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A NOTE CONCERNING THE LIMIT DISTRIBUTION
OF THE QUICKSORT ALGORITHM (*)

by Michael CRAMER C1)

Communicated by Christian CHOFFRUT

Abstract. - We perform simulations in order to obtain information on the limit distribution of
the Quicksort algorithm. This distribution is also correlated to the external pathlength of a binary
search tree. It turns out that the lognormal distribution is a very good approximation for that
distribution. However, by exact and numerical calculation of some moments we shall demonstrate
that these distributions are not the same.

Résumé. - La distribution limite de Quicksort (qui est la même que la distribution limite de
la longueur de cheminement externe dans les arbres binaires de recherche) est inconnue. Nous
montrons ici, par simulation, que Vapproximation de cette distribution par une loi log-normale est
en pratique excellente. Cependant prouvons aussi, par le calcul précis de quelques moments, que
la distribution limite de Quicksort n 'est pas log-normale.

1. INTRODUCTION

Since the early sixties when Hoare [5] introduced the Quicksort algorithm
it has become one of the most applied sorting algorithms. It is, e.g., the
standard sorting procedure on Unix Systems. The number of comparisons,
say Xn, needed by Quicksort to sort a list of n éléments given at random
order is the essential quantity that détermines the performance time in any
implementation of Quicksort. Recently several new results on the distribution
of Xn have been published.

Régnier [7] has established convergence of the normed centered law
of Xn to an unknown limit distribution. The employed method applies
the martingale convergence theorem [1] which is "non-constructive".
Furthermore, the équivalence of the number of comparisons in Quicksort
with the external path length in a binary search tree has been established

(*) Manuscript received July 1994.
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196 M. CRAMER

and used. Independently, Rosier [8] has proved the same limit theorem for
Quicksort by the use of a contraction property of an appropriate operator.
The limit distribution is not normal {cf. [4], [7], [8]) and is characterized
as the fixed point of that operator.

In this paper we examine what this limit distribution looks like. We find
that a lognormal distribution with appropriate parameters is a very good
approximation for the limit distribution of Quicksort.

From the fixed point équation we détermine the first four moments of the
limit distribution. These can also be deduced from the results of Hennequin
[4].

Then we carry out simulations of Xn for n = 1000, 5000 and 20000.
Comparisons with known distributions suggest that the lirait distribution
might be lognormal. However, we will demonstrate that this is not the case.

2. MOMENTS

Let Yn := {Xn — EXn)/n. Régnier [7] proves the weak convergence of
(Yii)nGN to a limit distribution as well as the convergence in L2.

Rosier [8] even dérives the convergence of all moments and characte-
rizes the limit distribution as the unique fixed point of the operator
T : D2 ->£>2. T(P) =C(TX+(1-T)X + C(T)) where D2 is the
space of distributions with mean 0 and finite second moment, r is uniformly
distributed on [0, 1], C{X) = P, X = X and r, X, X are independent
(— / —> means equality/convergence in distribution). The fonction C :
[0, 1] -> R is definedby C (x) = 2x lnx + 2 (1 - x) In (1 - x) + 1. So

Yn ^ Y, (2.1)

E7^ -> EYk (E\Y\k < oo) (2.2)

and

Y = r y + ( l - r ) F + C(r); (2.3)

where r ~ U (0, 1), Y = Y, and r, Y, Y are independent.

The recursion formula (2.3) provides us with the possibility to calculate
moments of any order k G N of the random variable (r.v.) Y (resp. its
distribution C{Y)). We obtain

EYk: = E(TY + ( l - r ) y + C(r)) fc Vfc G N. (2.4)
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Clearly for k = 1 we know E Y — 0 from (2.2) and the définition of Yn. We
will need the moments up to order 4. For k = 2 to 4 équation (2.4) becomes

EY2 = 3E(C 2 ( r ) ) (2.5)

E F 3 = 2 E (C3 (r)) + 12 E (r2 C2 (r)) • E Y2 (2.6)

E Y4 = | E (C4 (r)) + 20 E (r2 C2 (r)) • E Y2

+ 1 0 E ( T 2 ( 1 - T ) 2 ) - ( E Y 2 ) 2

+ ^ E ( T 3 C ( T ) ) - E Y 3 , (2.7)

where E Y — 0 and the independence of Y, Y and r have been used.
The following intégral formulas serve to solve the intégrais involved in

(2.5M2.7).

LEMMA 1: For j , k G No holds

Proof: Fix j and show the above formula by induction on k. Use partial
intégration. D

LEMMA 2: For j G No, k G N

where C ( * ) ^ ?^e Riemann zêta function.

Proof: Fix A; and show the statement by induction on j . [3, p. 549, 4.271,
4.] provides the following formula which we will use for p = k + 1:

Note that r (fc + 1) = fe ! and exp (L k TT) = (-l) fc. This is the basis of the
induction. The induction step j —• j + 1 uses the expansion ^—- = — x3 + ^ ^
as well as Lemma L D

THEOREM 2.1: The second moment (which is identical to the variance) and
the third moment of the limit distribution of the Quicksort algorithm have
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the following values:

E Y2 = 7 - \ n2 = 0.42026373 . . . (2.8)
o

E y 3 = 16 C (3) - 19 = 0.23291044 . . . (2.9)

The fourth moment has the numerical value

E y 4 = 0.73794549 . . . (2.10)

Remarks

- The accuracy of the numerical values is at least 10~8.

- The évaluation of E Y4 has been performed with the help of a numerical
value for an intégral calculated by Maple.

-The cumulants of Xn stated in [4, p. 331] may be converted into
moments so that (2.8)-(2.10) are implicitly given in [4]. (2.8) is stated
in [8]. D

3. SIMULATIONS OF Yn FOR n = 1000, 5000 AND 20000

In this section we investigate on the shape of the limit distribution of
Quicksort. In terms of section 2 this is the law of the r.v. Y. Since the
séquence (Yn) of r.vs converges in distribution to Y it is reasonable to
expect a good coincidence between the distribution functions of Y and Yn

resp. if n is large enough.

To this end we run a C-program which mimics the décisive steps of the
Quicksort algorithm for n = 1000, 5000 and 20000.

100000 runs were performed for each n. Therefore, the empirical
distribution functions can be regarded as indistinguishable from the
distribution functions of Yn.

If we compare the three empirical distribution functions to each other, we
find an excellent agreement of the graphs. Figure 3.1 contains the empirical
distribution functions of Yn for n = 1000, 5000 and 20000.

Since the distribution functions change hardly from n — \ 000 to
n = 20000 it is natural to suppose that the distribution function of Y
looks like those of Yn for n > 1000.

More informative than the distribution function is the empirical density
function of a simulation. For n = 5000 one obtains Figure 3.2. Smoothing
this function with help of the "smooth.spline-function" of 5-plus (an
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LIMIT DISTRIBUTION OF QUICKSORT 199

- 2 - 1 0 1 2 3

Figure 3.1. - The empirical distribution functions of Y„ for n = 1000, 5000 and 20 000.

implementation of the well-known statistical programming environment 5)
yields the graph in Figure 3.3.

Figure 3.2. - Empirical density
for Quicksort 5000.

Figure 3.3. - Smoothed empirical
density for Quicksort 5000.

This smoothed empirical density shows similarity to a 3-parameter-
lognormal distribution density. By choosing five points of support we
détermine the parameters so that the sum of squares of the différence of the
density function of the lognormal distribution and the smoothed empirical
density function at the chosen points is minimal. We obtain the following
parameters:

9 = -2.272425 ï

a = 0.2800911 l (3.1)

C = 0.7717708 I
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A good survey of the lognormal distribution can be found in [6, p. 112 ff].
The density ƒ of the 3-parameter-lognormal distribution is given by

1
ƒ(*) = —

(x-

The results are shown below:

- ^ r [InOr - 0) - C]

Figure 3.4. - Smoothed empirical density for Quicksort
5000/Density of a lognormal distribution according to (3.1).

Figure 3.5 shows the corresponding distribution functions which can
scarcely be distinguished. Their maximal déviation is about 0.3% (Fig. 3.6).

Figure 3.5. - Distribution function
for Quicksort 5000 / Lognormal

d.f. according to (3.1).

Figure 3.6. - Différence d.f. for Quicksort
5000 - Lognormal d.f. according to (3.1).
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4. NON-LOGNORMALITY OF THE LIMIT DISTRIBUTION

In this section we shall prove that the limit distribution of Quicksort is not
lognormal. This is a conséquence of the fact that no lognormal distribution
has the same first four moments as the limit distribution.

THEOREM 4.1: Let X ~ lognorm(0. a, () such that E I = 0, E I 2 =
7 - |TT2 and EX3 - 16 C (3) - 19. Then

a = v/m~a (4.1)

C = Jpn ( E X 2 ) - In {a2-a)\ (4.2)

0= -exp(C + ^ 2 ) (43)

where a is the only real solution of the cubic équation

(E X3)2

a3 -3a2 -4-d = Q with d := ) — - ^ - . (4.4)

Proof: For X := X - 9 we have (cf [6, p. 115])

r e N (4.5)

EX = 0 and (4.5) for r = 1 lead to formula (4.3). (4.5) for r = 2 supplies
the second moment of X which on the other hand détermines E X2 if 6 is
known. So with (4.3) we obtain

E X2 + exp (2 C + a2) = exp (2 ( + 2 a 2 ) .

This implies (4.2) if we set a := exp (a2) which gives (4.1). So we have
to check that a, (, 9 as above fulfill E X3 = 16 C (3) - 19 iff a is the real
solution of (4.4). The substitution of (4.1)-(4.3) into (4.5) for r = 3 yields

3

| [a9/2 _ a3/2 _ 3 a5/2 + 3 a 3 / 2 ] = £ ^ 3 >

which for a > 1 (since a > 0) is equivalent to (a + 2)2 (a — 1) = d. Because
of (1 + d/2)2 — 1 ^ 0 this cubic équation has only one real solution, namely

a —
3

\

d 2

\

d 2
D
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Remarks

- The proof also yields that a lognormal distribution whose parameters
satisfy (4.1)-(4.4) has the same first three moments as the limit distribution
of Quicksort.

- Numerical results:

One obtains a = 1.07718027 . . . which implies

6 = -2.333499 . . . ï

a = 0.27266604 . . . l (4.6)

C = 0.8101958 . . . J D

THEOREM 4.2: X ~ lognorm (6, a, () with 0, a, Ç déterminée by (4.1)-(4.4)
is not a fixed point of T.

Proof: From Theorem 2.3 we know that.the unique fixed point of T
has moments according to (2.8)-(2.10). We calculate the fourth moment of
X as above to obtain a contradiction to (2.10). This proves the theorem.
Equation (4.5) leads in an analogous way as in the proof of Theorem 4.1 to

EX4 = (EX2)2 [a4 + 2a3 + 3a2 - 3],

where a G R stems from (4.4) as in Theorem 4.1. So we obtain

EX4 = 0.7642470 . . . (4.7)

which clearly contradicts (2.10). (Note that the accuracy of 7 digits in (4.7)
and 8 digits in (2.10) suffices to distinguish numbers which differ even in
the second digit behind the décimal point). •

5. APPROXIMATION BY LOGNORMAL DISTRIBUTIONS

5.1. The stability of a lognormal distribution under T

We want to show that a lognormal distribution with parameters according
to (4.1)-(4.4), say "limit moments lognormal distribution" (abbreviate: LML
distribution), is nearly stable under the operator T. Unfortunately it seems
difficult to détermine the image of the LML distribution under T analytically.
Thus we do so by simulations.

We simulate random variables which are lognormal with parameters as
in (4.1)-(4.4) as well as a uniformly distributed random variable so that we
can mimic the opération of T on a lognormal distribution. If we compare
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the LML distribution function to its simulated picture under T we confirm a
good conformity, the maximal déviation being about 0.6%.

In order to estimate this déviation we perform another simulation. We
compare the LML distribution function to the empirical distribution function
of a simulation of the LML distribution. The déviation in this case is at its
maximum about 0.25%. This indicates that the maximal déviation of 0.6%
is quite small because it is of the same order of magnitude as in the case
where T is not applied.

So we conclude that the LML distribution is a very good approximation
for the fixed point of T because the image of the LML distribution under
T hardly differs from the LML distribution itself.

Figure 5.1. - Empirical d.f. after
T opération/LML distribution.

Figure 5.2. - Empirical d.f. after
T opération - LML distribution.

5.2. Approximations for Yn, n = 1000, 5000, 20000

For the empirical distributions, already shown in Figure 3.1, we shall now
détermine lognormal distributions such that the différence is minimal in
each case. The corresponding parameters are given in Table 1 at the end
of this section.

But first we will look at the différence between the empirical distribution
functions of Yn (for n - 1000, 5000 and 20000) and the LML distribution.
In all three cases we find a maximum déviation of 0.4%. This is another
indication that the LML distribution is a good approximation for the limit
distribution of Quicksort.

For finite values of n based on simulations we can obtain even better
approximations. From the variety of possibilities to détermine appropriate
parameters we take one which supplies a uniform approximation of the
corresponding distribution functions. That is, we choose the parameters

vol. 30, n° 3, 1996
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Figure 5.3. - Lognormal distribution
function (Table 1) / Empirical

distribution function, n = 1000.

Figure 5.4. - Lognormal distribution
function (Table 1) - Empirical
distribution function, n = 1000.

Figure 5.5. - Lognormal distribution
function (Table 1)/Empirical

distribution function, n = 5000.

Figure 5.6. - Lognormal distribution
function (Table 1) - Empirical
distribution function, n — 5000.

Figure 5.7. - Lognormal distribution
function (Table 1)/Empirical

distribution function, n = 20000.

Figure 5.8. - Lognormal distribution
function (Table 1) - Empirical

distribution function, n = 20000.

of a lognormal distribution so that the sum of the squares of the
différences between the empirical distribution function and the lognormal
one is minimized where the sum is taken over all points - 2 + k • 0.01
(A: G {0, . . . ,500}).
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Figure 5.9. - Density of lognormal
distribution (Table 1)/Smoothed

empirical density, n = 1000.

Figure 5.10. - Density of lognormal
distribution (Table 1) - Smoothed

empirical density, n = 1000.

Figure 5.11. - Density of lognormal
distribution (Table 1)/Smoothed

empirical density, n = 5000.

Figure 5.12. - Density of lognormal
distribution (Table l ) - Smoothed

empirical density, n = 5000.

Figure 5.13. - Density of lognormal
distribution (Table 1)/Smoothed
empirical density, n — 20 000.

Figure 5.14. - Density of lognormal
distribution (Table l) - Smoothed

empirical density, n = 20 000.

The corresponding graphs show that this adaption is even better than the
LML distribution for Yn (n as above) in the sense that the maximum
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différence of the distribution functions is now about 0.15%, which is
significantly smaller than 0.4%.

Even the density functions fit quite well (smoothed empirical density
against density of lognormal distribution with parameters according to
Table 1 below).

In Table 1 the corresponding parameter values are given.

TABLE 1

Parameter values for Figures 5.3-5.14,

QslOOO Qs5000 Qs20000

9
a

c

- 2.1241330
0.2967048
0.7025572

-2.1871626
0.2917981
0.7322862

-2.1651145
0.2928525
0.7298622

So the distributions of Yiooo» ^5000 and Î20000 c a n be v e r v properly
described by lognormal distributions with parameters according to Table 1.
For values of n between 1000 and 20000 one may still expect a rather good
description of the law of Yn by a lognormal distribution if one chooses the
parameters according to Table 1 for that number in {1000, 5000, 20000},
which is next to n. For larger values of n parameters of (4.1)-(4.4), i.e. the
parameters adapted to the moments of the limit distribution, are appropriate.

We should expect a maximum error of about 0.4% in the déviation of
the distribution functions.

6. CONCLUSIONS

We have presented simulations of Yn for n = 1000, 5000 and 20000.
These hardly differ, which indicates that the limit distribution looks similar.

The main resuit is the fact that one can use a lognormal distribution with
appropriate parameters to approximate the distribution of Y (Yn respectively).
Although we have proved that the limit distribution of Quicksort is not
lognormal itself, we have seen that the LML distribution is an extremely
good approximation, sufficient for practical purposes.

REFERENCES

1. P. BILLINGSLEY, ProbabUity and Measure, Wiley, New York, 1986.

2. W. FELLER, An Introduction to ProbabUity Theory and its Applications, VoL II,
Wiley, New York, 1957.

Informatique théorique et Applications/Theoretical Informaties and Applications



LIMIT DISTRIBUTION OF QUICKSORT 207

3. I. S. GRADSHTEYN and I. M. RYZHIK, Table of Intégrais, Series and Products, Academie
Press, New York, 1965.

4. P. HENNEQUIN, Combinatorial Analysis of Quicksort Algorithm, Informatique
Théorique et Applications, 1989, 23, pp. 317-333.

5. C. A. R. HOARE, Quicksort, Computer Journal, 1962, 5, pp. 10-15.
6. N. L. JOHNSON and S. KOTZ, Continuous univariate distributions - 1, Houghton

Mifflin, Boston, 1970.
7. M. RÉGNIER, A Limiting Distribution of Quicksort, Informatique Théorique et

Applications, 1989, 23, pp. 335-343.
8. U. RÖSLER, A Limit Theorem for Quicksort, Informatique Théorique et Applications,

1991, 25, 85-100.

vol. 30, n° 3, 1996


