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BOUNDED QUERIES TO ARBITRARY SETS

by A. LOZANO (*)

Abstract. — We prove that if Pj^.y = P ^ - I - D - T for some & and an arbitrary set A, then
A is reducible to its complement under a relativized nondeterministic conjunctive réduction. By
substituting A by different sets, we dérive some known facts such as Kadin's theorem [13] and its
extension to the class C - P [5, 8].

1. INTRODUCTION

We are interested in the hierarchy of sets accepted by machines that make
a bounded number of queries to an arbitrary fixed set. Normally, only sets
from some well-known complexity class, such as NP, have been considered
as oracles for such hiérarchies, and the results derived have increased our
knowledge about the relationships among these classes or the hiérarchies
related to them (such as the boolean or the polynomial-time hiérarchies).
Here we consider arbitrary oracles in an attempt to generalize known results
and pro vide a basis for further developments.

For any set A, we call P^_r the class of sets computable by deterministic
polynomial-time machines that make k queries to oracle A. If we require
the queries to be made in parallel, we dénote the resulting class by P^_ t r

Note that in order to décide sets in P^_r, a machine can make a query to
A that dépends on the answers to previous queries (they are called sériai or
adaptive queries) while in the case of P^_w the queries depend exclusively
on the input (parallel or non-adaptive queries).

(' ) Departament L.S.I., Pau Gargallo 5, E08028-Barcelona, Catalonia, (email: lozano@lsi.upc.es).
This research was partialiy supported by grant EE91/2-298 of the Comissió Interdepartamental de
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European Community under contract No. 3075 (project ALCOM).
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92 A. LOZANO

The hierarchy

is called the bounded-query hierarchy relative to A, while its parallel
counterpart is called the bounded parallel query hierarchy relative to A
[4]. Sometimes we will consider the bounded query hiérarchies relative to
classes, instead of sets; they are defined in the obvious way: for a class
of sets C, P^L^ is U A G C ^ - T - ^ e w ^ u s e t n e P r oPe r t v m a t if A is a
<p-complete set for C, then P£_T = P£_T.

Some properties about sets whose bounded query hiérarchies collapse are
known when these sets are taken from a uniform class. The results of Kadin
[13, 14] ( P j ^ = P ( l+ i ) . r implies PH = Af), Chang [6] (A 6 NP and

4 A imply A G I0W3), Beigel, Chang, and Ogihara [5], and

Green [8] (Pf^f = PJ^P
1}_T implies PH P P = p N p P P ) can ail be seen

as conséquences of the collapse of different bounded query hiérarchies.
However, no properties of an arbitrary set A satisfying the simple équation
P^_T = P(fc+i)_T» f° r s o m e &> were known. We prove in this paper that, in
this case, À is reducible to its complement under a weak reducibility.

In order to state the main resuit more precisely, consider the following
nondeterministic reducibilities, defined in [15]. We say that a set A is <^ P -
reducible to a set B if there is a nondeterministic polynomial-time machine
that, on input x, générâtes a word belonging to B, for some computation
path, if and only if a; E A Similarly, we say that A is <^f -reducible to
B if there is a nondeterministic polynomial-time machine that, on input x,
générâtes a tuple of words that belong to B, for some computation path, if

•jvr-p l\ïp ri

and only if x G A. For any reducibility <}, we write <r ' if the machine
defining the reducibility has unrestricted access to oracle C.

In Section 3 we prove that if the bounded-query hierarchy relative to A
collapses, then there exists a sparse set S such that A <^ t ' A. In Section 4
we show that the previously known conséquences of the collapse of some
bounded query hiérarchies can be proved from our gênerai theorem, in
particular Kadin's theorem [13] and a similar resuit for the class C = P [5, 8],
It should be mentioned hère that Kadin's theorem was improved by Chang
and Kadin [7] with a collapse of the polynomial hierarchy to PH2_1^ n.
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2. PRELIMINARIES

We assume that the reader is familiar with the basic structural complexity
notions, and in particular with classes such as P, NP, and PH. The main resuit
in this paper will be applied to the classes NP and C=P. Let E = {0,1},
and define the class C = P as follows:

DÉFINITION 2.1 [19, 21]: A set A is in C = P if there exists a polynomial
time nondeterministic Turing machine M and a polynomial time computable
function ƒ such that for every x G £*, it holds that x G A if and only if the
number of accepting computation paths o f M on input x is equal to f{x).

We dénote with C^P the class of sets whose compléments belong to CUP.
Also, the notation NE stands for the class U c

N T I M E [ 2 ° n ]> md NEXP for
UJtNTIME[2n's]. Following [6], we construct "boolean languages" with
respect to a set.

DÉFINITION 2.2: For any set A, we define the following sets:

BLA(1) = A

BLA(2k) = {(xi,...,x2k-i,X2k) •

(x i , . . . ,x2k-i) G BL_4(2fc - 1) and x2k G A}

(xi,...,x2k) GBLA(2A:) or x2k+i £ A]

CO-BLA(I) = A

C O - B L A ( 2 & ) = {(xi,...,X2k-l,X2k) '

(a;i,...,x2fc_i) G co-BL^(2A;~ 1) or x2k G A}

co-BLA(2/c + 1) = {(xi,...,x2k,X2k+i) -

and x2k+i e A }

We say that a sparse set S is p-printable if there is a polynomial-time
oracle Turing machine which prints all the strings in 5 of a given length n
on input l n . Other sets that are used in the proofs are defined next.

DÉFINITION 2.3: For any set A we define the following sets:

Av - {X!#x2# . . . #xn :n>land (Vi < n)[xt G A]}

A3 — {(xi , . . . ,xn) : n > 1 and (3i < n)[xi G A]}

PARITY^4 = {(a;i,...,xfc) : ||{i : 1 < i < k and xl G A}|| is odd}
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9 4 A. LOZANO

To dénote the set PARITYJLA V ) , we will simply write PARITY^T. In
particular, in Claim 2 we will also consider the set ((Av)v)3, which equals
(.Av)3 since it trivially holds that (T4V)V = Av. This last fact explains the
special notation used to encode the instances of Av.

We define now the relativized nondeterministic reducibilities < ^ p and
<2f (see [15, 1] for the nonrelativized versions).

DÉFINITION 2.4: For any three sets A, B and C, we say that
(1) A is polynomial-time nondeterministic many-one reducible to B relative to
C (denoted A <m ' ' B), if there exists a polynomial-time nondeterministic
oracle Turing transducer M such that for every x G £*,

(a) for each computation path of M on input x and oracle C, M outputs
some string, and

(b) x G A if and only if there exists some computation path of M on input
x and oracle C that outputs some string y G B.
(2) A is polynomial-time nondeterministic conjunctive truth-table reducible
to B relative to C (denoted A <[

ctt ' ' B), if there exists a polynomial-time
nondeterministic oracle Turing transducer M such that for every a;ES*,

(a) for each computation path of M on input x and oracle C, M outputs
a string of the form t/i# . . . #yk> cmd

(b) x G A if and only if there exists some computation path of M
on input x and oracle C that outputs some string yi # . . . #yt such that
{î/l,.-.,î/fc} Ç B.

DÉFINITION 2.5: For any set B, we define the following classes related to
the above nondeterministic reducibilities:

= {A : A <lp B}
= {A : A <âf B}

Let us mention two easy observations involving the bounded-query
hiérarchies. The first observation is the upward collapse property of the
P^_T hierarchy. Whether it holds for the corresponding parallel hierarchy
is not known.

OBSERVATION 2.6 [3]: If P^_T = Pfk+1yT, thenforallj > k, P^_T — P/_r-

OBSERVATION 2.7 [3]: For any set A, the P £ T hierarchy collapses if and
only if the PJ^_ti hierarchy collapses.
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BOUNDED QUERIES TO ARBÏTRARY SETS 95

3. THE MAIN RESULT

In this section we show that if for some set A, there is a k such that
> t n e n A is reducible to its complement under a weak

réduction: A <^f'5 A, for a certain sparse set 5. After this, we will see
how Kadin's theorem and its extension to the class C = P can be easily
derived from our result.

The next result dérives directly from a technical lemma of Chang [6].

LEMMA 3.1: IfBL^ik) <fn co-BL#(&) for some k, then A <m ' B,

where S is a p-printable set in P N p i m .

Proof: The same proof as that of Lemma 1 in [6] can be used to prove
this lemma. The différence is that we take two arbitrary sets A and B (not
necessarily from NP as in [6]), and then the final NP5' algorithm that décides
A must be considered in this case as the machine that witnesses the réduction
A <mP%S B. Also, the first algorithm in that proof shows that S G A | but,
as B is hère an arbitrary set, it is not hard to check that S € pNpNP™. •

Now, we can prove the main theorem.

THEOREM 3.2: For any set A, if P £ T = PA+1^_T for some k, then

A <[çtt ' A, where S is a p-printable set in P N p l c t f.

Proof: Let j = 2k - 1. Therefore,

Ç P^-T ky Observation 2.6

- r{2k-i)-tt \see 14JJ

— rj-it

Thus, the set BLj(2J") is in Pf_tt. Now, we claim that the set P A R I T Y £ V

is <^-hard for Pf_tt and that PARITY^4/ < p BL(A
V)3(2^). These two

claims allow us to prove the following réductions:

PARITY^V by Claim 1

by Claim 2

vol. 30, n° 2, 1996



96 A. LOZANO

N P ; 5Thus, by Lemma 3.1, we have A <m ' (Av)3 for a spar se set 5 which is

p-printable in pNPNP™ ̂ . observe that (1^)3 <P (Â3)v < ^ Â V < ^ X

Therefore, A <^'S Z, where S is a p-printable set in p N p N P ^ .

Next, we prove the claims.

CLAIM 1: For any n, PARITY^T is <h-hard for P£_ft.

Proof: Let L G P^. t t , and let M be a machine that witnesses it. Let qt(x)
be the i-th query made by M on input x.

Given an instance x, it is easy to compute a boolean formula fx in
polynomial time, such that:

By standard methods, fx can be transformed into a polynomial px over Z/2
where, as usual, 0 dénotes false and 1 dénotes true. Now, transform px into
a boolean formula gx that has conjunctions for every monomial and parity
operators for sums. This is a big parity of at most 2n terms formed by
conjunctions. Now, we have

where gx can easily be transformed into an instance of PARITY^n in the
obvious way. For example, formula XA(qi(x)) 0 (XA(? I (^ ) ) AXÂ(Q2(X)))

would be transformed into the instance (gi(x), qi(x)^q2(x)). Therefore, x is
in A if and only if the instance we have constructed belongs to PARITY^ .
D

CLAIM 2: For any n, PARITY;^ <?n BL(4v]3(n).

Proof: First we reduce PARITY;^ to BL(Av)3(n). Let x = (x\,... ,#n)
be an instance of PARITY^. We can check whether at least i inputs belong
to A by trying each possible combination of % inputs, which yields an (Av)3

predicate. Let f%{x) be this predicate. Now, an odd number of the inputs
belong to A if and only if the predicate

/l(oO G (A3)V A -n(/2(x) G (AV)3 A ~^{h{x) G (AV)3 A - - •))

istrue, this is, if ƒ (x) = {fi(x), (f2(x),..., fn(x))) belongs to BL(Av)3(n).
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By the comment af ter Définition 2.3, if we simply substitute A by Av

in the above proof, we get a réduction from PARITY^V to BL(4v^(n),
as desired. D

D Proof of Theorem 3.2.

4. SOME CONSEQUENCES: THE BOUNDED QUERY HIERARCHIES OVER NP
AND C=P

The most interesting applications of Theorem 3.2 can be found for classes
which are closed under <^f-reducibility, a property satisfied by any class
that is closed under the < ^ p and <p

f-reducibirities. Three classes that satisfy
these conditions are NP, C^P and NEXP l. We show now the conséquences
for the first two classes (for NE, read the comment in the next section).

Now, we show that if we take the set A in our main result from the class
of NP-complete sets (for <p-reducibility), we obtain Kadin's theorem.

COROLLARY 4.1 [13]: If P^P
T = Pfk+l)„T for some k, then PH Ç Af.

Proof: The hypothesis is equivalent to the equality

which is also equivalent to Pf l^ = Pn£Jn_:r- Theorem 3.2 implies that

SAT <cïf*5 SAT for some p-printable set S in pNpNF>ctt . As NP is closed
under <^f -reducibility, this means that co-NP Ç NP 5 for some p-printable
set S in Af, which implies that PH Ç Af, by the results in [11]. D

The next result was proved by Green [8] and independently, in a stronger
form, by Beigel, Chang, and Ogihara [5]. We present it hère also as a
conséquence of our main result.

COROLLARY 4.2 [8, 5]: If P£rr
P = PfjT+^-T M some k, then PH P P Ç

pNPpp

Proof: By a similar argument to that of the previous corollary, we can
state that C^P Ç C^P 5 , for some p-printable set S in P N P # P , since C^P
is closed under <^f -reducibility -1.

Consider the inclusions N P c ^ p S Ç 3C^P 5 Ç C^P 5 , where the first one
dérives from Torân [20], and the second one from the fact that C^P is closed
under <^p-reducibility. By induction we have that P H c ^ p S Ç C^P 5 .

1 The case of NP is well known. The closure of C ^ P under the < ^ p and <^-reducibilities is
proved in [5] and esentially the same results can be found in [9]. For NE, the proof is similar to
that of NP. For related results. see [17].
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98 A. LOZANO

Now, also from [20] we know that PH P P Ç PHC=P, and then
P H P P Ç P H c ^ p S Ç C^P 5 . But this last class can be shown to be included
in P N P * , by using the information that we have about 5, and hence in
P N p P P . Therefore PH P P C P N p P P . D

5. CONCLUSIONS AND OPEN PROBLEMS

We have given the first known property for an arbitrary set A when it
satisfies P^_^ = ^fk+D-T ^or s o m e &. We n a v e Proved that, in this case, A

is reducible to its complement under a weak réduction: A <ctt ' A, for some
sparse set S (whose complexity is specified in terms of that of A). We have
also seen that this leads us to conclude some known facts about the collapse
of the bounded query hiérarchies relative to NP and C-P (or about the
collapse of their respective boolean hiérarchies, which is equivalent in these
cases). This generalizes the mentioned results for the classes NP and C=P,
but it is not quite as sharp as the best collapse known in the case of NP [7].

A first question left open in this paper is: Can we conclude some interesting
conséquence for some other complexity class? It seems interesting to apply
our theorem to the class of nondeterministic exponential time since, although
Hemachandra [10] proved the collapse of the strong exponential hierarchy
to P N E , it is not known whether a stronger collapse (as PĴ J-p = PfjS-iuT^
could cause some unlikely conséquence. In fact, the main resuit in this
paper implies that if the bounded-query hierarchy over NE collapses, then
co-NEXP Ç NEXP/poly 2. Does this imply that NEXP = co-NEXP?

Apparently more difficult problems arise when one tries to obtain some
conséquence from the equality of the classes P W - T an(* ^A- ^ote tnat>
however, we know some conséquences of the facts 3 PF^ l ogl = PF*4,
PFA[k] = PFA[fc+i]^ a n d n o w PA_T = p -^ + 1 ) r . This seems to be a hard

question since, by taking A = SAT, this would give us a conséquence of
the fact A2 = Sf, which is still unknown.

2 Note that it is easy to prove by padding arguments that the bounded-query hierarchy over NE
collapses if and only if the bounded-query hierarchy over NEXP collapses.
3 For the first one, from the results by Amir, Beigel, and Gasarch [2] it follows that P F A [ l o s ] = P F A

implies that A e NP/po/y Pi co-NP/poly. The second fact is equivalent to saying that A is cheatable;
also in [2] it is shown that in this case A E P/poly.
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