.

vol. 30, n° 4, 1996



3 1 6 P. ALIMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA

The semi-random graph generated by the previous procedure has the
following property:

LEMMA 4.1: Each edge has probability greater thon p — p2 to appear in
a graph created by an adversary each of whose décisions is reversed with
probability p,

Proof: The property holds for the starting graph since each edge included
by the adversary is in the graph with probability 1 — p, and each edge
not included by the adversary is in the graph with probability p. Moreover,
insertions and deletions of the same edge are alternate in the séquence of
updates given by the adversary. The probability that an edge appears in the
graph after the ith deletion is Pi — p- ((1 -p) +p-Pi-i), where p- (1 -p) is
the probability that an edge is in the graph after the ith deletion if the i - lth

deletion successes, while p2 • P%-\ is the probability that the edge is in the
graph after the ith deletion if the (i — l)th insertion fails. Pi = p • (1 — p) if
the edge is in the starting graph, and P\ — p if the edge is not in the starting
graph assuming that the adversary has imposed a deletion to exclude the edge
from the starting graph. It can be shown by induction that the probability that
each edge appears in the graph is p for an edge not included in the starting
graph and p * (1 — p1) with i > 1 for an edge included in the starting graph.

The above lemma states that we can always consider the présence of a
random directed graph Dn^_p2 overlapping the semi-random graph.

The présence of a random directed graph hidden in the semi-random
directed graph can be used to apply the same data structure developed
in Section 3.1 for report-path queries. In particular we randomly choose
k — —7-2 • log n nodes to build the data structure where the constant c is
large enough to satisfy lemmas 3.1 and 3.2. Observe that the number of
edges in a semi-random directed graph is O {p • n2 ) with exponentially low
probability.

Report-path queries in semi-random directed graphs are performed by the
same algorithm given in Section 3.1, and the expected computational cost
of a query is given by the number of edges in the black graph, that is
O (k2) in the worst case.

THEOREM 4.2: There exists a data structure such that the expected
computational cost for report-path query in a semi-random directed graph
is (

Informatique théorique et Applications/Theoretical Informaties and Applications



FULLY DYNAMIC REACHABILITY FOR DIRECTED GRAPHS 317

Notice that for low reverse probability such as p = n~2 [3] the expected
computational cost for report-path query is O (n •. log2 n).

With regard to the update of the structure, observe that this is built only
once since the set of k nodes randomly chosen dépends only on the initial
choice of p. Then the cost for building the structure can be considered as
preprocessing, while the structure can be update in 0 (1) worst case time
bound for each insertion or deletion.

The data structure for reach queries given in Section 3.2 does not easily
extend to semi-random directed graphs since the algorithm given in [14] for
Computing the transitive closure in random directed graphs does not apply
to semi-random directed graphs.

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have shown efficiënt solutions for answering reachability
queries in stochastic random digraphs. The obvious open problem is to
reduce the time requirements for reachability queries in the case of graphs
with m < n4/3. In particular, it would be interesting to show whether
reachability in a stochastic digraph process can be dynamically solved in
polylogarithmic time.

Another interesting open problem is to investigate the complexity of the
shortest path problem in a stochastic digraph process.

ACKNOWLEDGMENTS

We thank an anonymous référée for useful suggestions.

REFERENCES

1. G. AusiELLo, G. F. ITALIANO, A. MARCHETTI-SPACCAMELA and U. NANNI, Incrémental
algorithms for minimal length paths, J. ofAlgorithms, 1991, 72, pp. 615-638.

2. P. ALIMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA and X. MESSEGUER, Average Case
Analysis of Fully Dynamic Connectivity for Directed Graphs, Proc. 19îh Workshop
on Graph-Theoretic Concepts in Computer Science, LNCS, Springer-Verlag, 1993.

3. A. BLUM, Some tools for approximate 3-coloring, Proc. 31st IEEE Symp. on
Foundations of Computer Science, 1990.

4. B. BOLLOBAS, Random graphs, Academie Press, 1985.
5. G. Di BATTISTA and R. TAMASSIA, Incrémental planarity testing", Proc. 30th Annual

Symp. on Fundations of Computer Science, 1989.

vol. 30, n° 4, 1996



318 P. AUMONTI, S. LEONARDI, A. MARCHETTI-SPACCAMELA

6. G. Di BATTISTA and R. TAMASSIA, On-line graph algorithms with SPQR-trees, Proc.
17th Int. Coll. on Automata, Languages and Programming, LNCS, Springer-Verlag,
1990.

7. D. EPPSTEIN, Z. GALIL and G. F. ITALIANO, Improved Sparsifïcation, Technical Report,
93-20, Department of Information and Computer Science, University of California,
Irvine, 1993.

8. D. EPPSTEIN, Z. GALIL, G. F. ITALIANO and A. NISSENZWEIG, Sparsification - A technique
for speeding up dynamic graph algorithms, Proc. 33rdAnnual Symp. on Foundations
of Computer Science, 1992.

9. D. EPPSTEIN, G. F. ITALIANO, R. TAMASSIA, R. E. TARJAN, J. WESTBROOK and M. YOUNG,
Maintenance of a minimum spanning forest in a dynamic planar graph, Proc. Jst
ACM-SIAM Symp. on Discrete Algorithms, S. Francisco, 1990.

10. P. ERDÖS and A. RÈNYI, On random graphs I, Publ Math. Debrecen, <5, pp. 290-297.
11. S. EVEN and H. GAZIT, Updating distances in dynamic graphs, Methods of Opérations

Research, 49, 1985.
12. Z. GALIL and G. F. ITALIANO, Fully dynamic algorithms for edge-connectivity

problems, Proc. 23rd ACM Symp. on Theory of Comp., 1991, pp. 317-327.
13. Z. GALIL and G. F. ITALIANO, Reducing edge connectivity to vertex connectivity,

SIGACT News, 1991, 22 (1), pp. 57-61.
14. R. M. KARP, The transitive closure of a random digraph, Technical Report 89-047,

International Computer Science Institutive (ICSI), August 1989.
15. R. M. KARP and R. E. TARJAN, Linear expected-time algorithms for connectivity

problems, Proc. of the llth. annual ACM Symp. on Theory of Computing, 1980,
pp. 368-377.

16. G. F. ITALIANO, Amortized efficiency of a path retriaval data structure, Theoret.
Comp. Sri., 1986, 48, pp. 273-281.

17. G. F. ITALIANO, Finding paths and deleting edges in directed acyclic graphs, Inf.
Proc. Lett, 28, 1988, pp. 5-11.

18. J. A. LA POUTRE, Maintenance of triconnected components of graphs, Proc. 19th
Int. Coll. Automata Languages and Programming, Lect. Not. in Computer Sci.,
Springer-Verlag, 1992, pp. 354-365.

19. J. A. LA POUTRE and J. van LEEUWEN, Maintenance of transitive closure and transitive
réduction of graphs, Proc. Work, on Graph Theoretic concepts in Comp. ScL, LNCS
314 Springer-Verlag, Berlin, 1985, pp. 106-120.

20. J. H. REIF, P. G. SPIRAKIS and M. YUNG, Re-randomization and average case analysis
of fully dynamic graph algorithms, Alcom Technical Report ALCOM-LT-054, 1994.

21. H. ROHNERT, A dynamization of the all-pairs least cost path problem, Proc. of the
2ndSymp. on Theoretical Aspects of Computer Science, LNCS 182, Springer-Verlag,
1990.

22. M. SANTHA and U. V. VAZIRANI, Generating quasi-random séquences from semi-
random sources, Journal of Computer and Systems Science, 1986, 33, pp. 75-87.

23. R. E. TARJAN and JAN van LEEUWEN, Worst case analysis of set union algorithms,
Journal of Assoc. Comput. Mach., 1984, 31, pp. 245-281.

24. J. WESTBROOK, Algorithms and data structures for dynamic graph problems, Ph. D.
Dissertation, Tech. Rep., CS-TR-229-89, Dept. Of Computer Science, Princeton
University, 1989.

Informatique théorique et Applications/Theoretical Informaties and Applications


