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MONOTONOUS AND RANDOMIZED
REDUCTIONS TO SPARSE SETS (*)

by V. ARVIND (l), J. KÖBLER (2) and M. MUNDHENK (3)

Abstract. - An oracle machine is called monotonous, if after a négative answer the machine
does not ask further queries to the oracle. For example, one-query truth-table, conjunctive, and
Hausdorff reducibilities are monotonous. We study the conséquences of the existence of sparse
hard sets for different complexity classes under monotonous and randomized réductions. We prove
trade-ojfs between the randomized time complexity of NP sets that reduce to a set B via such
réductions and the density ofB as well as the number ofqueries made by the monotonous réduction.
As a conséquence, bounded Turing hard sets for NP are not co-rp reducible to a sparse set unless
RP = NP. We also prove similar results under the apparently weaker assumption that some solution
of the promise problem (1SAT, S AT) reduces via the mentioned réductions to a sparse set.

Résumé. - Une machine d'oracle est appelée monotone si elle ne pose pas d'autre question
à l'oracle après une réponse négative. Par exemple, les réductibilités 1-tt, conjonctive ou de
Hausdorff sont monotones. Nous étudions les conséquences de l'existence d'ensembles dures et
sparse pour différentes classes de complexité sous des réductions monotones et randomisées. Nous
prouvons des trade-off entre la complexité randomisée du temps d'ensembles NP qui réduisent à
un ensemble B via de telles réductions et la densité de B, aussi bien que le nombre des questions
posées par les réductions monotones. Par conséquence, des ensembles durs pour NP par rapport
à la réductibilité bornée de Turing ne sont pas réductibles co-rp à un ensemble sparse sauf si
RP = NP. Nous prouvons également des résultats similaires sous l'hypothèse apparemment plus
faible qu'une solution du promise problem (1SAT, SAT) réduit via les réductions mentionnées à
un ensemble sparse.

1. INTRODUCTION

An important area of research in structural complexity theory concerns
réductions to sparse sets, Le. sets which only contain a polynomially bounded
number of strings up to each length. This study has its roots in a conjecture
by L. Berman and J. Hartmanis [9] that there are no sparse NP-complete sets
under many-one réductions. Mahaney settled the conjecture by proving that
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156 V. ARVIND, J. KÖBLER AND M. MUNDHENK

if any NP-complete set many-one reduces to a sparse set then P = NP [28].
Related work has been done in [8, 14, 41, 42]; see Section 4 for a detailed
discussion. From a different perspective, the possible existence of sparse
Turing-hard sets for NP was studied in [22]. This question is equivalent to
NP-complete problems having nonuniform polynomial-size circuits. Karp,
Lipton, and Sipser proved that if NP has sparse Turing-hard sets then
the polynomial-time hierarchy collapses to Y>p

2 [22]. It is also known that
the existence of sparse Turing-complete sets for NP would collapse the
polynomial-time hierarchy to PNPP°d [21].

The main purpose of this paper is to investigate monotonous and
randomized réductions to sparse sets and to use the left set method to dérive
unlikely complexity class inclusions from the assumption that intractable
sets reduce to sparse sets under these réductions. Discovering unlikely
conséquences of the existence of sparse hard sets for different kinds of
polynomial-time truth-table reducibilities has become an active research area
since the breakthrough resuit of Ogiwara and Watanabe [31] showing that
NP does not have sparse hard sets under bounded Turing réductions unless
P = NP. The proof relies on the notion of left sets, which are NP sets with
a special self-reducibility structure. The left set method turned out to be
a well suited tooi to prove collapse results concerning sparse sets. Using
this method similar results were obtained for polynomial-time conjunctive
réductions [3, 32]. Also the proof in [3] showing that no bounded Turing
hard set for NP conjunctively reduces to a sparse set unless P = NP uses
the left set technique. Furthermore, it makes use of the fact that the sets
in R^T (R?c (SPARSE)) are monotonously reducible to a sparse set. The
reason for this is that the class R?c (SPARSE) has the algebraic structure of
a set ring {Le. it is closed under union and intersection). In this paper we
investigate conséquences of NP sets reducing by monotonous réductions to
sets in the class i2m~rp(SPARSE), which also forms a set ring. We prove
as the main resuit that no bounded Turing hard set for NP co-rp reduces to
a sparse set unless RP = NP.

The paper is organized as foliows: In Section 3 we consider monotonous,
non-adaptive, and positive oracle machines and show how the many-one,
conjunctive, and Hausdorff reducibilities can be characterized by them.

Section 4 contains an overview of results concerning réductions to sparse
sets. In particular, we make a brief tour describing for different types of
reducibilities collapse conséquences for the polynomial-time hierarchy under
the assumption that there are sparse hard sets for NP. In the overview we
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REDUCTIONS TO SPARSE SETS 157

also touch upon certain other related issues concerning the complexity of
sparse sets.

In Section 5 we prove our main resuit. We consider the case that an NP
set A reduces to some set B via the composition of a Hausdorff and a
co-rp many-one réduction. Similar to the results of [17] for the deterministic
truth-table case, we dérive interesting trade-offs between the density of the
set B, the number k (n) of queries in the Hausdorff réduction, and the
randomized time complexity of A. As a special case we obtain that no
bounded Turing hard set for NP co-rp many-one reduces to a sparse set
unless RP = NP. This extends the resuit in [32] that an NP-complete set is
not < ™~rp reducible to a sparse set unless RP — NP.

In Section 6 we consider the problem of reducing some solution of
the promise problem (1SAT, SAT) to sparse sets. In particular, we show
that the conclusion RP = NP can be derived from the apparently weaker
assumption that some solution of the promise problem (1SAT, SAT) is in
Rp

bT(RZrp (SPARSE)).

2. NOTATIONS

Our standard alphabet is E = {0, 1}. The set Uo<z<™ s * o f a11 strings
in E* of length up to n is denoted by E - n . For any set A C E * ,
A^n = A n E^n , and A=n = 4 n E n . XA dénotes the characteristic
function of A. The length of a string x is denoted by | x |, and the cardinality
of a set A is denoted by \\A\\.

A subset T of 0* is called a tally set. The density function of a set A is
defined as density A (n) = || A-n ||. A set 5 is called sparse if its density
function is bounded above by a polynomial. We use TALLY and SPARSE
to dénote the classes of tally and sparse sets, respectively. For a class of
languages C, co-C is the class of ail sets whose compléments are in C, and
(JC dénotes the union of ail sets in C. (-, •) dénotes a standard polynomial-
time invertible pairing function such that {0\ 0J ) G 0* for alH, j > 0. Such
a pairing function can be extended in a standard fashion to encode arbitrary
séquences (xi, . . . , Xk) of strings into a string {xi, . . . , Xk). Where intent
is clear we write ƒ (xi, . . . , Xk) in place of ƒ ((zi , . . . , xu )).

The reducibilities discussed in this paper are the standard polynomial-time
reducibilities defined by Ladner, Lynch, and Selman [27], the Hausdorff
reducibility introduced by Wagner [40], and the co-rp many-one reducibility
{cf. [1, 12, 34]).

vol. 30, n° 2, 1996



158 V. ARVIND, J. KÖBLER AND M. MUNDHENK

DÉFINITION 2.1: Let A and B be sets, and let ƒ and g be polynomial-time
functions,

1. A truth-table reduces to B (A < ^tB) via f and g9 if for all x, f (x)
computes a list of queries (x\. ..., xm } such that x G A if and only if

2. A conjunctively reduces to B (A < PB) via f,ifA< p
tB via ƒ and

g where g (x. b\ ... 6m) is always the and-function A^Lj b%. The définition of
the disjunctive reducibility (A < ^B) is analogous. As usual, the boolean
and-function on zero variables évaluâtes to 1, and the boolean or-function
on zero variables évaluâtes to 0.

3. A Hausdorff reduces to B (A < P
MB) via ƒ, if A < ftB via f

and g where g(x, &i.. .6m) is always the parity-function ©"Ij b%, and
for all x, ƒ (x) computes a list of queries ( x\, . . . , xm ) such that
XB&i) > XB(%2) > . . . > XB&m)- (This means that x G A if and
only if max {0 < i < m \ for all j — 1, . . . , i : Xj G B} is odd.)

For any function h : N ^ N and reducibility < ?, we use A < P
h<ns r B

to dénote that A < PB via a réduction that on any input x asks at most
h{\x\) queries to the oracle. We write A < %rB, if A < \{n\rB for
some constant function h, saying that A bounded r reduces to B. The class
{A | 3B e C : A < $B} of sets which < r reduce to a set in the class
C is denoted by #?(C).

Next we define the polynomial-time randomized reducibility that we use
in this paper. In a co-rp many-one réduction from A to B the queries are
randomly generated, and unlike the deterministic case above, the outcome
dépends on the member-ship of an exponential number of queries in B. We
require that the probability of the réduction being correct is 1 for instances
in A, but for instances not in A it can be as small as llpoly.

DÉFINITION 2.2: A < m~rpB if there exist a polynomial-time function ƒ
and polynomials p and q such that for ail x,

x G A ^> Prob [ƒ (x, w) E B] = 1, and

x£A^ Prob [ƒ 0 , w) eB]<l~ 1/p (| x |),
where the string w is chosen uniformly at rondom from the set T,q^x^.

Observe that for every set B, R2c (B) C R%Trp (B) andr r
RTIME(t(n)) dénotes the class of sets A accepted by O(t(n)) time

bounded randomized Turing machines (cf. [16]) that have zero error
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REDUCTIONS TO SPARSE SETS 159

probability for inputs not in A (and error probability at most 1/2 for instances
in A). RP = RTIME(n°<1>).

For further notations we refer to [7].

3. REDUCIBILITIES AND ORACLE MACHINE PROPERTIES

In this section we investigate how the restricted truth-table reducibilities
defined earlier can be expressed by means of combinations of different
restrictions on oracle machines. Unless otherwise specified, all the oracle
machines considered hère are polynomially time bounded.

DÉFINITION 3.1:

1. An oracle machine M is called non-adaptive, if M does not use the
oracle to compute its queries. In a sense, the process of computing the queries
to the oracle is independent of the oracle.

2. An oracle machine M is called monotonous w.r.t. an oracle set B, if for
every input x, the séquence of queries y\, . . . , ym produced by MB (x) is
monotonous w.r.t B, i.e. XB (yi) > XB (]Ji+i) for i — 1? . . . , m — 1. M i's
called monotonous, if M is monotonous w.r.t. any set B. We use A < ^B to
dénote that A — L {M.t B) for an oracle machine M which is monotonous
w.r.t. B.

3. [35] An oracle machine M is called positive, if for ail sets B, Bf it
holds that B Ç B' implies L(M, B) Ç L(M, B1).

It is well-known [27] that A < P
UB if and only if A = L (M, B) for

a non-adaptive oracle machine M. We give further characterizations of
reducibilities in terms of the three orable machine properties defined above.
These characterizations shed a new light on the Hausdorff reducibility and
its composition with the conjunctive reducibility.

PROPOSITION 3.2: Let A} B be sets with B / 0 . Then A < \dB if and only
if A = L (M, B)for a non-adaptive oracle machine M which is monotonous
w.r.t. B.

Proof: Clearly, and Hausdorff réduction A < ^dB can be performed by a
non-adaptive oracle machine which is monotonous w.r.t. B. For the converse,
assume that A = L (M, B) for a non-adaptive oracle Turing machine M
which is monotonous w.r.t. B. Let y\. ..., ym be the séquence of oracle
queries of M on input x, and let y2l. . . . , yik be the subsequence of maximal
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160 V. ARVIND, J. KÓBLER AND M. MUNDHENK

length such that for all j = 1, . . . , fc, M{y^ y**-J (x) / M{y^ v^} (x).
Consider the polynomial-time function ƒ defined as follows:

ƒ rx\ = / ( Vh, • • • , S/û >, ^ 0 O) rejects,
l < Î/+» 2/n • • •, Vik >, otherwise,

where y_|_ is a fixed string in B. It is easy to verify that A < ^ 5 via ƒ. •

PROPOSITION 3.3: Let A, B be sets with B / 2*. 77MTI A < ?
if A — L (Af, B) for a monotonous, positive oracle machine M,

Proof: Assume that A < V
CB via ƒ. Consider the following oracle machine

Af. On input x, M first computes ƒ (x) — (y i , . . . , y ï ? ï) . Then M asks
consecutively the queries y\, . . . , ym as long as the answers are positive. In
the case of a négative answer M immediately rejects without asking further
queries, otherwise M accepts. Clearly Af is monotonous w.r.t. any oracle
set. M is also positive, since an input is only accepted if all queries are
answered positively by the oracle.

To prove the reverse direction, assume that A — L (M, B) for a
positive and monotonous oracle machine M. Let yo be a fixed string in
B, and consider the polynomial-time function ƒ computed by the following
algorithm.

input x

if M^ (x) rejects then

output f (x) = {yo )

else

let s/1, . . . . ym be the queries asked by M s ~ (x). and

let i > 0 be the least index such that M^Vl y^ (x) accepts

output f(x) = <yi, . . . , yt)

end

First assume that ƒ (x) = ( yi, . . . , y\ ) and that {y3, . . . , y,} Ç B. By the
définition of ƒ it follows that M ^ 1 *•• 'y^ (x) accepts. Therefore, since M
is positive, also MB (x) accepts.

Now assume that MB (x) accepts. Since M is positive, it follows that
M^ (x) accepts. Let y\. . . . . ym be the queries asked by M ^ (x). and let
ƒ (rr) = ( yi , . . . , y; ). By way of a contradiction let j < i be the least index
such that y% g B. By the définition of ƒ it follows that the first j queries
of MB (x) are yi , . . . , yj , and that M^Vl y^^ (x) rejects. Since M is
monotonous, also MB (x) rejects, a contradiction. •

Informatique théorique et Applications/Theoretical Informaties and Applications



REDUCTIONS TO SPARSE SETS 1 6 1

The next proposition should be compared with the characterization of the
composition of the Hausdorff and conjunctive reducibililies in terms of the
non-monotonie Hausdorff reducibility given in [5].

PROPOSITION 3.4: For every set B, Rv
hd {Rp

c (B)) = Rp
h (B).

Proof: If A G R?hd (Rc (B)) via a Hausdorff réduction function ƒ and a

conjunctive réduction function g, then x G A can be easily decided knowing

the maximum initial subsequence s of ( y | , . . . , y£ , . . . , y™, . . . . y™ )

containing only positive queries, where ƒ (x) — ( y i , . . . . y m ) , and

9 ( V j ) = < î / i , • • • , V k , ) '

For the converse, assume that A — L (M, 5 ) for a monotonous oracle
machine M. By Proposition 3.2, it suffices to show that A = L (M', B%nd),
where M1 is the following non-adaptive oracle machine that is monotonous
w.r.t. B%nd, and B»nd - {(zu . . . , zn ) | for ail i = 1, . . . , n : z% G B}
G i « ( B ) .

M' on input x simulâtes M^ (x) and collects all the queries yi, . . . . ym .
Then M' asks the queries {yi ), {yi, y2), . . . , {y\, . . . , ym ) and accepts if
and only if M^Vl y^ (x) accepts, where i G {0̂  . . . , m} is the maximum

index such that {y\, . . . , y2 ) gets a positive answer from the oracle.

Clearly, M! is non-adaptive and monotonous w.r.t. B^nd. •

As a straightforward conséquence of the above proofs we get

PROPOSITION 3.5: For every class C: if C is closed downward under < c
reducibility, then R ^ ^ ^ C ) Ç RP

k{n)_hd(C).

Finally we characterize the many-one reductibility by oracle machines
which are at the same time non-adaptive, positive, and monotonous.

PROPOSITION 3.6: Let A, B be sets with B / 0 and B 7̂  £*. Then A < ^B
if and only if A ~ L (Af, B) for a non-adaptive, positive, monotonous oracle
machine M.

Proof: It is immédiate that < fn has the three properties. For the converse,
assume A — L (M, B) for a non-adaptive, positive, monotonous oracle
machine M. Let yi, . . . , ym be the queries of M(x). and assume that
M does not décide x independently of the oracle answers. Since M is
monotonous, we have XB (yi) > • • - > XB {Vm), and since M is positive,
there exists an index i, 1 < i < m, such that M^Vl y^ (x) accepts if and
only if j > i. Thus, x G A <£> yl G B. •

vol. 30, n° 2, 1996



162 V. ARVIND, J. KÓBLER AND M. MUNDHENK

The caracterizations of reducibilities performed by monotonous oracle
machines are summarized in the following table.

oracle machines being perform exactly
non-adaptive positive monotonous réductions of type

Of special interest in the present paper are réductions where the number of
queries is bounded by a constant. It is well-known that the closure of any class
under bounded Turing réductions is the same as its closure under non-adaptive
bounded réductions. The following Theorem states sufficient properties of
a class to have the same closure under bounded Turing réductions and
monotonous non-adaptive bounded réductions. A class C of sets is said to be
a set ring if it includes 0 and £* and is closed under union and intersection.

THEOREM 3.7 [5]: Let C be a set ring which is closed under many-one
réductions. Then RP

T (C) = RP
hd(C).

Using the fact that every sparse set is in R% (TALLY) [11] it
is easy to see that Rp (SPARSE) forms a set ring, and therefore
Rbhd (Rc (SPARSE)) = RlT {Ri (SPARSE)) [5]. As shown in the next
theorem, also the réduction class Rm~rp (SPARSE) forms a set ring giving
the following characterization.

(SPARSE)) = Rp
hT (E%'rp (SPARSE)).THEOREM 3.8: Rp

hd

Proof: We need to show that R%~rp (SPARSE) is a set ring.
Since SPARSE Ç R™"rp (TALLY) [11, 34], it suffices to shown that
RZrp (TALLY) is a set ring. Assume that A < %~r*Ti and B < %~rpT2,
for sets Ti, T2 G TALLY, via polynomial-time functions ƒ, g and
polynomials p and q (we can assume that there are uniform polynomials
corresponding to both réduction functions), Le.

x E A ^> Prob [ƒ (x, w) = 1, and

x £ A => P r o b [ƒ (x , w)eT1]<l- 1/p (| x

Informatique théorique et Applications/Theoretical Informaties and Applications



REDUCTIONS TO SPARSE SETS 163

and
x G B =>• Prob [g (x, tu) G T2] = 1, and

x£B^> Prob [p (a;, W ) G T 2 ] < 1 - 1/p (| x |),

where tu is chosen uniformly at random from the set £3 (M). Consider the
two tally sets

Tor = {( a, b ) | a G Ti or 6 G T2} and

r a nd = {(a, 6 ) | a G T i a n d 6 G T 2 } ,

and define the réduction function h as follows. For strings w\, W2 G S* of
the same length, /i (#, w\W2) = {ƒ (x, wi), # (:r, u>2) )• Then we have that

x G i U B ^ Prob [/i {x, w) G Tor] = 1, and

x £ AUB ^ P r o b [ / i ( x , iw) G Tor] < 1 - (l/p(\x\))2,

and

x G A n B => Prob [/i (x, tu) G Tam/] = 1, and

x^ADB^ Prob [/i (ar, u;) G Tand] < 1 - 1/p (| x |),

where the string w is chosen uniformly at random from the set T,2^\x\\ This
shows that Rm'rp (TALLY) is closed under union and intersection. •

4. OVERVIEW ON REDUCTIONS TO SPARSE SETS

There has been over a decade of research investigating conséquences of
the existence of hard NP sets in various sparse réduction classes. In this
section we give a brief historical account leading to some of the most recent
results in this area. In order to show the relationships between the various
considered sparse and tally réduction classes we also give a brief summary
of inclusion relationships between the most important of these réduction
classes. This overview is not meant to be comprehensive about réductions
to sparse sets. A more complete survey on the complexity of sparse sets
can be found in [18].

4.1. Réductions to sparse sets

As mentioned in the introduction, the study of réductions to sparse sets
was started by the conjecture of L. Berman and J. Hartmanis [9] that there

vol. 30, n° 2, 1996



164 V. ARVIND, J. KÖBLER AND M. MUNDHENK

are no sparse NP-complete sets under < fn réductions. The first result was
P. Berman's proof that P = NP if some tally set is NP-complete [8]. This
result was followed by Fortune's proof that if there is a sparse set that is
complete for co-NP then P = NP [14]. Both results were proved by giving a
polynomial-time algorithm for SAT under the assumption that SAT reduces
to a tally set (respectively co-sparse set in the case of Fortune's result).
The main idea in the algorithm was to carry out a depth-first search on the
self-reduction tree for SAT formulas. The self-reduction tree, which could
have exponentially many nodes, is pruned using the assumption that SAT
reduces to a tally set (or co-sparse set), so that only a polynomially bounded
number of the nodes in the tree need to be examined.

THEOREM 4.1:

1. [8] / /SAT < fn-reduces to a tally set, then P = NP.

2. [14] //SAT < fn-reduces to a sparse set, then P = NP.

However, the ideas of Berman and Fortune directly did not work to
résolve the sparseness conjecture. Finally, Mahaney settled the conjecture
by proving his well-known result.

THEOREM 4.2 [28]: If SAT < fn-reduces to a sparse set, then P = NP.

The proof of Mahaney's theorem was essentially based on the depth-first
search with pruning of the self-reduction tree for SAT formulas which was
used by Fortune in part 2 of Theorem 4.1. But the crux of the proof was
a census argument. Given the exact census (up to some suitable length) of
the sparse NP set to which SAT is assumed to reduce as advice information,
Mahaney argued that a many-one réduction of SAT to the sparse set can
be modified to a many-one réduction of SAT to the sparse set. Since the
census can take only polynomially many possible values the algorithm in
Fortune's proof can be used repeatedly for each possible value of the census
(one of which is the correct value) and, when run for the correct census
value, it would detect the satisfiability of the input formula by constructing a
satisfying truth assignment for it, where the truth assignment is determined
by a root-to-leaf path in the self-reduction tree.

Around the same time but motivated more algorithmically, Karp, Lipton,
and Sipser investigated the possibility of NP-complete sets being recognizable
by nonuniform polynomial-size circuits. They obtained also a négative
conséquence of this assumption in the form of a collapse of the polynomial-
time hierarchy PH to the second level.

Informatique théorique et Applications/Theoretical Informaties and Applications



REDUCTIONS TO SPARSE SETS 165

THEOREM 4.3 [22]: If SAT has nonuniform polynomial-size circuits (Le.
SAT is in P/poly), then PH = Ef.

The results of Mahaney, and of Karp and Lipton tie up due to the following
connection between polynomial-size circuits and sparse sets. It is known that
the class of sets with nonuniform polynomial-size circuits coincides with
the class of sets polynomial-time Turing (or even truth-table) reducible to
sparse sets.

THEOREM 4.4:

1. [10] i^, (SPARSE) = i^(TALLY).

2. [9] R1? (SPARSE) = P/poly.

Interestingly, the existence of sparse sets that are complete for NP under
polynomial-time Turing réductions implies a collapse of PH to @2 • This was
proved by Kadin [21], some years later, applying also a census argument.
His argument, in a nutshell, is that the density function of a sparse set in
NP can be computed making logarithmically many queries to a suitable NP
oracle. Further, given spécifie values of the density function, an NP base
machine accessing the sparse NP set as oracle can easily be modified to an
NP machine without oracle which accepts the same language.

THEOREM 4.5 [21]: If there is a sparse Turing-complete set for NP, then
PH = e*.

Immerman and Mahaney [19] showed that the resuit of Karp and Lipton is
optimal for relativizable proof techniques. Thus, after the results of Mahaney
and of Karp and Lipton, the natural question was for which réductions whose
strengths lie between many-one and Turing réductions does the existence
of sparse sets hard for NP imply P = NP. Several results follwed in quick
succession whose proofs are essentially based on the depth-first search with
pruning technique of Fortune [14]. We summarize these results below.

THEOREM 4.6:

1. [42] //SAT < v
vos_hT-reduces to a sparse set, then P = NP.

2. [42] //SAT < v
V0S^hT-reduces to a sparse NP set, then P = NP.

3. [38, 41] /ƒ SÂT < l-reduces to a sparse set, then P = NP. l

4. [41] //SAT < l- and < v
d-reduces to a sparse NP set, then P = NP.

(') A < pOS_(,7--réduction is a < ^-réduction where the "formula" which évaluâtes the answers
of the oracle is positive, Le. it contains no négation symbol.
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166 V. ARVIND, J. KÖBLER AND M. MUNDHENK

The existing methods were not adequate to handle more flexible
reducibilities, in particular the bounded Turing reducibility. After a gap
of several years, the bounded Turing reducibility case was resolved in a
breakthrough paper in the area by Ogiwara and Watanabe [31]. They showed
that if there is a sparse set that is hard for NP under bounded Turing réductions
then P — NP. Their proof exploits a new self-reducibility structure in certain
NP sets called left sets. Given an NP set A and a polynomial-time computable
relation associated with A, there is a corresponding left set Left (A) which is
in NP. For any set A e NP it holds that A < fn Left (A). For NP-complete
sets A it also holds that Left (A) < mA.

THEOREM 4.7 [31]: For any set A in NP, if Left (A) < \T-reduces to a
sparse set, then Left (A) E P. Therefore, if S AT < P

T-reduces to a sparse
set, then P = NP.

The left set method turned out to be a powerfui and convenient method to
prove collapse results under the assumption that there is a sparse set that is
hard for NP. In [3] Theorem 4.7 was extended to a more gênerai reducibility.

THEOREM 4.8:

1. [3, 32] For any set A in NP, ifLeft (A) < p-reduces to a sparse set, then
Left (A) E P. Therefore, ifSAT < l-reduces to a sparse set, then P = NP.

2. [32] If SAT < ïnrp-reduces to a sparse set, then RP = NP.

3. [3] For any set A in NP, ifLeft (A) e Rp
bT {Rp

c (SPARSE)), then
Left (A) e P. Therefore, if SAT e Rp

bT {Rp
c (SPARSE)), then P = NP.

Saluja [33] proved that the left-set technique cannot yield a collapse of P
and NP under the assumption that NP Ç Rp

d (SPARSE).

Finally, we take a brief look at conséquences of other complexity classes
like PP, C=P, PSPACE, UP, and Mod^P being reducible to sparse sets. It
turns out that similar results as for NP will always hold for the complexity
classes PP, C=P, and PSPACE. The now Standard argument [30, 3] for
these classes is as follows: Assume that for some truth-table reducibility
r, PP Ç i # (SPARSE) (respectively, co-C=P Ç Rp (SPARSE)), and that
NP Ç Rp

r (SPARSE) implies P = NP. Since PP and co-C=P contain NP,
P = NP follows. Further, PP and C = P have complete sets that are one
word-decreasing self-reducible [6, 30], and every one word-decreasing self-
reducible set in RP

T (SPARSE) is in Sf [6]. Thus, PP = P (respectively,
C = P = P) follows. The argument for the class PSPACE is similar using the
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resuit [22] that PSPACE Ç R1^ (SPARSE) implies PSPACE Ç Ef. We
formalize this observation into the following gênerai theorem.

THEOREM 4.9 [30, 3]: If for some truth-table reducibility r it holds that
NP Ç i^(SPARSE) implies that P = NP, itfollowsfor any class /C E {PP,
co-C:=P,PSPACE} that JC Ç i # (SPARSE) implies K = P.

The above theorem yields the following results (from [30, 3]) as a direct
conséquence of the corresponding results for NP.

COROLLARY 4 . 1 0 :

1. [30] For any class /C G {PP, C=P, PSPACE}, if K Ç R^T (SPARSE)
then K = P.

2. [3] For any K E {PP, C=P, PSPACE}, if K C i ^ T (R? (SPARSE))
then K = P.

For the Mod&P classes, there are similar results exploiting the special
word-decreasing self-reducibility structure of certain complete sets for these
classes [30, 3].

THEOREM 4.11:

1. [30] For ail k > 2, if UodkP Ç i?£T (SPARSE) then Mod^P = P.

2. [3] For ail k > 2, (f Mod*P Ç / # (SPARSE) tfrcn Mod^P = P.

It is an open question whether Mod^ P Ç R^T (R^ (SPARSE)) implies
ModfcP = P.

4.2. The complexity of small descriptions

If a set A is reducible to a sparse set, does it follow that A is reducible
to some sparse set that has a "simple" description relative to A? In this
subsection we discuss this well-studied question and state applications (in
the form of collapse results) of certain spécifie answers to this question. This
study originates in the notions of équivalence and reducibility to sparse sets
(see for example [36, 2, 15]). It concerns the complexity (relative to A) of
small descriptions for sets A which are reducible to sparse sets. Gavaldà and
Watanabe [15] obtained an important lower bound for the case of Turing
réductions by constructing a set B that is Turing reducible to a sparse set
but is not Turing reducible to any sparse set in NP (B) n co-NP (B). This
resuit implies that the class of sets Turing equivalent to some sparse set is a
proper subclass of P/poly resolving what was a long-standing open question.
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THEOREM 4.12 [15]: There is a set B that is in R^ (SPARSE) but is not
Turing reducible to a sparse set in NP (B) Pi co-NP (B).

The séparation of équivalence and réduction classes for restricted truth-
table reducibilities is further investigated in [2]. In a broader setting it is of
interest to know for various classes of sets that reduce to sparse sets, the
complexity of the easiest sparse sets to which such sets reduce. This question
is first investigated in [3] where upper bounds for the relative complexity of
sparse descriptions are proved for certain truth-table reducibilities.

THEOREM 4.13 [3]: Any set A that disjunctively reduces (respectively,
bounded disjunctively reduces, 2-truth-table reduces) to a sparse set in fact
disjunctively reduces (respectively, bounded disjunctively reduces, 2-truth-
table reduces) to a sparse set that is in A1^ (A) (respectively, Qp (A). 0 | (A)).

The notion of small descriptions is formalized in [15, 5]. Let < r be a
reducibility. A sparse set S is a sparse r-description for a set A if A < rS. For
every set A in Rr (SPARSE), we are interested in finding upper bounds for
the complexity of sparse r-descriptions relative to A. A sparse r-description
satisfying the established upper bound is called a simple sparse r-description
(with respect to that upper bound).

Simple sparse descriptions for a set A can be used to dérive lowness
properties for A. In order to prove the lowness of a set A that reduces to a
sparse set, first a suitable bound for the complexity of a sparse description for
A is derived. Using this description, a deterministic enumeration technique
similar to that of Mahaney [28] or a census technique similar to that of Kadin
[21] is used to replace the sparse oracle S (and thus A). For self-reducible
sets stronger (unrelativized) simplicity results and consequently, unrelativized
lowness results can be derived. In [5] this approach is extensively used and
several new lowness results are proved for sets that reduce to sparse sets
for reducibilities of different strengths. These lowness results are based on
suitably obtained simple descriptions for the concerned set. We state some
of these results that in turn yield collapse results.

THEOREM 4.14:

1. [5] For every set A G Rp
h (SPARSE) there is a sparse set S G NP (A)

such that A G R% (S).

2. [3] For every set A G Rp
d (SPARSE) there is a sparse set in Af {A)

to which A disjunctively reduces.
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THEOREM 4.15 [5]:

1. For every word-decreasing 2 self-reducible set A in RPd (SPARSE) there
exists an FF* -printable sparse set S such that A < ^5 and thus A is low
for Af.

2. For every word-decreasing self-reducible set A in Rp
h (SPARSE) there

exists an FPNP-printable sparse set S such that A < p
hS and thus A is

low for Ag.

Theorem 4.15 yields the following interesting collapse results.

THEOREM 4.16 [5]:

1. If an NP-complete set monotonously reduces to a sparse set then
PH = Af.

2. If an NP-contplete set disjunctively reduces to a sparse set then
PH = Af.

A skeletal inclusion structure between some subclasses of Rj, (SPARSE)
is given in Figure 1 (see [10, 25, 2, 3, 11, 15, 29] for results). The inclusion

^(SPARSE) = 7Î?(TALIY) /Ç(co-SPARSE) = ^(TALLY)

/^(TALLY) = Rp
hT{TALLY)

Figure 1. - Structure of inclusions. (Dotted lines indicate
that it is not known whether the inclusions are proper.)

( ) These self-reducibility results hold for a notion of self-reducibility defined in [5] which
generalizes the word-decreasing and polynomially related self-reducibihties defined in [6] and [24]
respectively.
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structure is interesting in the light of different collapse conséquences for
the different subclasses of R^ (SPARSE) (assuming that NP is contained
in that subclass).

5. COLLAPSES

In this section we consider monotonous réductions composed with
randomized réductions to sparse sets. As a conséquence of the main theorem
we show that if a bounded Turing hard set for NP reduces to a sparse set via
a co-rp many-one réduction, then NP = RP. This extends the result proved
in [32] that NP Ç R™~rp (SPARSE) implies NP = RP.

For the proof we need the following folklore result on amplifying
randomized réductions having one-sided error.

LEMMA 5.1: If A < m~rpB then for every polynomial p there exist a
polynomial-time function ƒ computing sets of strings and a polynomial q
such that

x e A^> Prob [ƒ (x, w)CB] = 1, and

x£A^> Prob [ƒ (x, w)CB]< 2 ~ ^ N ) ,

where w is chosen uniformly at rondom from the set E^M).
Now we are ready to prove our main result. Suppose that an NP-complete

set A is in R]Lnyh (Rm~rp (B)) for some set B. The theorem below brings
out an interesting trade-off between the number k (n) of queries in the
monotonous réduction and the density of the set B. (If A < 2Ln\hB we
say that A k (n)-monotonous reduces to B.)

THEOREM 5.2: Let k, CB be non-decreasing, polynomial-time functions. If
there exists a set B such that densitys{n) < CB (n) and Rm~ip {B) contains
a k (n0^)-monotonous hard set for NP, then

NP Ç y RTIME(nJ • cB (nJ)O{k{n3))).

Proof: Let A be some NP set, and let q be a polynomial and PA be
a polynomial-time set such that A = {x\3w G £3(H) : {#, w) E PA}-
Let wmSix{%) dénote the lexicographically greatest w E £3(M) s u c n t n a t

( x. w ) E PA- We apply the left set technique developed in [31] and adapted
for Hausdorff représentations in [3] combined with probability amplification
to de vice a randomized algorithm that on input x G A computes iumax (#)
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with high probability. As in the deterministic setting the algorithm performs
a breadth-first search through the tree of witness préfixes for an input x.
More specifically, let

L ( A ) = { ( x , y ) \ 3 u , v : \ y \ = \ u \ , y < u , ( x , u v ) G P A }

be the set of ail pairs (x, y) such that x G A and y is lexicographically
smaller than the length | y | prefix of wm3iX. Since L (A) is in NP it follows
by the assumption of the theorem and by Proposition 3.5 that L(A) is
reducible to some set in Rm~rp (B) via a Hausdorff réduction that on input
{x, y), asks k(\x |c) queries of length at most | x \c for an FP function k
and a suitable constant c. Our algorithm uses the information provided by
the réduction of L (A) to B to eliminate with very high probability only
such préfixes that don't lead to wm3iX (x):

input x, x | = n
N := {e}
for i := 1 to q (n) do

- Expand N to {yO \ y G N} U {yl \ y G iV}
- In case the size of N exceeds (c£ (nc) + i)^(^c)+i u s e ^

randomized procedure described below to prune N back to that
size retaining the length i prefix of u>max with very high probability

end
if there is a w G N such that (x, w ) G P4 then accept else re/ecf end

It is clear that the algorithm rejects every instance x £ A with probability
1. The main part of the proof consists in implementing the randomized
pruning procedure such that the algorithm accepts every instance x G A
with probability at least 3/4.

Let In dénote the index set {1, • • •, k (nc)}, and for any i G In U {0} let
Iït% {In%) dénote the subset {j G In 13 < i} (resp., {j G In \ j > i}). Further,
let p be a polynomial such that for ail n, (1 - 2-^n))^n)-**nC> > 3/4. From
the définition of the Hausdorff reducibility and using Lemma 5.1 it follows
that there is a polynomial s and a polynomial-time function ƒ such that
for ail x, y, | x | = n,

• there exists an i G In U {0} such that for ail j G l£\
Prob [ƒ (j, x, y,w)QB] = l and for ail j G J> a ,
Prob [/(j , x, y, w) ÇB}< 2 " * n \

• (x. y) G i ( A ) if and only if z is odd,
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where w is chosen uniformly at random from S s (nh Moreover, by combining
ƒ Ui %<> 2/Ï w) wiü1 aU t n e queries in the sets ƒ (Z, x, y} w), l < j , we can
assume that f(j, x, y, w) Ç B implies ƒ (j — 1, x, y, w) Ç B, for
i = 2, . . . , k(nc).

In the sequel let x be an arbitrary but fixed instance in A. For simplicity,
we dénote ^ m a x (x) by ^ m a x and | x \ by n. Let N = {yi, . . . , |/t} be a
lexicographically ordered set of préfixes (all of same length) that includes
the prefix, say y^, of wmax of that length. We use some crucial properties of
the function ƒ for the design of a randomized procedure that prunes TV to a
subset of size at most (CB (nc) + l)fc(nC)+1, and retains yh with probability
at least (1 - 2~PM)k^K

PRUNE(x, N), N = {yu ...,&}

guess randomly w\, . . . , wt G Ss^n^

for i := 1 to &(nc) do

compute an index set Ji Ç {1, . . . , £ } of candidates for h,

where h is the index of the prefix y^ of wmax in N

end

return {Vj\j e uf j f ] Jt}
The above procedure computes for every i = 1, . . . . k(nc) an index

set J ; of size at most (CB (^C) + 1)* such that h is contained in some J;
with probability at least (1 - 2~^7l))/c(nC>. Let Jö = {0}, then the sets Ji}

i — 1, . . . , k (nc) are computed as follows. If i is odd,

Ji := 0

for each j

Q := 0

for k :=

if ƒ M
Jr : =

end

end

G

i

J;-

+ 1
fk-) w

Ji U

i do

to t

k) $

[k~

do
u£
1}

x,

~/+1 ƒ (i, x, yu wt) and || Q || < cB (nc) then

wk)

< cB (nc) then Jt- := J% U {̂ } end

end
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and if i is even,

J% := 0

for each j e J,_i do

Q := 0
for fc := j - 1 downto 1 do

if ƒ (i, x, yk, wk) <£ u/~A
a

+ 1 ƒ (i, x, y/, tu,) and \\Q\\< cB (n c ) then

J% ~ Jx u {A:}

Q := QU / ( i , x, y*, w*)
end

end
if II Q II < eu (nc) then J2 := Jz U {0} end

end

CLAIM: 7Yie $£? returned by procedure PRUNE is of size at
most (CB {nc) + l) t("c)+1 and contains yh with probability at least

Proof: It is straightforward to show that || J, || < (|| Q \\ + 1) || Jr-\ \\
for i — 1, . . . . k{nc), and thus the cardinality of U ^ " J^ is at most

The strategy behing the computation of the index sets J? is as follows. Let
ri be the maximum index r such that Prob [ƒ (1, x, y*:, w) C S] = 1
for ail fe = 1, . . . , r. Since for fc = 1, . . . , K the pair {#, y/,) is
in L(A) it follows by the properties of the Hausdorff reducibility that
h < r\ < t. If T\ = t then ƒ (1, x, yk, wk) Ç B for k = 1. . . . , t, and
thus ri = t is included into Ji with probability 1. Otherwise, if ri < t then
with probability at least 1 - 2~p^n\ the string wri+i is chosen such that
ƒ (1, x, y r i + i , u>r1+i) $ B. Since ƒ (1, x, yfe) wfc) Ç S for/s = 1, . . . , rx,
i.e. || U^=1 ƒ (z, x, yfc) wk) || < c^ (n0), but ƒ (1, x, y r i + 1 ) ^ n + l ) ^ S,
it follows that ri is included into J\ with probability at least 1 - 2~p^n\
Now, if ri = h then the probability that ri = h is included into J\ is at
least 1 - 2~^nl

Otherwise, if ri > h then assume that the algorithm includes ri into J\,
and let li be the least index l such that Probf/(2, x, y*., tu) Ç B] = 1
for ail k = /, . . . , r\. Since for k = /i + 1, . . . , n , the pair (x: yk) is
not in L (A) it follows by the properties of the Hausdorff reducibility that
1 < l2 < h + 1. If h = 1 then ƒ (2, x, yfc, wk) Ç B for fe = 1, . . . , rx, and
thus Z2 — 1 = 0 is included into J2 with probability 1. Otherwise, if I2 > 1
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then with probabüity at least 1 — 2~p(n\ the string w;2_i is chosen such that
ƒ (1 , x-, yj2_i, wi2-i) <£ B. Since ƒ (2, x, yk, wk) C B for k = l2, . . . , n ,
/.e. || U^=/a ƒ (i, a?, ï/fc, Wfc) || < c^ (nc)., but ƒ (2, a;, y / ^ , w/2_i) £ B, it
follows that 2̂ - 1 is included into J2 with probabüity at least 1 - 2~p(n\
Now, if 1-2 - 1 = h then the probabüity that r\ and ̂ 2 - 1 = h are included
into J\ and J2, respectively, is at least (1 - 2~v^)2.

In gênerai, if i = 2j (i = 2 j + 1) and U - l < h (resp., r* > fe) then
assume that n , Z2, . . . , /i (resp., r i , 2̂) •••> r?) were included into J i ,
J2, •. -, Ji, respectively, and let r^+i (resp., h+i) be the maximum index
r (resp., minimum index l) such that Prob [ƒ (i + 1, x, yu-, w) Ç B] — 1
for all fe = Zi, • • •. r (resp., for all k — l. . . . , r«). Since for k — lt. ..., /t
(resp., for fc = ft + 1, •••, r^), the pair (x , y^ ) is (resp., is not) in
L(A), it follows by the properties of the Hausdorff reducibility that
h < n+i < vi-i (resp., k-X < ll+i < h + 1). If r ï + i = r ,_i (resp.,
ït+i = Zi_i) then rj+i (resp., li+i) is included into J^+i with probabüity
1. Otherwise, with probabüity at least 1 - 2~p^n\ the string wr.+1+i (resp.,
wii+1-i) is chosen such that ƒ (i + 1, x. 2/ri+1+i, ^ n + 1 + i ) ^ B (resp.,
ƒ (i + 1, a;, y? l+1_i, wh+1-i) ^ ^ ) - Thus it follows that n+\ (resp., / i + i )
is included into Ji+\ with probabüity at least 1 - 2~^n\ implying that the
probabüity that n , fa, • • -, T*Ï+I (resp., r i , ^ • • - 5 ^+1 — 1) are included
into J i , J2, • • •, J j+i , respectively, is at lieast (1 - 2~ p ( n ) ) t + 1 .

This complètes the proof of the claim since by the properties of the
Hausdorff reducibility it holds for some i < k (nc) that h — r% or h — 1% — 1,
depending on i being odd or even. D

Bx the Claim, the setriV contains tümax after the exécution of the for-loop
in the main program with probabüity at least (1 - 2~p(n)) fc(nCMn), which is
more than 3/4 by the choice of p. Finally, to check the running time of the
algoritftm, observe that the main for-loop is exectfted q (n) times, and that
Öie size of N never exceeds 2 • (ce (nc) + i)*(nC)+1

: •

From Theorem 5.2 we can dérive the following immédiate conséquences.

CoROLLARY 5.3: / / N P is contained in I§T (E%~rp (SPARSE)), then
NP = R P and PH Ç B P P .

Proof: Since by Theorem 3.8, F%hd (B%Trp (SPARSE)) =
Rp

T(R™-rp (SPARSE)), N P ^ R P follows directly from Theorem 5.2.
That NP Ç B P P implies P H Ç BPP is stated in [23]. •

Along the same lines as Theorem 5.2 (but without the probabüity analysis)
we can prove the following trade-off result.
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THEOREM 5.4: Let k, CB be non-decreasing, polynornial-time functions. If
there exists a set B such that density # ( l n ) < CB (n) and Rp (B) contains a
k (n)OW -monotonous hard set for NP, then

NPÇ\J DTIME(nJ • cB (

Theorems 5.2 and 5.4 yield the following corollaries which are similar
to the results in [17] regarding truth-table réductions of NP-complete sets
to sets of different densities.

COROLLARY 5.5: If B is a set of density O (log n) such that an 'NP-
complete set is reducible to a set in Rp (B) (resp., Rm~rp (B)) by a
0(logn)/log (log n)~monotonous réduction then P = NP (resp,, RP = NP).

COROLLARY 5.6: If an NP-complete set is reducible to a set in Rc (SPARSE)
(resp., Rm~rp (SPARSE)) by a O (log n)-monotonous réduction then
NP Ç DTIME (2°(l0^n)) (resp., NP Ç RTIME (2°(log2™))).

An interesting point to note in the above corollaries is that the number of
queries in the conjunctive réduction is unbounded and it plays no rôle in the
trade-off. The trade-off is purely between the density of B and the number
of queries in the monotonous réductions.

Finally, we consider conséquences for K G {PP., PSPACE. C-P}
being contained in i?£T (iC~rp(SPARSE)). Using the facts that
RP

T (R™~rp (SPARSE)) Ç iü£ (SPARSE), and /C C R1^ (SPARSE)
implies /C Ç E | (see Section 4), the following theorem is obtained as a
conséquence of Corollary 5.3.

THEOREM 5.7: For /C G {PP, (PSPACE), C=P}, if a bounded Turing hard
set for JC co-rp many-one reduces to a sparse set then K Ç BPP.

6. PROMISE PROBLEMS AND RANDOMIZED REDUCTIONS TO SPARSE SETS

In this section we investigate conséquences of some solution of the promise
problem (1SAT, S AT) reducing to a sparse set, where 1SAT is the set of
boolean formulas having at most one satisfying assignment. In particular, we
show that no solution of the promise problem (1SAT, S AT) bounded Turing
reduces to a set in R™~rp (SPARSE) unless NP = RP. We first give the
définition of promise problems and state its relation to randomized réductions.

vol. 30, n° 2, 1996



176 V. ARVIND, J. KÖBLER AND M. MUNDHENK

DÉFINITION 6.1 [13]: A promise problem is a pair of sets (Q, R). A set
L is called a solution of the promise problem (Q, R) if for all x G Q,
x G L o x G R.

Observe that a solution for the promise problem (1SAT, SAT) has to agree
with SAT in the formulas having a unique satisfying assignment as well as in
the unsatisfiable formulas. Let USAT be the set of formulas having a unique
satisfying assignment. The well known result of Valiant and Vazirani stating
the NP-hardness of USAT under (a different kind of) randomized réductions
[39] has the foliowing implication for the promise problem (1SAT, SAT).

THEOREM 6.2 [39]: Ifthere is a solution of the promise problem (1SAT, SAT)
in RP then NP = RP.

We now improve Corollary 5.3 by weakening the assumption that NP is
contained in Rp

bT {R^rp (SPARSE)).

THEOREM 6.3: lf there is a solution in i?£r ( iC~ r p (SPARSE)) for the
promise problem (1SAT, SAT) then NP = RP.

Proof: Let L G Rp
bT (RZrp (SPARSE)) - Rp

bM {R^~rp (SPARSE)) be
a solution of the promise problem (1SAT, SAT). Then we have for all
x G 1SAT. x G L o x G SAT. The natural (prefix) left set associated
with SAT is the set

L (SAT)

= {( x, y) \3u: v : \y\ — \ u |, y < u, uvisa, satisfying assignment for x}

of all pairs (x, y) such that x G SAT and y is lexicographically smaller
than the length | y | prefix of the maximum satisfying assignment for x.
We first show that the promise problem (<2, L(SAT)) has a solution
L' G Rp

hd {R"nrp (SPARSE)), where Q = {(x, y ) \ x G 1SAT}.
By the définition of L (SAT) it is clear that L (SAT) is accepted by some

NP machine which on input s (x, ?/), x G 1SAT, has at most one accepting
path. Thus there is a (parsimonious) many-one réduction function g from
L (SAT) to SAT such that g (x, y) G 1SAT for ail pairs (x, y) for which
x G 1SAT. Now define 1/ = {(x, y) \g(x: y) G L}. Clearly g many-one
reduces L' to L, implying that L1 G Rp

bhd (Rm'rp (SPARSE)).
Furthermore, since L is a solution of (1SAT, SAT), and since for ail

(x, y) G Q, g{x, y) G 1SAT, it follows for ail {x, y) G Q that
9 {x-> y) € L if and only if g (x, y) G SAT. Since g many-one reduces
both L(SAT) to SAT and U to L, we have for ail (x, y) G Q that
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{#, y) G L1 <£> (x, y) G L(SAT), Le., V is a solution for the promise
problem (Q, L(SAT)).

Consider a modification of the algorithm described in the proof of
Theorem 5.2 which uses the réduction of V to a sparse set B (instead of
L (SAT) to B) to guide the search for the maximum satisfying assignment
tiimax. We claim that on input x G 1SAT n SAT this algorithm computes
with high probabüity the unique satisfying assignment wm3L3: for x. This is
a conséquence of the fact that on input x G 1SAT n SAT the algorithm
considers only pairs (ar, y) in Q, implying that (x. y) G L1 O (x, y) G
L(SAT). Hence the set accepted by the algorithm is an RP solution for
the promise problem (1SAT, SAT) and by Theorem 6.2 it follows that
NP = RP. •

Regarding the possible existence of solutions for (1SAT, SAT) in the
deterministic réduction class R^T (JR? (SPARSE)) we get the following
resuit.

THEOREM 6.4: Iftkere is a solution of (1SAT, SAT) in Rp
bT {Rv

c (SPARSE))
then (1SAT, SAT) has a solution in P, implying that Few = P and
USAT G co-NP.

Proof: The first implication follows along the lines of the previous
theorem. The conséquence Few = P follows from [37] using the containment
Few Ç P F e w P [26], and USAT G co-NP follows from [20]. •
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