
INFORMATIQUE THÉORIQUE ET APPLICATIONS

B. LE SAËC

I. LITOVSKY

B. PATROU
A more efficient notion of zigzag stability
Informatique théorique et applications, tome 30, no 3 (1996),
p. 181-194
<http://www.numdam.org/item?id=ITA_1996__30_3_181_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1996__30_3_181_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 30, n° 3, 1996, pp. 181-194)

A MORE EFFICIENT NOTION OF ZIGZAG STABILITY (*)

by B. LE SAËC (*), I. LITOVSKY (2) and B. PATROU C1)

Communicated by J. BERSTEL

Abstract. — In [6] a définition of zigzag stability for zigzag submonoids is given. We give hère a
new définition of zigzag stability, which is simpler and very close to the usual définition of stability
for ordinary submonoids. We give a short proof that zigzag stability is decidable in the rational
case. Moreover this notion of zigzag stability enables one to obtain an algorithm to décide whether
a rational language is a zigzag code. Despite being in exponential time, the complexity of this
algorithm is better than that of every other known algorithm [3], [8], [6J.

Résumé. - Dans [6] une première définition de stabilité zigzag pour les sous-monoïdes zigzag
est donnée. Nous donnons ici une autre définition de stabilité zigzag qui est plus simple et plus
proche de la définition habituelle de stabilité pour les sous-monoïdes ordinaires. Par une preuve très
courte, on montre que cette stabilité zigzag est decidable dans le cas rationnel En outre elle permet
d'obtenir un algorithme pour décider si un langage rationnel est un code zigzag ; algorithme dont
la complexité est exponentielle mais meilleure que celle des autres algorithmes connus [3], [8], [6].

1. INTRODUCTION

The zigzag opération î is an extension of the * opération introduced in
[1]. Let X Ç A* be a language. Every word w G X* is obtained by a run
on w with left-right steps in X, while a word w' £ X^ can be obtained
by a run on w' with left-right and also right-left steps in X. For instance
if X = {abc.bc,bca}, the word abca belongs to X^ (but not to X*);
indeed it is obtained by the left-right step abc, the right-left step bc and
the left-right step bca. That is the word abca has a zigzag factorization (or
^-factorization) on X.

(*) Received March 1994.
(') Laboratoire Bordelais de Recherche en Informatique, Unité de Recherche Associée au CNRS

n° 1304, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex France. Email:
(lesaec, patrou)@labri.u-bordeaux.fr

(2) Laboratoire d'Informatique Signaux et Systèmes de Sophia Antipolis, Unité de Recherche
Associée au CNRS n° 1376, Université de Nice Sophia Antipolis, route des colles, B.P. 145, 06903
Sophia Antipolis Cedex France. Email : lito@essi.fr

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/96/03/$ 4.00/© AFCET-Gauthier-Villars



182 B. LE SAËC et al

As for * opération, one can define the following. A language C is a z-code
if every word in A* has at most one z-factorization on C [1]. A language M
is a z-submonoid of A* if M = X^ for some language X, called z-generator
of M [7]. Every z-submonoid M has a least z-generator called z-Root(M)
and M is z-/ree if its z-Root is a z-code.

We are interested hère in direct {Le. without using the z-Root)
characterizations for z-free z-submonoids. For free submonoids, stability
is such a characterization [10]. A submonoid M is stable if:

u,vw G M}
Vu, v, w G A : } =^> v e M.

uv: w G M J

This stability property says that, in a free submonoid, every factorization
(mi,rri2) with two steps in M is a "partial view" of the factorization
(x\,..., xn) in Root(M), that is : x\ . . . xi = m\ and Xi+i . . . xn = rri2 for
some integer z, 1 < i < n.

In the same way, a first définition of z-stability is given in [6] considering
three-step z-factorizations in a z-submonoid. However this définition is rather
tedious: three cases depending of different overlapping of two three-step
z-factorizations are considered.

In this paper, using the notion of strict z-prefix we give a simpler définition
of z-stability which is very close to the original stability définition. A word
u is a strict z-prefix of uv if there exists a zigzag calculus of u with step in
M on the support uv. For instance, with X = {abc,bc,bca}, word a is a
strict z-prefix of abcb. Like stability définition, for any word m G M two-
step factorizations (7711,7712) of word m are considered. However hypothesis
"mi G M" is replaced hère by "mi is a strict z-prefix of m in M". Thus
the following définition is obtained. A z-submonoid M is z-stablel if for
ail words u:v,w G A* :

ii strict z-prefix of uvw in M, u i u e M I
1 ___̂  ^ strict z-prefix of vw in M.

14̂  strict z-prefix of uvw in M, w G M J

Then z-stability2 and z-freeness properties are proved to be equivalent.
Moreover we give a very short proof that z-stability2 is decidable in the
rational case.

Next we are interested in the different time complexities (in the worst
case) of three algorithms which décide whether a given rational language R
is a z-code. Firstly we consider the Anselmo algorithm [3] which décides
directly whether R is a z-code. On the other hand we consider algorithms

Informatique théorique et Applications/Theoretical Informaties and Applications



A MORE EFFICIENT NOTION OF ZIGZAG STABILITY 183

using the z-stabilityl or the z-stability2: we décide whether the z-submonoid
M generated by R is z-stable then we décide whether R is the z-root of M.
We found that the complexities of the three algorithms are in exponential
time (in the size m of the minimal automaton accepting R). Ho wever the
complexity of the algorithm using the z-stability2, O(216m2) x 2 ° ( m \ is
better than that using the z-stabilityl, O(240m2) x 2°<m \ which is better
than that of the direct algorithm in [3], O((24m + m2)! x p(2*m+m3)), where
p is the size of the alphabet. Moreover in [8] an algorithm for testing whether
a finite set is a z-code is proved. The complexity of this algorithm is given
in [8]: O{2p^np^)9 where P is a polynomial of degree 2 x maxi (maxi
is the maximal length of a word in R), l is the length of R and n is the
cardinality of R. Thus this complexity is worst than the one of the previous
algorithms using a z-stability property.

Définitions and notation are recalled in Section 2. Section 3 contains the
proof that z-stability2 and z-freeness properties are equivalent. The rational
case is studied in Section 4. Section 5 deals with the complexity issue.

2. PRELIMINAIRES

Let A be an alphabet. As usual, A* is the free monoid of all finite
words over A, the empty word is denoted by e and A+ = A* \ '{e}. The
concaténation of two words u,v G A* is denoted by uv. The notations
u < v or u < v mean that u is a prefix of v {Le. v € uA*) or a proper
prefix of v {Le. v G uA+) respectively.

For any language X, X* dénotes the submonoid of A* generated by
X. A factorization on X of a word w is a tuple (xi,. . . ,xn) of words in
X such that x\...xn — w. A language X Ç A* is a code if every word
w G A* has at most one factorization on X. If X is a code then X* is
a free submonoid of A*.

For any alphabet A, we dénote by A a disjoint alphabet in bijection with
A. For every a G (A U A), we dénote by a the element associated with a.
For every word x = ai • • • an G (A U A)*, x is the word ~ân • - • ~â\. For every
subset X of (A U A)*, we dénote X — {x : x £ X} and we use the free
monoid {X U X)* generated by X U X. Then a word in the free monoid
(X U Xy is denoted by a tuple (# i , . . . , xn) where every x% is in {X U X),

We dénote by H -̂> the relation defined for ail u, v e (X U X)* by u H1-» V
if u = fag, v~fg with a = (x.x) or a = (âf,^) for some x G X.
We call X-reduction the reflexo-transitive closure of H1—•. Then with every

vol. 30, n° 3, 1996



184 B. LE SAËC et al

word w E (X U X)* is associated a unique X-reduced word Redx{w)
(Redx(u}) is the canonical représentative of the class of w in the free group
generated by X).

We dénote by \--> the relation defined for all u: v G (X U X)* by rt i—> v
if u = / a # , v — fg with iïedU(a) = e. We call l-reduction the reflexo-
transitive closure of H— .̂ Then with every word w e ( I L J Ï ) * is associated
a set Red((w) of 2-reduced words. Note that the Z-reduction is confluent iff
X is a zigzag-code [5].

A zigzag calculas (z-calculus), CJV(Î/>I,U,W2), of a word u G A* with
context (wi,W2) € A* x A* is a tuple (x\, ...,a;n) E (X u X ) * such that:

{ . x n ) = u\

2. V 1 < i < n, £ < jRedxCiüiari...^) <

When furthermore:

3. V 1 < i < n, e < RedA{w\X\...Xi) <

the z-calculus is called strict.

A z-decomposition on X of a word u is a strict z-calculus of u with
context {e,e). A z-factorization is a J-reduced z-decomposition; that is a
z-decomposition (a?i, ...,xn) such that:

V 1 < i < j < n, iZedA^i—^O / RedA{x\...Xj).

In the sequel /Wjx (or simply fw) dénotes a z-factorization of word w on
X, it is drawn with full line, while a z-calculus is drawn with dashed line
(see Figure 2 and Figure 1).

1 1—E 1̂ ï—1
Figure 1. - A z-calculus of u with context (101,102)-

Figure 2. - A ^-factorization of w.

Informatique théorique et Applications/Theoretical Informaties and Applications



A MORE EFFICIENT NOTION OF ZIGZAG STABILITY 185

Let u,v G ^4*, u is a z-prefix in X of uv if there exists a z-calculus
C(e,u.v). If the z-calculus C(e, u, v)is strict, wis a strict z-prefix of uv.
We dénote by Z-prefx(w) (resp. Z-pref-strictx(w)) the set of words
u G A* such that u is a z-prefix (resp. strict z-prefix) in X of word w.

The set X^ of words having a z-factorization on X is called the
z-submonoid of A* generated by X [7]. Of course, X1^ is a submonoid
of A* which contains X*. Let I b e a z-submonoid of A*, we call z-Root of
L the set of words having exactly one z-factorization on L. A language X
is a z-code if every word of X^ has exactly one z-factorization on X [2].
A z-submonoid L is z-/ree if z-Root(L) is a z-code.

3. EQUIVALENCE BETWEEN Z-STABILITY AND Z-FREENESS

We give hère a new définition of z-stability, which is simpler than the
définition in [6].

DÉFINITION 1: Let M be a z-submonoid of A*, M satisfies the property
of z-stability2 if:
VuiV^w G A*:

uv € Z-pref-strict\,f(uvw), w G M 1
> => v G Z-pre f-strict M {^ ^)

u G Z-prej-stTictM\U>vw), vw G M J

Figure 3).

Figure 3. - The z-stabitity2.

Remark: The word sm'c? cannot be removed in the previous définition,
indeed v is always a z-prefix of vw since fu; and w belong to M.

To prove that z-freeness and z-stability2 are equivalent, the two following
results are used.

PROPOSITION 2 [5]: Let I Ç 4 * . Let (x\,..., xn) be a z-calculus of e with
context (w. w!) such that (x\,..., xn-\ ) is l-reduced and let v, be the longest

vol. 30, n° 3, 1996



186 B. LE SAËC et al

word in the set {Red,A{x\ • •-Xi), 1 < i < n} H A , and v be the longest
word in {Red,A(xi • • -Xi). 1 < i < n} n ^4*. If n > 2 then the word uv
has two distinct z-factorizations.

COROLLARY 3 [7], [5]: Let X Ç A* such that X is not a z-code. Let w be
a word of minimal length having two distinct z-factorizations, ( # 1 , . . . ,xn)
and ( y i , . . . , ym) on X. Then x\ ^ y\ and xn ^ ym .

We deduce the following lemma:

LEMMA 4: A language X Ç A* is a z-code iffVu, v, w E A*, v has at most
one l-reduced z-calculus C{u%v^w) on X.

Proof: If for all u}v,w E A*, v has at most one Z-reduced z-calculus
C(u,v,w) in X, a fortiori every word m E X^ has at most one Z-reduced
z-calculus with context (e. e). That is m has exactly one z-factorization
on X. Conversely, if there exist u,v,w E ^4* such that v has two distinct
Z-reduced z-calculus with context (uyw) : C(u.v.w) — {x\.....xp) and
Cf(u,vyw) = ( y i , . . .,ï/g). Without loss of generality, one can assume
that x\ / y\. We consider j = r m n { l , . . . , p } and ƒ = m i n { l , . . . , g }
such that Red,A(xi . . . rcj) = Red^ivi • • •%' ) • Then the z-calculus of e,
O i , . . . , XJ,^7,..., yï) is such that (xi,..., XJ, yjr,...,2/2) is Z-reduced.
As j + ƒ > 2 and x\ ^ yi, it follows from Proposition 2 that X is not
a z-code. D

PROPOSITION 5: Let M Ç A* ?̂e a z-submonoid. If M is z-free then M
is z-stable2.

Proof: Let u^v^w E A* be three words satisfying the hypothesis of
z-stability2. We dénote by C{e,uv,w) the Z-reduced strict z-calculus
on z-Root(M) of uv with context (e, w), fw the z-factorization of w
on z-Root(M), C(e.u.vw) the Z-reduced strict z-calculus on z-Root(M)
of u with context (e,vw), fvw the z-factorization of vw on z-Root(M).
Then C\ — C(e^u,vw)C(e^uv^w) is a z-calculus of t> with context (u.w)
such that word vw is never reached (since C(e./uv./w) and C(e^u^vw)
are strict). As z-Root(M) is a z-code, C\ may be Z-reduced in a unique
z-calculus, Cj, of v with context (u,w). On the other hand, C2 = fvwfw

is a z-calculus of v with context (e,iü). As z-Root(M) is a z-code, C2
may be Z-reduced in a unique z-calculus, C2, of v with context (e, u;). Thus
a fortiori, C2 is a z-calculus of u with context (u,w), then by Lemma 4,

Informatique théorique et Applications/Theoretical Informaties and Applications



A MORE EFFICIENT NOTION OF ZIGZAG STAB1LITY 187

C[ = C'2. That is, C[ is a z-calculus of v with context (e. w) and word vw
is never reached. Hence v is a strict 2;-prefix of vw. D

PROPOSITION 6: Let M Ç A* be a z-submonoid. If M is z-stablel then
M is z-free.

Proof: Assume that M is £-stable2 and is not z-free. Let m G M be a
word of minimal length having two distinct z-factorizations on z-Root(M)
(see Figure 4):

fm = ( z i , . . . , ^ ) , Vz G { l , . . . , p} Xi G 2î-Root(M)

pm = (yi,...,î/tf), Vj G {1, . . . ,?} yj G z-Root(M)
with a;p ^ yg (assume that arp is a strict suffix of yq).

Figure 4.

We note u = RedA(yi-..yq-i), v — Vq%pl and te = xp. For u.fv>w the
hypothesis of ;?-stability2 are satisfied, thus v is a strict z-prefix of vw.
Hence C(s,v,w)w is a ^-calculus of vw = y9, a contradiction since yg G
2-Root(M). D

Using a notion of strict z-suffîx, we give a third définition of z-stability
where "prefix" and "suffix" have a symétrie part. Of course, one can prove
that this définition is equivalent to the previous ones.

DÉFINITION 7: Let M be a ^-submonoid of A*, M satisfies the property
of z-stability3 if:

uv G Z-pref-strictM{uvw).

w G Z-suff-strict M (y-y y^)
u G Z-pre f-strict M(UVW),

vw G Z-suf j'-strictM\UVW)
^-calculus of v in M on the context (u, w)

(see Figure 5).

Vu,v}w G A*: there exists a strict

vol. 30, n° 3, 1996



188 B. LE SAËC et al.

Figure 5.

4. RATIONAL CASE

In the rational case, ^-stability2 property is of course decidable, since
it is equivalent with z-freeness or z-stability property which are decidable
properties [1], [6]. However the previous proofs are rather long. We give
a short way to prove that z-stability2 property is directly decidable in the
rational case.

Notation: for any marker # (Le. # is a new letter ^ A):
Z-pref#(M) — {u#v : u E Z-prefM(uv)} and
Z-pref-strict#(M) = {u#v : u G Z-pref-strictui'U'V)}

= Z-pref#(M)A+.

LEMMA 8: If M is a rational language, then Z-pref#(M) (and thus
Z-pref-strict#(M)) are rational languages so.

Proof: We give a rational expression for Z-pref#(M)% where # and $
are two markers:
Z-pre/ #(M)$ = [M + (M UJ # ) + #A*$]Î n A*#A*$ where (Af UJ # )
is the set of words a#/3 with a/3 G M.
Obviously, Z-pre/ #(M)$ Ç [Af + (Af UJ # ) + #A*$]T n A*#A*$.
Conversely, if w G [Af + (Af UJ # ) + #A*$]Î n A*#A*$, then every
^-factorization, fw = (sci,... , xn), of w on M + (M UJ # ) + #A*$ is such
that: V l < i < n - 1 : o:z G M + (M UJ # ) and #n G #A*$. Hence a;n_i
or ^ n _ i G Af#, it follows that w G Z-pref#{M)%. Now as the opérations
UJ Î Î, +, *, n , . preserve rational sets, we have the resuit. D

PROPOSITION 9: One can décide whether a given rational z-submonoid is
z-stablel.

Proof: To décide whether a given rational 2-submonoid M is £-stable2,
it is sufficient to décide whether set M\ is a subset of Z-pref'strict#(M)
where:

Informatique théorique et Applications/Theoretical Informaties and Applications



A MORE EFFICIENT NOTION OF ZIGZAG STABILITY 189

Mi = {v#w/3u G A* with: u#vw,uv#w G Z-pre f-strict #{M) and
w^vw G M}
(see Figure 6).

Figure 6.

We note:
Ei = (Z-pref-strict#(M) LU $)

£3 = (Z-pref-strict$(M) LU #)

£4 = (A+$(M LU #)).
Then by construction: M\ = (A+S)"1^! n £2 H £3 n £4). Hence the

inclusion M\ Ç Z-pref-strict#(M) is decidable in the rational case. D

5. COMPLEXITY ISSUE

We now study the time complexity (in the worst case) of three algorithms
to décide wether a given rational language X Ç A*, is or not a ^-code. The
first algorithm was proposed by M. Anselmo in [3], the second one uses the
previous algorithm to test the 2-stability2 and the third one uses an other
définition of z-stability previously given in [6].

To simplify we number the three algorithms: the algorithm given in [2]
will be "algorithm 1", the algorithm defined in the previous sections will be
"algorithm 2", and the algorithm described in [6] will be "algorithm 3".

Recall that we can construct a (flower) two-way automaton with 2n
states recognizing the language X^ from an automaton with n states
recognizing a language X [3]. For algorithms 2 and 3 we use the foliowing
results concerning the blow-up in the number of automaton states to obtain
(one-way) automata equivalent to two-way automata:

• given a (nondeterministic) two-way automaton with n states we can
construct an equivalent nondeterministic automaton with 2°^n ' states ([9],
[H]);

vol. 30, n° 3, 1996



190 B. LE SAËc et al

• given a (nondeterministic) two-way automaton with n states we can
construct an equivalent deterministic automaton with O(2n2) states ([12]).

To conclude this section, we compare the complexities found for
algorithms 1 to 3 and the complexity of the algorithm in [8] for testing
whether a finite set is a z-code.

5.1. ALGORITHM 1

Method: Let X Ç 4* be a rational language given by AQ a deterministic
automaton recognizing X (we dénote by m the state number of Ao).

In [3] it is proved that 24 m -f m2 is an upper bound for the length of a shorter
word having two different z-factorizations on X when X is not a ^-code.

- We then détermine the words number we will have to study.

- We look at all their potential 2:-factorizations.

We have to study the words in X* with length < 24m +m2 . The number of
these words is at most : p+p2 +p 3 +... +p24m+™2 (where p is the cardinality
of the alphabet). To flnd the maximum number of potential ^-factorizations
of any word u with length n, we brutally proceed as this:

• there is at most 1 ^-factorization of u in one step;

• there are at most (n — 1) z-factorizations of u in two steps: (n — 1)
possibilities for the first step and the second one goes to the end of the word;

• there are at most (n - l)(n - 2) z-factorizations of u in three steps:
(n — 1) possibilities for the first step, (n — 2) possibilities for the second
step and the third one goes to the end of the word.

etc...

• there are at most (n — l)(n — 2)...2 * 1 ^-factorizations of u in n steps.

So we have (n — 1)! * Y^Ï=Q (ÏÏ) potential z-factorizations of u. For each
one we have to détermine whether it is really a ^-factorization of u or not.
S o the number of opérations we have to do is (in the worst case):

7 1 = 1 1 = 0

Informatique théorique et Applications/Theoretical Informaties and Applications



A MORE EFFICIENT NOTION OF ZIGZAG STABILITY 1 9 1

So the complexity of the first algorithm can be détermine as this (by
setting f{n) = £fc=i(* - 1)! x pk):

f{n)

p
< 2.

So we have: (n - 1)! x _pn < /(n) < 2 * (n - 1)! x pn , that is:
/(n) G O( (n -1 ) ! x / ) .

Thus we have the following resuit:

PROPOSITION 10: Using the test for z-code in [3], one can décide whether
a rational language, given by a deterministic automaton with m states, is a
z-code in 0((24 m + m2)! x p(24™+™2)) time (where p is the alphabet size).

5.2. ALGORITHM 2

Method: Let X Ç A* be a rational language given by AQ a deterministic
automaton recognizing X (we dénote by m the state number of AQ).

- We verify that XT is z-stable2.

- We verify that X = £-Root(XT).

To verify that X^ is z-stable2 we have to test an inclusion M\ Ç Z-
pref-strict#(M) (with the notation of proof of Proposition 9). Thus it is
sufficient to have a deterministic automaton recognizing Z-pref-strict#(XÎ)
and a non-deterministic automaton recognizing M\.
To compute an automaton recognizing Z-pref#(XÎ).$ = (X + (X u_i # )

+#A*$)Î H A*#A*$, the sizes of the different automata used are the
following:

- for (X + (X UU # ) + #A*$): 2(m + 1);

- for (X + (X UJ # ) + #A*$)Î: O(216Cm+1)2) (deterministic) , or 2°<m)
(nondeterministic) ;

- for A*#A*$ : 3 states.

vol. 30, n° 3, 1996



192 B. LE SAËC et al

Thus Z-pref#(XÎ) may be recognized by an automaton having a state
number in:

• o(2(16m2+32m>) for the deterministic case;
• 2°(m} for the nondeterministic case.

By définition of Z-pref-strict#(XÎ), automata with the same respective
sizes may recognize Z-pref-strict#(XÎ).

Building the four sets £?i, £2, £3, £4 may be as follows:
Ei = Z-pref-strict#(XT) LU $ : 2°(m) (we do not need determinism hère).

E2 =
E3 (idem

£4 =
Thus E = Ei n E2 H ̂ 3 n ^4 is computed with an automaton having
states, and also for Mx = (A+S)"1^;.
Hence M\ Ç Z-pref-strict^(X*) can be verified by an automaton having
O(216m2) x 2°fm) states.

For the second point of the method, we consider the set 2-fact(X^) of
words in J ^ having one non-trivial z-factorization on X\ S o we have
z-Root(XT) = (XT \ 2-fact(XT)). On the other hand, the set 2-fact(XT) is
represented by the following expression:

2-fact(XÎ) = (Xî LU # ) $ A + n A + # ( X Î LU $ ) n A + # I Î $ A + (see
Figure 7).

Figure 7.

We now détermine the states number of the minimal automaton recognizing
2-fact(XÎ):

- for pTÎ LU #)$A+: O(24m2);

- for ^ + # ( X Î LU $): O(24m2);

- for A+#XHA+: O(24m2).

Informatique théorique et Appîications/Theoretical Informaties and Applications



A MORE EFFICIENT NOTION OF ZIGZAG STABILITY 193

Thus for 2-fact(XT): O(2 1 2 m 2 ) .

As z-Root (XT) Ç X, we have only to test whether X H 2-fact(XT) = 0,
this is made in O (m x 21 2 m 2) time.

Thus we have the following resuit:

PROPOSITION 11: Using the z-stability2, one can décide whether a rational
language, given by a deterministic automaton with m states, is a z-code in
O(2 1 6 m ' ) x 2°(m) time.

5.3. ALGORITHM 3

Method: Let X Ç A* be a rational language given by Ao a deterministic
automaton recognizing X (we dénote by m the state number of Ao)-

- We verify that X^ is z-stable in the sensé of by studying the three
properties of z-stability [6].

- We verify that X = z-Root(X r) (as in Algorithm 2).

We have to test three conditions for X^ to décide whether a given rational
language X is z-stable [6]. A deterministic automaton A\ recognizing X^
has 0(2(4 m 2)) states. To décide the first two conditions, we make a product
A2 of six automata Ai and we have to test whether a language recognized
by A2 is a subset of X^: this is made in O(2 ' 2 8 m 2 ' ) time.

To décide the third condition, we make yet a product A3 of six automata
Ai, and we have to test whether a language recognized by A$ is a subset
of Z-pref #(XÎ): this is made in O(2( 4 0 m 2 + 8 m ) ) time.

The vérification that X = z-Root(X*) is made as previously.

PROPOSITION 12: Using the z-stability defined in [6], one can décide whether
a rational language, given by a deterministic automaton with m states, is a
z-code in O(2 4 0 m 2 ) x 2°<m> time.

5.4. CONCLUSION

We can easily note that the three complexities found are "strongly"
exponential. However according to the results, the z-stability2 leads to
the less inefficient algorithm and the direct method from [3] gives the more
inefficient algorithm (maybe for this algorithm, the given bounds are not
optimal). Moreover using the z-stability2 the complexity seems to be better
than the one found in [8] for the paticular case of finite languages X :

vol. 30, n° 3, 1996



194 B. LE SAËc et al

where F is a polynomial of degree 2 x maxi (maxi is
the maximal length of a word in X), l is the length of X and n is the
cardinality of X.

REFERENCES

1. M. ANSELMO, Automates et codes zigzag, R.A.LR.O. Theoretical Informaties and
Applications, 1991, 25, 1, pp. 49-66.

2. M. ANSELMO, Sur les codes zigzag et leur décidabüité, Theoretical Computer Science,
1990, 74, pp. 341-354.

3. M. ANSELMO, Automates bilatères et codes zigzag, Thèse L.I.T.P, 90-27, 1990.
4. J. BERSTEL and D. PERRIN, Theory of codes, Academie Press, 1985.

5. Do LONG VAN, B. LE SAËC and I. LITOVSKY, On coding morphisms for zigzag codes,
R.A.LR.O. Theoretical Informaties and Applications, 1992, 26, 6, pp. 565-580.

6. Do LONG VAN, B. LE SAËC and I. LITOVSKY, Stability for the zigzag submonoids,
Theoretical Computer Science, 1993, 108, pp. 237-249.

7. M, MADONIA, S. SALEMI and T. SPORTELLI, On z-submonoids and z-codes, RA.I.R.O.
Theoretical Informaties and Applications, 1991, 25, 4, pp. 305-322.

8. M. MADONIA, S. SALEMI and T. SPORTELLI, A generalization of Sardinas-Patterson
algorithm to z-codes, Theoretical Computer Science, 1993, 108, pp. 251-270.

9. M. O. RABIN and D. SCOTT, Finite automata and their décision problems, IBM J. Res.
Develop., 1959, 3, pp. 114-125.

10. M. P. SCHUTZENBERGER, Une théorie algébrique du codage, Séminaire Dubreil-Pisot,
1955-1956, Exposé No. 15.

11. J. C. SHEPHERDSON, The réduction of two-way automata to one-way automata, IBM
J. Res. Develop., 1959, 3, pp. 199-201.

12. M. Y. VARDI, A note on the réduction of two-way automata to one-way automata,
Information Processing Letters, 1989, 30, pp. 261-264.

Informatique théorique et Applications/Theoretical Informaties and Applications


