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THE CLOSURE UNDER DIVISION AND A CHARACTERIZATION
OF THE RECOGNIZABLE Z-SUBSETS (*)

by Nami KOBAYASHI (**) (*)

Communicated by Christian CHOFFRUT

Abstract. - We show that the family of recognizable Z-subsets of A* is closed under (integer)
division by a positive integer. The technique that we use to prove this resuit is constructive and,
by generalizing this construction, we obtain a characîerization of recognizable Z-subsets of A~^~
as a sum of finitely many simple Z-subsets of A+. We also show that the family of recognizable
Z-subsets of A* is not closed under division by a négative integer, or under taking the remainder
of the division by an integer of absolute value greater than 1.

1. INTRODUCTION

In the se vendes, S. Eilenberg [2] studied the recognizable subsets with
multiplicities in an arbitrary semiring K, paying special attention to the
cases of the Boolean semiring and the semiring of natural numbers. A
more algebraic treatment of recognizable K-subsets is given by Berstel and
Reutenauer [1],

In [7] and [8], we studied some properties of JW-subsets of A*, where
M is the tropical semiring. For background and the most important results
about .M-subsets, see Simon [13, 14, 15, 16, 17], Hashiguchi [3, 4, 5, 6],
Leung [12] and Krob [10, 11].

This paper is concerned with the corresponding theory for the semiring Z,
which is just an extension of M to the set of ail integers; that is, Z consists
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210 N. KOBAYASHI

of the integer numbers extended with oo and equipped with the minimum
and addition opérations.

Here, by considering a certain construction of Z-automata, we prove two
results concerning to the recognizable Z-subsets of A*. The first of these
(see Theorem 5) asserts that, if X is a recognizable Z-subset of A* and d
is a positive integer, the Z-subset Y = X div d is recognizable, where wY
is the division quotient of wX by d, for all ^ in 4*. The second resuit
(see Theorem 20) gives a characterization of recognizable Z-subsets through
simple Z-subsets. More precisely, we show that every recognizable Z-subset
of A+ is the sum of a finite number of simple Z-subsets of A+.

We also show (see Lemma 11) that if d is a négative integer, X div d is
not always a recognizable Z-subset, and (see Lemma 13) if d is an integer
of absolute value greater than 1, Y = X mod d is not always a recognizable
Z-subset, where wY is the division remainder of wX by d, for all w in
A*. Indeed, these lemmas are particular cases of two more gênerai results
(Theorems 14 and 15) which show that X<f> is not always a recognizable
Z-subset when <f> is a strictly decreasing or a non-constant periodic map.

Eilenberg [2] showed that if X is a recognizable N-subset of A*, where
N is the semiring of the natural numbers, and d is a positive integer, the
N-subsets Y\ = X div d and Y2 — X mod d are recognizable. Moreover,
in [2] it is proved that X — dY\ + Y2, and hence X can be "recovered" from
Y\ and I2- However, we prove that for the recognizable Z-subsets, such an
"inversion opération" to division does not exist.

2. THE SEMIRING Z, Z-SUBSETS AND Z-A-AUTOMATA

The semiring Z has as support Z U 00 and as opérations the minimum
and the addition (denoted by min and +, respectively). The minimum plays
the role of semiring addition and the addition plays the role of semiring
multiplication. Note that Z is a commutative semiring and the identities with
respect to minimum and addition are 00 and 0, respectively.

The subsemiring Z~ of Z consists of the nonpositive integers and 00. It
is isomorphic to Md\ the dual of M, whose support is N U -00 and whose
opérations are the maximum and the addition.

Let A be a finite alphabet. A Z-subset X of A* is a function X : A* —> Z.
For each w in A*\ wX is called the multiplicity with which w belongs to
X. If IX = 00 then we also say that X is a Z-subset of A+.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON RECOGNIZABLE 2-SUBSETS 2 1 1

The following opérations are defined over iJ-subsets of A*, where
{Xj | i G / } is a family of Z-subsets of A* indexed by a set / , X
and Y are Z-subsets of A*, and m £ Z. For (a) and (b) we assume that /
is finite, and for (e) and (f) we assume that IX = oo.

(a) \/w G A*, w(minieiXi) = mmi£j(wXi) (minimum)

(b) \/w G A*, w(£ieIXi) = Eisï(wXi) (addition)

(c) VW;GA*, W(XY) — mmXy=w(%X + yY) (concaténation)

(d) Vw G A*, w(m + X) = m + wX

(e) Vu; G A*, wX+ = w(minn>i Xn) = minn>i(u;Jrn)

(f) X* = min( l ,X + ) , where the ^-subset 1 is defined by Vtu G
A*, wl = 0 if w — 1 and wl = oo, otherwise.

Recall that, for any semiring K, one naturally has the opérations of
addition, intersection, and multiplication of i^-subsets. In the case in which
K = Z, these opérations are, respectively, the ones given in (a), (b) and
(c) above.

Observe that if / = 0, mmiej(nii) — oo and ̂ 2i€l mi — 0.

The family Z{(A)} of ail 2-subsets of A* with the minimum (a) and
concaténation (c) opérations constitutes a semiring, whose identities are,
respectively, the iT-subset 0 (where, for ail w G A* ,w0 = oo) and the
Z-subset 1.

A Z-A-automaton A = (Q, / , T) is an automaton over A, with a finite set
Q of states, two 2-subsets / and T of Q and a 2-subset Ej, of Q x Ax Q.

If p j -é oo (resp. pT 7̂  00), we say that p is an initial state (resp. final
state) of A

If (p, a, g) is an edge in A we say that its label is a and that its multiplicity
is (p,a,q)Ej[. If {p,a,q)Ej^ ^ 00, the edge (p,a,g) is said to be a «je/wZ

of A,

If P is •àpaih of length n in A, with origin po and terminus p n , that is

P = (po,a

then its label is |P | = aia2 . . .an and its multiplicity \\P\\ is the sum of
the multiplicities of its edges, that is

For convenience, if P is the path above, we also write

and P : p o ~

vol. 30, n° 3, 1996



2 1 2 N. KOBAYASHI

Concaténations, factorizations and factors of paths are defined as usual.
A path P is useful if | |P|| =̂  oo. A useful path, whose origin i and

terminus t satisfy il / oo and tT / oo, is called successful.

The behavior of A is the Z-subset \\A\\ of A* that associâtes a multiplicity
to each word as follows. Let w be in A* and let C be the set of successful
paths P in A with label \P\ = w. Then,

where i and t are the origin and the terminus of the path P, respectively.
A successful path P in A> with label w, origin i and terminus t, is called

victorious, if i / + | |P|| + tT = iu||.A||.
The structure C = (Q,Ec) over A, consisting of a finite set of states Q,

a set of edges Q x A x Q and a Z-subset £c of Q x 4 x Q, is called
a Z-A-semiautomaton. From C we can construct a Z-A-automaton .4 by
introducing two Z-subsets I and T of Q. In this case, A can also be denoted
by A = (C,I,T).

We say that a Z-A-automaton A — (Q.I.T) is normalized if .A has a
unique initial state i and a unique final state t, with t ^ i and il ^ tT — 0,
and, moreover, there are neither useful edges with terminus i nor useful
edges with origin t.

We say that a Z-A-automaton A = (Q, / ,T) is simple if

(Q x A x Q)£U Ç {0,1,-1,00}, Q I C {0,oo} and QT Ç {0;oo} .

It is important to observe that in a normalized or simple Z-A-automaton
A, every victorious path P with label w satisfies ||P|| = w||^| | (because
QI. QT Ç {0, oo}) and every successful path P1 with label w is such that
w\\A\ < ll^'ll (because | |P| | < ||P'||). These properties will be frequently
used in the proofs.

A Z-subset of A* is recognizable if it is the behavior of some Z-A-
automaton. It is well known that every recognizable Z-subset of A+ is the
behavior of a normalized Z-A-automaton. The family of all recognizable
Z-subsets of A* is denoted by ZRecA*.

A class of recognizable Z-subsets of A* that has received some attention
is that of simple Z-subsets of A*, denoted by Z SRec A*. A Z-subset of A*
is simple if it is the behavior of some simple Z-A-automaton. We showed
[7, 8] that the family of simple .M-subsets of A* is a proper subfamily of

Informatique théorique et Application s/Theore tic al Informaties and Applications



ON RECOGNIZABLE Z-SUBSETS 213

ail recognizable A^-subsets of A*. This resuit can be easily extended to the
family of recognizable Z-subsets of A*; that is, ZSRecA* £ ZRecA*.

Let us dénote by A + the Z-subset of A* such that

{0 otherwise .

Then, one can easily verify the following resuit.

PROPOSITION 1: For every recognizable Z-subset X of A* there exists a
normalized Z-A-automaton A such that \\A\\ = X + A + . •

Now, we state some results that will be used in the next section.

PROPOSITION 2 (Fatou property - see [11, Prop. 4.1]): Z is a Fatou extension
of M, That is, every recognizable Z-subset X of A* such that A*X Ç M.
is a recognizable Ai-subset of A*. •

PROPOSITION 3 (see [11, Prop. 3.2] or [7, Prop. 2.3]): Let X be a
recognizable .M-subset of A*. Then, Mm G M, the subset Xm — {w G
A* : wX = m} is a recognizable subset of A*. •

The following resuit, although not found in the literature, can be easily
established by using Propositions 2 and 3.

PROPOSITION 4: Let X be a recognizable Z-subset of A* such that the set
A*X is finite. Then, Vm G Z, the subset Xm — {w E A* : wX — m} is
a recognizable subset of A*. •

3. CLOSURE OF ZRecA* UNDER THE DIVISION BY AN INTEGER

We studied the closure properties of the family of recognizable .A/f-subsets
of A* and of two of its subfamilies under several opérations. These results
can be found in our doctoral thesis [7] and in [8]. Hère, we investigate the
closure properties of families of iJ-subsets under taking the quotient and the
remainder of the division by an integer different from zero.

The quotient ( div ) and the remainder ( mod ) of the integer division over
the natural numbers can be extended to the semiring Z by putting

Vd / 0, oo div d — oo, oo mod d = oo and

Vm G Z, m div d = k and m mod d = r ,

where k and r are the unique integers such that kd + r — m and 0 < r < |d|.

vol. 30, n° 3, 1996



2 1 4 N. KOBAYASHI

Observe that in this définition the remainder is always non-negative and
the following properties are satisfied:

m div d = — (m div — d) and m mod d — ra mod — d .

We can extend the opérations div and mod to the Z-subsets of A* as
follows. Let X be a Z-subset of A* and let d / 0. The Z-subsets X div d
and X mod d of A* are defined by:

\/w G A*, IÜ(X div d) = u>X div d and w(X mod d) — wX mod d.

The main purpose of this section is to prove that the family of recognizable
iT-subsets of A* is closed with respect to the integer division by a positive
integer.

Initially, we shall prove this closure property for the recognizable Z-
subsets of A+ and then, this result will be easily extended for the recognizable
Z-subsets of A*.

THEOREM 5 : Let d be a positive integer. If X is a recognizable Z-subset
of A + then X div d is a recognizable Z-subset of A+ .

In the proof of Theorem 5 we will construct a Z-A-automaton
B = (Q, / ,T) from a normalized Z-A-automaton A = {QA^IA^TJ) such
that ||JB|| — ||A|| div d. The idea is to construct B from d "copies" of A

Let us first construct a Z-A-semiautomaton C, depending on A, which
will also be used in the next section. For convenience, for an integer d > 1,
put [l,d] = { l , . . . , d } . Let C = (Q,EC), where Q ^ QAx [l,d] and ail
useful edges of C with their respective multiplicities are defined as follows.

Let a' = (p, a, g) be a useful edge of A. Let us consider

k = o/E1^ div d and r = olEj^ mod d.

Then OL Ej± = kd -\- r.

For each i e [1, d], a — ((p, i), a, (ç , i ) ) is a useful edge of C, satisfying

• if z > r, then j = i - r and aEc — k; thus,

a ' ^ = kd + r = d(aEc) + i - j ;

• if z < r, then j ~ i ~ r + d and a £ c = fc + 1; thus,

a ' £ 4 = /cd + r=:fcd + d + r - d = d(fc + l ) + r - d = d(aEc) +i-j.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON RECOGNIZABLE Z-SUBSETS 215

In both cases, j G [l,d] and

a'EA = d(aEc) + i-j. (1)

Note that this condition uniquely defines both j and aEc, for every i and
olEA.

In the sequel, we study some properties relating paths in A with the
corresponding paths in C and vice versa.

Let P4 and Pc be the sets of useful paths in A and in C, respectively.
Let us define a function \P : Pc —* P4 as follows. If

is a useful path in C, then

It is easy to see that P\P is a useful path in 4̂ and we say that P^ is the
projection of P in A On the other hand, one can see that for each useful
path Pf in A and for each i G [l,d], there exists a unique useful path P
in C, with origin in Q^ x {i}, whose projection in A is P ' . Such a path
P will be called the i-lifting of P ' in C. The following lemma relates the
multiplicities of a useful path in C and of its projection.

LEMMA 6: Let P be a useful path in C front (p, i) to (q,j), i and j G [1, d].
Then its projection P1 in A satisfies

Proof: It follows readily from (1) and the f act that the multiplicity of a
path is the sum of the multiplicities of its edges. •

The crucial property of the construction of C is stated in Lemma 6 above;
it say s that for every useful path P in C and its projection P ' in A, the
différence \\P'\\ - d\\P\\ only dépends on the origin and the terminus of
the path P.

COROLLARY 7: Let F\ be a useful path in C from (p,i) to (q,j)> i and
j G [1, d\. Let Pf be the projection of P in A. Then

d if i ~ j > 0
div d if i - j < 0. •

vol. 30, n° 3, 1996



2 1 6 N. KOBAYASHI

Proof of Theorem 5: For d = 1 we have nothing to prove.
Let d > 2. Let X be a recognizable Z-subset of A+ and let

yl — (QA^AJTJ^) be a normalized Z-^4-automaton such that ||^4|| = X.
Let us construct a Z-A-automaton B = (C, I, T) from the Z-A-

semiautomaton C = (Q,Ec), whose construction and properties we just
described. For this, let us define the Z-subsets / and T of Q:

(q, d)I = qIA (V? £ Q^) and

We wish to prove that ||B|| = ||>l|| div d. Let w; e A+ be such that
tü||*A|| 7̂  oo and let Pf be a victorious path in A, with label IÜ. By
Corollary 7, the d-lifting P of P ' in B satisfies

hence,
w||B||<||P|| = HI^I|divd. (2)

Let now Pi be a victorious path in B, with label w. Let P\ be the
projection of P\ in A. Then, remembering that the origin of P\ lies in
QA x {<i}, and using Corollary 7, we have that

W\\B\\ = ||Pi|| - HiVll d i v d > IIP'II div d = w\\A\\ divd. (3)

Thus, from (2) and (3), we have that tu||ö|| = w\\A\\ div d.

Moreover, we observe that 1||B|| = oo and if IÜ||^4|| = oo then Corollary 7
implies that w\\B\\ = oo. Thus, ||B|| = ||.A|| div d - X div d. Therefore,
X div d is a recognizable Z-subset of A+ . •

In the proof of Theorem 5, if A is an A4-A-automaton (resp. Z~-A-
automaton), B will be an .M-A-automaton (resp. Z~-^4-automaton). Thus,
Theorem 5 is also valid to the recognizable A^-subsets (resp. Z~-subsets).

COROLLARY 8: Let d be a positive integer. If X is a recognizable Ai-subset
{resp. Z~ -subset) of A^ then X div d is a recognizable Ai-subset (resp.
Z~-subset) of A+. •

Theorem 5 can be easily extended for the family of all recognizable Z-
subsets as can Corollary 8 for the family of all recognizable .M-subsets and
Z~-subsets of A\

Informatique théorique et Applications/Theoretical Informaties and Applications



ON RECOGNIZABLE Z-SUBSETS 217

COROLLARY 9: Let d be a positive integer. Then, Z Rec A*, Ad Rec A* and
Z" Rec A* are closed under div d.

Proof: Let X G Z Rec A*. By Theorem 5, (X + A+) div d is a
recognizable Z-subset of A+ . Thus,

X div d = min((X + A + ) div d, (X + 1) div d)

is a recognizable Z-subset of A*.

The proof for X in A4 Rec A* or i?~ Rec A* is similar. •

It follows from Theorem 5 and Corollary 9 that the family of simple
Z-subsets of A* is also closed under integer division by a positive integer.

COROLLARY 10: Let d be a positive integer. Z SRec A* is closed
under div d. •

In the sequel, we verify that if d is a négative integer, Z Rec A* is not
closed under div d.

LEMMA 11: Let d be a négative integer. Then, ZRecA* is not closed
under div d.

Proof: Let A = {a, b} and let X be the 2-subset of A* defined by

IX = ex) and Vit; G A + , wX = min{ — |u>|a, —|w|&} .

It is clear that X G ZRecA*.

Let us consider the 2-subset Y — X div — 1. By the définition of y ,
we have I F = oo and \/w G A + , wY = w{X div — 1) = wX div — 1 =
—wX — — min{ —|iu|a, —|iu|&} = m a x l l ^ ^ |W|Ö}.

Consider the recognizable ^-subset S defined by

Vw G A*,

Suppose that F is a recognizable Z-subset of A*. Then so is the Z-subset
Y + S and

•S) = wY + wS=^ if Ha > Mb
w\a if w\,

and l ( y + S) = oo. That is, W; G A*, iü(y + 5) G M. Hence, by
Proposition 2, Y + 5 is a recognizable A^-subset of A*. But then, by
Proposition 3,

(y + 5)o - {w G A* : ™(Y + 5) - 0} = {w G A* : M a > |^ | 6 }

is a recognizable subset of A*. This is a contradiction.
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Thus, Y is not a recognizable Z-subset of A*. Therefore, Z Ree A* is not
closed under div d, when d is a négative integer. •

A conséquence of the proof of the previous lemma is the statement in the
next lemma (see [8]) which was also showed by Krob [11] in another context.

LEMMA 12: There is a Z-subset X of A* such that X is recognizable
but —X is not. •

We saw that ZRecA* is closed under the div d opération when d is
a positive integer. It turns out that, however, this is not true for the mod
opération.

LEMMA 13: Let d be an integer, \d\ > 1. Then, ZRecA* is not closed
under mod d.

Proof: Let us consider d > 1. The proof for d < - 1 is analogous.
Let A = {a, 6} and let X be the Z-subset of A* defined by

Vu; G A*. wX = min{ — d|w|a, — d|w|& — 1} .

It is clear that X e ZRecA*.

Let us consider the Z-subset Y = X mod d = X mod - d. Then,

Suppose that y is a recognizable Z-subset of A*. By Proposition 4, we
have that

Yo = {w eA* :wY = 0} = {w E A* : \w\a > \w\b}

is a recognizable subset of A*. This is a contradiction.

Therefore, Y — X mod d = X mod - d is not a recognizable Z-subset
of A*. •

Remark: Our original proofs of Lemmas 11 and 13 involved the
construction of certain Z-automata [9]. The simpler proofs above were
suggested by one of the référées. However, as pointed out by another
referee, our original approach gives the two following more gênerai results,
which are interesting on their own right.

Given a map <f> : I —» Z, we extend <f> to Z by setting oo</> = oo,
and for a Z-subset X of A*, we define the Z-subset Xcj) by w(X(p) =
{wX)<f>, \/w e A*.

Informatique théorique et Application s/Th eoretic al Informaties and Applications



ON RECOGNIZABLE Z-SUBSETS 219

THEOREM 14: Let <j> be a strictly decreasing map. Then, its extension to
Z-subsets does not preserve recognizability,

Proof: Let <f> be a strictly decreasing map. That is, Vx.y G Z, if x < y
t h e n x<f> > y<f>.

Consider A — {a, 6} and let X be the Z-subset of A* defined by

IX — oo and \/w E A+, wX = min{|tt;|a, \w\b} .

It is clear that X G ZRecA*.
Assume that X<j> is a recognizable iT-subset of ^4*. Then, there is a

normalized Z-A-automaton A with n states such that \\A\\ — X<p.
Consider the word w — anbn and let P be a victorious path in A, spelling

w. Then, | |P|| — w\\A\\ = w(Xcf)) = (wX)<f> = n<f) and there are naturals r,
5 and t, with 5 > 0 and r + s+t = n such that the path P can be factorized as

P :i > p > q > q > ƒ .

If 11(^)^^)11 < 0, the successful path P ' in A,

D / . an br bs bs bl
 £

P :i > p > q —> q —> q —> f }

spells the word wf = anbn+s and ||P' | | < ||P|| - n</>. Then,

n<f> = v/(X(f>) = w f \ \ A \ \ < \\Pf\\ <rt(f>.

This is a contradiction.
If ||(ç;6

5,4)|| > 0, the successful path P " in A,
D / / . an br bl ?

P :z > p > q > ƒ ,

spells the word w" = anbn-s and \\P"\\ < \\P\\ = ncp. Then,

(n - s)</> = w"(X<i>) = w"\\A\\ < | |P"|| <n<f>.
But, (n — s)<p < n<p contradicts the fact that (j) is strictly decreasing.

Hence, X is a recognizable Z-subset, but Xcj) is not a recognizable
Z-subset of ^4*. •

THEOREM 15: Let <j> be a non-constant periodic map. Then, its extension
to Z-subsets does not preserve recognizability.

vol 30, n° 3, 1996



220 N. KOBAYASHI

Proof: Let <f> be a non-constant periodic map. Then, for some positive
integer d, (x + d)0 = x(j>, Vx G Z, and ZQ0 7̂  jo<^ f° r some io, jo-
Assume without loss of generality that ZQ < jo < d.

Consider A = {a, b} and let X be the Z-subset of A* defined by

I X = 00 and Vw G A + , wX = min{d|w|a + iO)d|w|& + jo} •

Clearly, X G ZRecA* and

l(X</>) = 00

and

Vu; G A + , w(X<f>) = (wX)<t> = ( io
W

a < \w\b
a > \w\t> .l jof

Suppose that X(f> is a recognizable Z-subset of A*. In this case, there is
a normalized Z-A-automaton A with n states such that \\A\\ = X0 .

Let us first assume that zo^ < jo<fi.

Consider the word w — anbn with a victorious path P in A Then,
| |P | | = tü||«A|| = w(X(f>) = (wX)<f> — %Q(f). Moreover, there are naturals r, s
and ty with 5 > 0 and r+s+t = n such that the path P can be decomposed as

P : z >p ^p > q • ƒ .

If | |(p.a5,j))|| < 0, the successful path

p . cT _a^ a5 a* 6" .

spells the word w\ = a ï î + 5 6 n and ||Pi|| < | |P| | = iO(f>. Then,

jo<j> = w1(X<l>) = wi\\A\\ < \\Pi\\ <zo</>>

which contradicts io(f> < jo<f>.

Now, if 11(^,^,^)11 > 0, the successful path

P2 : % —> p —> q —^ ƒ

spells the word w2 = an-sbn and ||P2 | | < | |P| | = i0^ Then,

- w2\\A\\ <

this is a contradiction.

Let us now assume that ÎQ(f) > j

Informatique théorique et Applications/Theoretical Informaties and Applications
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Consider the word v = an+lbn with a victorious path P ' in A Then,
||P'| | = v\\A\\ = v(X<f>) = (vX)(j) — JQ<fi. Moreover, there are naturals r',
5' and t7, with s' > 0 and r' + s1 + t' = n such that the path P ' can be
decomposed as

P : z —>p —> ç —> g —> f.

If ||(ç',&5',ç')|| < 0, the successful path

D / . Û-+1 / 6"' / bs' ( bs' / 6*' -
Pi : î > p ^g ^g > q > ƒ

spells the word vi = a n + 1 6 n + a ' and | |Pi ' | | < HP'H = jo<f>. Then,
iô > = ^ (Xç i ) = i;i||-A|| < llPi'H < jo</>, which contradicts io<f) > jo<f>.

Otherwise, if \\{q!, bs\qf)\\ > 0, the successful path

P2 : % > p > q > ƒ

spells the word v2 = an+1bn-s' and | |P 2
/ | | < \\Pf\\ = jo<f>. Then,

jO(f) = v2(X(f>) = U2||-4|| < II^'H < JO0; another contradiction.

Thus, X is a recognizable 2-subset, but X<f> is not a recognizable Z-subset
of A\ M

Remark: Lemmas 11 and 13 can also be obtained, respectively, from
Theorems 14 and 15 considering cj) = div — 1 and 4> = mod d.

The quotient ( div ) and the remainder ( mod ) were defined in such a way
that the remainder is always non-negative. However, there are cases in which
one defines the integer division ( div' and mod') so that the remainder has
the same sign as the dividend. That is,

Vd / 0, oo div'd = oo, oo mod'd = oo and

Vm G Z, m div'd = k and m modfd = r ,

where k and r are the unique integers such that kd + r = m, 0 < \r\ < \d\
and rm > 0.

The following properties are also satisfied:

m div'd — —(m div' — d) and m mod'd = m mod' — d.

As before, we can extend the opération div' and mod' to the iT-subsets
of A*. Let X be a recognizable Z-subset of A* and let d ^ 0. The Z-subsets
X div'd and X mod'd of A* are defined by

Vw G A*: w(X div'rf) = wX div'd and iy(X mod'd) = wX mod'd .
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Let us see how the two opérations div' and mod' relate to the standard
div and mod .

Let d / 0 and m G Z be given, and let

m div d — k\, m mod d — r\ ,

m div'd = &2> ^ mod'd = r2 .

Then

{ fci if m > 0 or r i = 0

k\ + 1 if m < 0 and n > 0 and d > 0
ki-1 if m < 0 and r\ > 0 and d < 0

_ ƒ r i if m > 0 or r i = 0
r 2 = \ n - |<2| if m < 0 and n > 0 .

Let us show that there is a recognizable Z-subset X of A* such that

X mod'd and X divfd are not recognizable Z-subsets of A*.

THEOREM 16: Let d be an integer, d > 1. Then, ZRecA* is not closed

under div'd.

Proof: Let A = {a, b} and let X be the Z-subset of A* defined by

Vw G A*, w;X = d(\w\a - \w\b) + 1 .

It is clear that X is a recognizable Z-subset and we observe that Vw E A*,
zi;X mod d = 1.

Consider the Z-subsets of A*, F = X div d and G = X div'd. Then,
from the observations in the définition of div', we have that

w c A* n f wF ïïwF>0
vw £ A\ wG = < „ —

\ F + 1 if ^F < 0 .
But, we can observe that, Vu> G A*, wF = \w\a — \w\b. Therefore, G can
be described by

[ \w\a - |lü|6 + 1 lf |w|a < |lü|5 .

Now, consider the recognizable Z-subset H defined by

Vw e A*, wH — \w\b - \w\a •
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Let us suppose that G is a recognizable Z-subset of A*. Then so is the
Z-subset G + H and

* \W\a ~ \W\b

lf \w\a < \w\b.

Hence, by Proposition 4,

(G + H)o = {w G A* : w(G + H) = 0} - {w G A* : |™|a > |™|6}

is a recognizable subset of A*. This is a contradiction.
Therefore, G = X div'd is not a recognizable Z-subset of A*. •
A conséquence of the proof of Theorem 16 is given in the séquence.

COROLLARY 17: There is a recognizable Z-subset X of A* such that the
Z-subset Y defined by

ƒ wX if wX > 0
\wx + i liwx<o

is not recognizable. •

LEMMA 18: Let d be a négative integer. Then, ZRecA* is not closed
under div'd.

Proof: For ail m G Z, m div — 1 = m div' — 1, because in this case the
remainder is zero. Thus, from the proof of Lemma 11, we can conclude that
ZRecA* is not closed under div'd, when d is a négative integer. •

LEMMA 19: Let d be an integer, \d\ > 1. Then, ZRecA* is not closed
under mod'd.

Proof: Let us consider d > 1. The proof for d < — 1 is analogous. Let us
consider the Z-subset X in the proof of Lemma 13:

Vw G A*, wX = mm{-d\w\ai -d\w\b - 1}

and take Y - X mod'd = X mod' - d. Then,

— 1 II \W
a
a -i

Mb
w\b .

Suppose that y is a recognizable Z-subset of A*. By Proposition 4, we
have that

YQ = {w G A* : wY = 0} = {w G A* : |iu|a >
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is a recognizable subset of A*. This is a contradiction.
Therefore, Y = X modfd — X mod' — d is not a recognizable Z-subset

of A*. •
The closure properties of Z Ree A* that we have seen in this section are

summarized in Table 1.

TABLE l

Closure properties of 2, Ree A* under quotient and remainder by a non-zéro integer d.

Operator

div

mod

div'

mod'

yes

d>0

\d\ = l

d = l

\d\ = l

no

d< 0

| d | > l

d < 0 or d > 1

| d | > l

4. A CHARACTERIZATION OF RECOGNIZABLE ^-SUBSETS OF A+

Eilenberg [2] showed that, for any semiring K, the family of recognizable
i^-subsets is closed under intersection. But we showed [7] that the family
of simple A4-subsets, M SRec A*, is not closed under addition. (Recall that
the addition of A4-subsets plays the rôle of intersection of î T-subsets for a
gênerai semiring K.) This fact led us to investigate the foliowing question:

Is it true that for every recognizable A4-subset of A+ , there exist n > 0
simple A4-subsets Xi,..., Xn such that wX — ̂ 1 < ï < n wX{ holds for ail
w e A + ?

For instance, one can verify that the recognizable A4-subset X defined by

Vw £ {a,b}+, wX = 2\w\a + 3|w|e>

is not a simple A4-subset, but it can be described as the sum of five simple
A4-subsets Xi,-X2, X3, Xj and X5 defined by

\/w G {a,6}+ , wX\ = WX2 — \w\a and wX$ — wX^ — wX§ — \w\b*

In fact, X may also be written as the sum of three simple A"!-subsets Yi, Y2
and Y3 defined by

Vtü E {a,ö}+ , wY\ = WYÏ = \w\ and = \w\b.

We obtained an affirmative answer for this question (see [7] and [8]). The
next theorem generalizes this resuit to the semiring Z.
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THEOREM 20: A Z-subset of A^ is recognizable if and only if it is the sum
of a finite number of simple Z-subsets ofA+.

Proof: Let X be a recognizable Z-subset of A + . Let A — (QA- IA-, TA) be
a normalized Z-A-automaton such that ||.A|| — X and let d be the maximum
of the absolute values of the multiplicities of the useful edges of A.

Let us construct Z-A-automata Ai,..., Ad such that ^f=1 | |A| | = \\A\\.
For each i G [1, d], the Z-A-automaton Ai = (C, Ii,T) is constructed from

the Z-A-semiautomaton C = (Q.EQ) which was introduced in the previous
section. We define the Z-subsets /2 and T of Q:

, c/- -\ f 0 if i = ?
where 8(1,3) = < . .

[ oo otherwise ;

Note that Qli.QT Ç {0,oo} and as the edge multiplicities of C are in
{0,1, — 1, oo}, Ai is a simple Z-A-automaton. We can also observe that the
Z-A-automata Ai (1 < i < d) differ from each other only in the initial states.

Before we continue the proof of this theorem, we study, through the next
lemmas, the properties which relate the paths in each Ai (1 < i < d) with
their projections in A. We also study the relations existing between the paths
in Ai and in Aj9 for i / j .

Let i G [1, d]. Let P be a victorious path in A% with terminus in QA X {j},
for some j G [1, d]. We say that P is a tallest victorious path in Ai, if there
are no victorious paths in Ai with the same label of P and with terminus
in QA x {k}, for k G [l,d], k > j .

LEMMA 21: Ler P be a tallest victorious path in Ai, i G [l ,d].
projection Pf is a victorious path in A.

Proof: Let P be a tallest victorious path in A%, Then, P has its origin in
QA X {i}- Let us suppose that the terminus of P lies in QA x {j}, for some
j G [1, d}. If the projection P1 of P is not a victorious path in A, there is a
victorious path Pi in A such that |Pi' | = |P ' | and HPi'H < \\P!\\.

Let Pi be the i-lifting of P\ in A% and we suppose that Pi terminâtes in
QA X {k}, for some A; G [l,d]. Then, using Lemma 6,
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Therefore,
d(\\Pi\\-\\P\\)<k-j •

Moreover, Pi is a successful path in Ai. In fact, its origin (p,i) and its
terminus (g, k) satisfy {p,i)h = pi A ¥" °° a nd (q,k)T = gT^ 7̂  00, since
its projection Pi7 is a victorious path in A But, as P is a victorious path
in Ai, \\Pi\\ > \\P\\.

If \\Pi\\ = | |P| | then Pi is also a victorious path in A% and k - j > 0.
That is, k > j . So, P is not a tallest victorious path in A"» a contradiction.

Thus, IIPill > ||P||. Then,

d<d(\\I\\\-\\P\\)<k-j.

This is impossible, because k,j E [l,d]. Therefore, P ' is a victorious path
in A •

LEMMA 22: Let P% (i G [1, d]) be a tallest victorious path in Ai with label
w and let us assume that Pi terminâtes in QA X {j} (j £ [l,d]). Let Pk
(k G [1, d] and k ̂  i) be a tallest victorious path in Ak with label w and let
us assume that Pk terminâtes in QA X {0 (l G [1, d}). Then i — j = k — l
( mod d).

Proof: Let Pi be a tallest victorious path in Ai with terminus in QA X {j}
and label w. Let Pk be a tallest victorious path in Ak with terminus in
QA x {1} and label IÜ.

Let us consider the projections P / and PjJ of P2 and Pk, respectively, in
A. From Lemma 21, it results that P%

! and Pk are victorious paths in A
Then | |P/ | | = IJP^H. But, from Lemma 6,

z - j and \

So, from | |P/ | | = ||Pfc'||, it follows that

d\\Pi\\+i-j =

Then

Thus, i — j = k — l (mod d). •
Note that the previous lemma implies that l 7̂  j and if k = i + 1 then

f = j + 1 (mod d).
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We continue the proof of Theorem 20 considering Xi = \\ A%\\ (1 < i <•<£).
Then, X\,... , 1 ^ are simple Z-subsets of A + . Moreover, one can verify
that Ww G A+, wX = oo if, and only if, 3z G [l,d], W-XÎ = oo. Hence,
wX = oo iff w^2i=i Xi = oo. Then, for tu G A + , we can assume that
wX / oo and wX{ =fi oo, Vz (1 < z < d).

For each i G [l ,d], there is a tallest victorious path Pi in .4^ with
\Pi\ — w and

11̂ -11 = ^ 1 1 = ^ . (4)
Therefore, by Lemma 21, for each % e [l,<i], the projection P / of P?; in

A is a victorious path and

HP/H =

Then

53 Pi'11 = d(«,X). (5)

We suppose that for each i G [1, d], Pi terminâtes in QA X {&*}, for some
^ G [1, d]. Then, by Lemma 22, for each pair j and l G [1, d], if j / / it
results that fc^ / fc/. Therefore,

But, by Lemma 6, for each i G [l ,d],

Then, using (5) and (6) we have:

d d

d d

Hence, from (4),
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Thus,

\/w e A+ , wX =

Therefore,

The converse of this Theorem follows from the définition of simple
Z-subset and the closure of Z Ree A* under addition. •

In the proof of Theorem 20, if A is an A4-A-automaton (resp. Z~-A-
automaton), from Corollary 8 it follows that each Ai (1 < i < d) is an
.A/f-A-automaton (resp. Z~-A-automaton). Moreover, Lemmas 21 and 22
stay valid when each Ai is an .M-A-automaton (resp. Z~-A-automaton).
Thus, the characterization given in Theorem 20 is also valid to .M-subsets
(resp. Z~-subsets).

COROLLARY 23: An Ai-subset (resp. Z~-subset) of A+ is recognizable
if and only if it is the sum of a finite number of simple Ad-subsets (resp.
Z~-subsets) of A+. •

The following corollaries consider the gênerai case of recognizable
iJ-subsets, A^-subsets and >Z~-subsets of A*.

COROLLARY 24: Let X be a recognizable Z-subset (resp. Ai-subset, Z~~
subset) of A*. Then, X is the sum of a finite number of simple Z-subsets
(resp. M-subsets, Z~-subsets) of A* if and only if IX G {0,oo}.

Proof: Let X be a recognizable Z-subset of A* such that IX G {0, oo}.
By Theorem 20, it is enough to consider the case in which IX = 0. Let
XL, . . . ,Xci be the simple 2-subsets of A+ obtained from Theorem 20 for
X + A + . For each i G [1, d), let us consider the Z-subset Yt — min(X;; 1).
It is clear that Y% is simple and lYt = 0. Then, X = YA=I Y^

The converse of this corollary follows immediately from the définitions of
simple Z-subsets and of the Z-subsets addition opération.

The proof for X 'm M Ree A* or Z~ Ree A* is similar. •

COROLLARY 25: Let X be a recognizable Z-subset (resp. M-subset, Z~'-
subset) of A* such that IX $. {0. oo}. Then, there are d > 0 simple Z-subsets
(resp. M-subsets, Z~-sub s ets) Xi , . . . , JQ/ of A*, and a recognizable Z-
subset (resp. M-subset, Z~-subset) Y of A* satisfying 1Y ^ {05oo} and
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wY — oo, \/w E A+ such thaï

Proof: It is enough to consider for X\,..., X^ the simple Z-subsets (resp.
.M-subsets, Z~-subsets) obtained from Theorem 20 (resp. Corollary 23) for
X + A + and to consider Y as being the Z-subset IX + 1. •
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