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MONOTONOUS AND RANDOMIZED
REDUCTIONS TO SPARSE SETS (*)

by V. Arvino (1), J. Kosrer (%) and M. Munprenk (3)

Abstract. — An oracle machine is called monotonous, if after a negative answer the machine
does not ask further queries to the oracle. For example, one-query truth-table, conjunctive, and
Hausdorff reducibilities are monotonous. We study the consequences of the existence of sparse
hard sets for different complexity classes under monotonous and randomized reductions. We prove
trade-offs between the randomized time complexity of NP sets that reduce to a set B via such
reductions and the density of B as well as the number of queries made by the monotonous reduction.
As a consequence, bounded Turing hard sets for NP are not co-rp reducible to a sparse set unless
RP = NP. We also prove similar results under the apparently weaker assumption that some solution
of the promise problem (1SAT, SAT) reduces via the mentioned reductions to a sparse set.

Résumé. — Une machine d’oracle est appelée monotone si elle ne pose pas d’autre question
a loracle aprés une réponse négative. Par exemple, les réductibilités 1-1t, conjonctive ou de
Hausdorff sont monotones. Nous étudions les conséquences de l’existence d’ensembles dures et
sparse pour différentes classes de complexité sous des réductions monotones et randomisées. Nous
prouvons des trade-off entre la complexité randomisée du temps d’ensembles NP qui réduisent a
un ensemble B via de telles réductions et la densité de B, aussi bien que le nombre des questions
posées par les réductions monotones. Par conséquence, des ensembles durs pour NP par rapport
a la réductibilité bornée de Turing ne sont pas réductibles co-rp & un ensemble sparse sauf si
RP = NP. Nous prouvons également des résultats similaires sous I'hypothése apparemment plus
faible qu’une solution du promise problem (ISAT, SAT) réduit via les réductions mentionnées &
un ensemble sparse.

1. INTRODUCTION

- An important area of research in structural complexity theory concerns
reductions to sparse sets, i.e. sets which only contain a polynomially bounded
number of strings up to each length. This study has its roots in a conjecture
by L. Berman and J. Hartmanis [9] that there are no sparse NP-complete sets
under many-one reductions. Mahaney settled the conjecture by proving that
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156 V. ARVIND, J. KOBLER AND M. MUNDHENK

if any NP-complete set many-one reduces to a sparse set then P = NP [28].
Related work has been done in [8, 14, 41, 42]; see Section 4 for a detailed
discussion. From a different perspective, the possible existence of sparse
Turing-hard sets for NP was studied in [22]. This question is equivalent to
NP-complete problems having nonuniform polynomial-size circuits. Karp,
Lipton, and Sipser proved that if NP has sparse Turing-hard sets then
the polynomial-time hierarchy collapses to % [22]. It is also known that
the existence of sparse Turing-complete sets for NP would collapse the
polynomial-time hierarchy to PNPlogl (21},

The main purpose of this paper is to investigate monotonous and
randomized reductions to sparse sets and to use the left set method to derive
unlikely complexity class inclusions from the assumption that intractable
sets reduce to sparse sets under these reductions. Discovering unlikely
consequences of the existence of sparse hard sets for different kinds of
polynomial-time truth-table reducibilities has become an active research area
since the breakthrough result of Ogiwara and Watanabe [31] showing that
NP does not have sparse hard sets under bounded Turing reductions unless
P = NP. The proof relies on the notion of left sets, which are NP sets with
a special self-reducibility structure. The left set method turned out to be
a well suited tool to prove collapse results concerning sparse sets. Using
this method similar results were obtained for polynomial-time conjunctive
reductions [3, 32]. Also the proof in [3] showing that no bounded Turing
hard set for NP conjunctively reduces to a sparse set unless P = NP uses
the left set technique. Furthermore, it makes use of the fact that the sets
in RV (RE (SPARSE)) are monotonously reducible to a sparse set. The
reason for this is that the class RE (SPARSE) has the algebraic structure of
a set ring (i.e. it is closed under union and intersection). In this paper we
investigate consequences of NP sets reducing by monotonous reductions to
sets in the class Ry, 'F(SPARSE), which also forms a set ring. We prove
as the main result that no bounded Turing hard set for NP co-rp reduces to
a sparse set unless RP = NP.

The paper is organized as follows: In Section 3 we consider monotonous,
non-adaptive, and positive oracle machines and show how the many-one,
conjunctive, and Hausdorff reducibilities can be characterized by them.

Section 4 contains an overview of results concerning reductions to sparse
sets. In particular, we make a brief tour describing for different types of
reducibilities collapse consequences for the polynomial-time hierarchy under
the assumption that there are sparse hard sets for NP. In the overview we
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REDUCTIONS TO SPARSE SETS 157

also touch upon certain other related issues concerning the complexity of
sparse sets.

In Section 5 we prove our main result. We consider the case that an NP
set A reduces to some set B via the composition of a Hausdorff and a
co-rp many-one reduction. Similar to the results of [17] for the deterministic
truth-table case, we derive interesting trade-offs between the density of the
set B, the number k(n) of queries in the Hausdorff reduction, and the
randomized time complexity of A. As a special case we obtain that no
bounded Turing hard set for NP co-rp many-one reduces to a sparse set
unless RP = NP. This extends the result in {32] that an NP-complete set is
not < 5 7 reducible to a sparse set unless RP = NP.

In Section 6 we consider the problem of reducing some solution of
the promise problem (1SAT, SAT) to sparse sets. In particular, we show
that the conclusion RP = NP can be derived from the apparently weaker
assumption that some solution of the promise problem (1SAT, SAT) is in
RYy (R ™" (SPARSE)).

2. NOTATIONS

Our standard alphabet is ¥ = {0, 1}. The set Uo<i<n ¥ of all strings
in ©* of length up to n is denoted by £<". For any set A C X*,
A" = ANYS" and A" = AN YY" x4 denotes the charactenstlc
function of A. The length of a string z is denoted by |z |, and the cardinality
of a set A is denoted by || A]||.

A subset T' of 0* is called a tally set. The density function of a set A is
defined as density4 (n) = || AS™||. A set S is called sparse if its density
function is bounded above by a polynomial. We use TALLY and SPARSE
to denote the classes of tally and sparse sets, respectively. For a class of
languages C, co-C is the class of all sets whose complements are in C, and
(JC denotes the union of all sets in C. (-, -) denotes a standard polynomial-
time invertible pairing function such that (0%, 07 ) € 0* for all 4, 7 > 0. Such
a pairing function can be extended in a standard fashion to encode arbitrary
sequences (1, ..., zx) of strings into a string {z1, ..., 2 ). Where intent
is clear we write f (21, ..., ) in place of f ({z1, ..., Zr ))-

The reducibilities discussed in this paper are the standard polynomial-time
reducibilities defined by Ladner, Lynch, and Selman [27], the Hausdorff
reducibility introduced by Wagner [40], and the co-rp many-one reducibility
(cf. [1, 12, 34]).
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158 V. ARVIND, J. KOBLER AND M. MUNDHENK

DErFmNITION 2.1: Let A and B be sets, and let f and g be polynomial-time
functions.

1. A truth-table reduces to B(A < ¥, B) via f and g, if for all z, f (z)
computes a list of queries (%1, ..., Tm ) such that z € A if and only if
9(z, xB(21)...xB (Tm)) = 1.

2. A conjunctively reduces to B (A < 2B) via f, if A < L,B via f and
g where g (x, by ...by,) is always the and-function N2, b;. The definition of
the disjunctive reducibility (A < %B) is analogous. As usual, the boolean
and-function on zero variables evaluates to 1, and the boolean or-function
on zervo variables evaluates to 0.

3. A Hausdorff reduces to B(A < % .B) via f, if A < 4,B via f
and g where g(x, by ...by) is always the parity-function ®]%,b;, and
for all x, f(x) computes a list of queries (x1, ..., Tm ) such that
xB (z1) > xB(z2) > ... > xB (®m). (This means that © € A if and
only ifmax {0 < ¢ <m| forall j=1, ..., 14:z; € B} is odd.)

For any function h : N— N and reducibility < ¥, we use A < Ié(n)_r B
to denote that A < B via a reduction that on any input z asks at most
h(|x]) queries to the oracle. We write A < ? B, if A < fl(n)_rB for
some constant function A, saying that A bounded r reduces to B. The class
{A|3B € C: A < B} of sets which < ¥ reduce to a set in the class
C is denoted by R? (C).

Next we define the polynomial-time randomized reducibility that we use
in this paper. In a co-rp many-one reduction from A to B the queries are
randomly generated, and unlike the deterministic case above, the outcome
depends on the member-ship of an exponential number of queries in B. We
require that the probability of the reduction being correct is 1 for instances
in A, but for instances not in A it can be as small as 1/poly.

DerNiTION 2.2: A < 17 "PB if there exist a polynomial-time function f
and polynomials p and q such that for all x,

z € A= Prob(f(z, w) € B]=1, and

z ¢ A= Prob[f(z, w) € B]<1-1/p(|z]),
where the string w is chosen uniformly at random from the set ya (),
Observe that for every set B, RE(B) C R;y "(B) and
R (RS (B) € B (B)
RTIME(¢ (n)) denotes the class of sets A accepted by O (t(n)) time
bounded randomized Turing machines. (cf [16]) that have zero error
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REDUCTIONS TO SPARSE SETS 159

probability for inputs not in A (and error probability at most 1/2 for instances
in A). RP = RTIME (nCW).

For further notations we refer to [7].

3. REDUCIBILITIES AND ORACLE MACHINE PROPERTIES

In this section we investigate how the restricted truth-table reducibilities
defined earlier can be expressed by means of combinations of different
restrictions on oracle machines. Unless otherwise specified, all the oracle
machines considered here are polynomially time bounded.

DermnitioN 3.1:

1. An oracle machine M is called non-adaptive, if M does not use the
oracle to compute its queries. In a sense, the process of computing the queries
to the oracle is independent of the oracle.

2. An oracle machine M is called monotonous w.r.t. an oracle set B, if for
every input x, the sequence of queries y1, ..., Ym produced by MP (z) is
monotonous w.r.t. B, ie. xp (yi) > xB (yi+1) fori=1, ..., m—1. M is
called monotonous, if M is monotonous w.r.t. any set B. We use A < 1,; B 1o
denote that A = L (M, B) for an oracle machine M which is monotonous
w.r.t. B.

3. [35] An oracle machine M is called positive, if for all sets B, B’ it
holds that B C B’ implies L (M, B) C L(M, B').

It is well-known [27] that A < ¥, B if and only if A = L (M, B) for
a non-adaptive oracle machine M. We give further characterizations of
reducibilities in terms of the three orable machine properties defined above.
These characterizations shed a new light on the Hausdorff reducibility and

its composition with the conjunctive reducibility.

ProposiTiON 3.2: Let A, B be sets with B # &. Then A < Z 4B if and only
if A = L(M, B) for a non-adaptive oracle machine M which is monotonous

w.r.t. B.

Proof: Clearly, and Hausdorff reduction A < ’,i 4B can be performed by a
non-adaptive oracle machine which is monotonous w.r.t. B. For the converse,
assume that A = L (M, B) for a non-adaptive oracle Turing machine M
which is monotonous w.r.t. B. Let yi, ..., ym be the sequence of oracle
queries of M on input z, and let y;,, ..., ¥;, be the subsequence of maximal
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160 V. ARVIND, J. KOBLER AND M. MUNDHENK

length such that for all j = 1, ..., k, M ¥yoad (z) 2 Mia-9) (g),
Consider the polynomial-time function f defined as follows:

f(x) _ (yz’l, ceey yu.), M2 (:E) rejects,
(y+, Yi, -+, Yi. ), otherwise,

where g4 is a fixed string in B. It is easy to verify that A <% Bvia f. W

PROPOSITION 3.3: Let A, B be sets with B # ¥*. Then A < LB if and only
if A= L (M, B) for a monotonous, positive oracle machine M.

Proof: Assume that A < £B via f. Consider the following oracle machine
M. On input z, M first computes f(z) = (y1, ..., Yym ). Then M asks
consecutively the queries y1, ..., ym as long as the answers are positive. In
the case of a negative answer M immediately rejects without asking further
queries, otherwise M accepts. Clearly M is monotonous w.r.t. any oracle
set. M is also positive, since an input is only accepted if all queries are
answered positively by the oracle.

To prove the reverse direction, assume that A = L (M, B) for a
positive and monotonous oracle machine M. Let yg be a fixed string in
B, and consider the polynomial-time function f computed by the following
algorithm.

input z
if M~ (z) rejects then
output f (z) = (o)

else
let 41, ..., ym be the queries asked by M™" (z), and
let ¢ > 0 be the least index such that M{¥- %} (2) accepts
output f(z) = (y1, ..., %)
end
First assume that f (z) = (y1, ..., y; ) and that {y,, ..., yi} C B. By the

definition of f it follows that M ¥+ %1} (z) accepts. Therefore, since M
is positive, also MPB (z) accepts.

Now assume that M?Z (z) accepts. Since M is positive, it follows that
M= (z) accepts. Let y1, ..., ym be the queries asked by M~ (z), and let
f(z)={y1, ..., yi ). By way of a contradiction let j < i be the least index
such that y, ¢ B. By the definition of f it follows that the first j queries
of MB (z) are y1, ..., y,, and that M+ ¥1} (1) rejects. Since M is
monotonous, also MZ (z) rejects, a contradiction. W
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The next proposition should be compared with the characterization of the
composition of the Hausdorff and conjunctive reducibililies in terms of the
non-monotonic Hausdorff reducibility given in [5].

PROPOSITION 3.4: For every set B, R} (R (B)) = RE (B).

Proof: If A € RY, (RY (B)) via a Hausdorff reduction function f and a
conjunctive reduction function g, then « € A can be easily decided knowing

the maximum initial subsequence s of (y1, ..., Yg, - > 1% -, Ypo)
containing only positive queries, where f (z) = (v1, ..., ym ), and

g(yJ) = <y{’ v yi‘, >

For the converse, assume that A = L (M, B) for a monotonous oracle
machine M. By Proposition 3.2, it suffices to show that A = L (M’, B%, ),
where M’ is the following non-adaptive oracle machine that is monotonous
wrt By ooand By ={(z1, ..., zp)| forall i=1, ..., n: 2 € B}
€ RE(B).

M’ on input z simulates M~" (z) and collects all the queries y1, ..., Ym.
Then M’ asks the queries (1), (v1, ¥2), ---, {¥1, -- -, Ym ) and accepts if
and only if M{¥1--¥:} (z) accepts, where i € {0, ..., m} is the maximum
index such that (yi1, ..., v, ) gets a positive answer from the oracle.

Clearly, M’ is non-adaptive and monotonous w.r.t. BY ;. W

As a straightforward consequence of the above proofs we get

PROPOSITION 3.5: For every class C: if C is closed downward under < ¥

reducibility, then Rfk(n)—l)—h ) C Rz(n)—hd ().

Finally we characterize the many-one reductibility by oracle machines
which are at the same time non-adaptive, positive, and monotonous.

ProposITION 3.6: Let A, B be sets with B # @ and B # ¥*. Then A < 1, B
ifand only if A = L (M, B) for a non-adaptive, positive, monotonous oracle
machine M.

Proof: Tt is immediate that < %, has the three properties. For the converse,
assume A = L (M, B) for a non-adaptive, positive, monotonous oracle
machine M. Let yi, ..., ym be the queries of M (z), and assume that
M does not decide x independently of the oracle answers. Since M is
monotonous, we have xp (y1) > ... > xB (ym), and since M is positive,
there exists an index 4, 1 < 4 < m, such that M 1% ¥} (z) accepts if and

only if 7 > 4. Thus, r € Ay, ¢ B. &
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162 V. ARVIND, J. KOBLER AND M. MUNDHENK

The caracterizations of reducibilities performed by monotonous oracle
machines are summarized in the following table.

oracle machines being perform exactly
non-adaptive positive monotonous reductions of type
- - v < 1]15{0 <z
v - v <t
- v v <e
v v v <h

Of special interest in the present paper are reductions where the number of
queries is bounded by a constant. It is well-known that the closure of any class
under bounded Turing reductions is the same as its closure under non-adaptive
bounded reductions. The following Theorem states sufficient properties of
a class to have the same closure under bounded Turing reductions and
monotonous non-adaptive bounded reductions. A class C of sets is said to be
a set ring if it includes & and ¥* and is closed under union and intersection.

THeoOREM 3.7 [5]: Let C be a set ring which is closed under many-one
reductions. Then R (C) = R,  (C).

Using the fact that every sparse set is in RE(TALLY) [11] it
is easy to see that RY(SPARSE) forms a set ring, and therefore
RY, . (RY (SPARSE)) = R (R (SPARSE)) [5]. As shown in the next
theorem, also the reduction class Ry, '* (SPARSE) forms a set ring giving
the following characterization.

Tueorem 3.8: RY,  (Ri P (SPARSE)) = Rbr. (Ri 7 (SPARSE)).

Proof: We need to show that Ry, ?(SPARSE) is a set ring.
Since SPARSE C Ry, ™ (TALLY) [11, 34], it suffices to shown that

o P (TALLY) is a set ring. Assume that A < 5, PTy and B < 57 P Tb,
for sets Ty, 7o € TALLY, via polynomial-time functions f, g and
polynomials p and ¢ (we can assume that there are uniform polynomials
corresponding to both reduction functions), i.e.

z € A= Prob[f (z, w) eTh] =1, and

g€ A= Prob[f (z, w)eh]<1-1/p(|z]),

Informatique théorique et Applications/Theoretical Informatics and Applications
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and
z € B=Problg(z, w)€Th]=1, and

x ¢ B=Problg(z, w) e ]| <1-1/p(|z]),

where w is chosen uniformly at random from the set £4(#1). Consider the
two tally sets

Tor ={(a,b)|la€Tiorbe Tp} and

Tona = {<a, b)la €Tiandb e TQ},

and define the reduction function A as follows. For strings w1, wy € ¥* of
the same length, h (z, w1 w2) = ( f (z, w1), g (=, wz)). Then we have that

z € AUB = Prob[h (z, w) € Toy] =1, and

t¢ AUB = Probh(z, w) € T,,] <1-(1/p(|z])?,
and
z€ ANB = Prob[h (z, w) € Tyng) =1, and

z¢& ANB = Probh(z, w) € Tyna) <1-1/p(|z]),

where the string w is chosen uniformly at random from the set £24(1*D) | This
shows that Ry, © (TALLY) is closed under union and intersection. M

4. OVERVIEW ON REDUCTIONS TO SPARSE SETS

There has been over a decade of research investigating consequences of
the existence of hard NP sets in various sparse reduction classes. In this
section we give a brief historical account leading to some of the most recent
results in this area. In order to show the relationships between the various
considered sparse and tally reduction classes we also give a brief summary
of inclusion relationships between the most important of these reduction
classes. This overview is not meant to be comprehensive about reductions
to sparse sets. A more complete survey on the complexity of sparse sets
can be found in [18].

4.1. Reductions to sparse sets

As mentioned in the introduction, the study of reductions to sparse sets
was started by the conjecture of L. Berman and J. Hartmanis [9] that there
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164 V. ARVIND, J. KOBLER AND M. MUNDHENK

are no sparse NP-complete sets under < P reductions. The first result was
P. Berman’s proof that P = NP if some tally set is NP-complete [8]. This
result was followed by Fortune’s proof that if there is a sparse set that is
complete for co-NP then P = NP [14]. Both results were proved by giving a
polynomial-time algorithm for SAT under the assumption that SAT reduces
to a tally set (respectively co-sparse set in the case of Fortune’s result).
The main idea in the algorithm was to carry out a depth-first search on the
self-reduction tree for SAT formulas. The self-reduction tree, which could
have exponentially many nodes, is pruned using the assumption that SAT
reduces to a tally set (or co-sparse set), so that only a polynomially bounded
number of the nodes in the tree need to be examined.

THEOREM 4.1:
1. [8] If SAT < b,-reduces to a tally set, then P = NP.
2. [14] If SAT < b,-reduces to a sparse set, then P = NP.

However, the ideas of Berman and Fortune directly did not work to
resolve the sparseness conjecture. Finally, Mahaney settled the conjecture
by proving his well-known result.

TueOREM 4.2 [28]: If SAT < L,-reduces to a sparse set, then P = NP.

The proof of Mahaney’s theorem was essentially based on the depth-first
search with pruning of the self-reduction tree for SAT formulas which was
used by Fortune in part 2 of Theorem 4.1. But the crux of the proof was
a census argument. Given the exact census (up to some suitable length) of
the sparse NP set to which SAT is assumed to reduce as advice information,
Mahaney argued that a many-one reduction of SAT to the sparse set can
be modified to a many-one reduction of SAT to the sparse set. Since the
census can take only polynomially many possible values the algorithm in
Fortune’s proof can be used repeatedly for each possible value of the census
(one of which is the correct value) and, when run for the correct census
value, it would detect the satisfiability of the input formula by constructing a
satisfying truth assignment for it, where the truth assignment is determined
by a root-to-leaf path in the self-reduction tree.

Around the same time but motivated more algorithmically, Karp, Lipton,
and Sipser investigated the possibility of NP-complete sets being recognizable
by nonuniform polynomial-size circuits. They obtained also a negative
consequence of this assumption in the form of a collapse of the polynomial-
time hierarchy PH to the second level.
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REDUCTIONS TO SPARSE SETS 165

THEOREM 4.3 [22]: If SAT has nonuniform polynomial-size circuits (i.e.
SAT is in P/poly), then PH = 3.

The results of Mahaney, and of Karp and Lipton tie up due to the following
connection between polynomial-size circuits and sparse sets. It is known that
the class of sets with nonuniform polynomial-size circuits coincides with
the class of sets polynomial-time Turing (or even truth-table) reducible to
sparse sets.

THEOREM 4.4:

1. [10] R]} (SPARSE) = RE (TALLY).

2. [9] R% (SPARSE) = P/poly.

Interestingly, the existence of sparse sets that are complete for NP under
polynomial-time Turing reductions implies a collapse of PH to ©%. This was
proved by Kadin [21], some years later, applying also a census argument.
His argument, in a nutshell, is that the density function of a sparse set in
NP can be computed making logarithmically many queries to a suitable NP
oracle. Further, given specific values of the density function, an NP base

machine accessing the sparse NP set as oracle can easily be modified to an
NP machine without oracle which accepts the same language.

THEOREM 4.5 [21]: If there is a sparse Turing-complete set for NP, then
PH = ©°F.

Immerman and Mahaney [19] showed that the result of Karp and Lipton is
optimal for relativizable proof techniques. Thus, after the results of Mahaney
and of Karp and Lipton, the natural question was for which reductions whose
strengths lie between many-one and Turing reductions does the existence
of sparse sets hard for NP imply P = NP. Several results follwed in quick
succession whose proofs are essentially based on the depth-first search with
pruning technique of Fortune [14]. We summarize these results below.

THEOREM 4.6:
1. [42] FSAT < ? pr-reduces to a sparse set, then P = NP.

= pos-

2. [42] If SAT < i;os_bT-reduces to a sparse NP set, then P = NP.

3. [38, 41] If SAT < Z-reduces to a sparse set, then P = NP. |
4. [41] If SAT < Poand < Z-reduces to a sparse NP set, then P = NP.

MHAL ;;os_bT-reduction isa< ftt—reduction where the “formula” which evaluates the answers
of the oracle is positive, i.e. it contains no negation symbol.
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166 V. ARVIND, J. KOBLER AND M. MUNDHENK

The existing methods were not adequate to handle more flexible
reducibilities, in particular the bounded Turing reducibility. After a gap
of several years, the bounded Turing reducibility case was resolved in a
breakthrough paper in the area by Ogiwara and Watanabe [31]. They showed
that if there is a sparse set that is hard for NP under bounded Turing reductions
then P = NP. Their proof exploits a new self-reducibility structure in certain
NP sets called left sets. Given an NP set A and a polynomial-time computable
relation associated with A, there is a corresponding left set Left (A) which is
in NP. For any set A € NP it holds that A < %, Left (A). For NP-complete
sets A it also holds that Left (4) < 5, A.

TueoreM 4.7 [31]: For any set A in NP, if Left (A) < Lr-reduces to a
sparse set, then Left (A) € P. Therefore, if SAT < ];T-reduces to a sparse
set, then P = NP.

The left set method turned out to be a powerful and convenient method to
prove collapse results under the assumption that there is a sparse set that is
hard for NP. In [3] Theorem 4.7 was extended to a more general reducibility.

THEOREM 4.8:

1. [3, 32] For any set A in NP, if Left (A) < L-reduces to a sparse set, then
Left (A) € P. Therefore, if SAT < %-reduces to a sparse set, then P = NP.

2. [32] If SAT < 12 "P-reduces to a sparse set, then RP = NP.

3. [3] For any set A in NP, if Left (A) € R, (RY (SPARSE)), then
Left (A) € P. Therefore, if SAT € R} (RE (SPARSE)), then P = NP.

Saluja [33] proved that the left-set technique cannot yield a collapse of P
and NP under the assumption that NP C Rg (SPARSE).

Finally, we take a brief look at consequences of other complexity classes
like PP, C=P, PSPACE, UP, and Mod;P being reducible to sparse sets. It
turns out that similar results as for NP will always hold for the complexity
classes PP, C_P, and PSPACE. The now standard argument [30, 3] for
these classes is as follows: Assume that for some truth-table reducibility
r, PP C RY (SPARSE) (respectively, co-C—P C RY (SPARSE)), and that
NP C R? (SPARSE) implies P = NP. Since PP and co-C_P contain NP,
P = NP follows. Further, PP and C-P have complete sets that are one
word-decreasing self-reducible [6, 30], and every one word-decreasing self-
reducible set in RY. (SPARSE) is in 2% [6]. Thus, PP = P (respectively,
C=P = P) follows. The argument for the class PSPACE is similar using the
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result [22] that PSPACE C RY (SPARSE) implies PSPACE C =5, We
formalize this observation into the following general theorem.

TreoreM 4.9 [30, 3]: If for some truth-table reducibility r it holds that
NP C RE(SPARSE) implies that P = NP, it follows for any class K € {PP,
co-C=P ,PSPACE} that K C RY (SPARSE) implies K = P.

The above theorem yields the following results (from [30, 3]) as a direct
consequence of the corresponding results for NP.

CoroOLLARY 4.10:

1. [30] For any class K € {PP, C_P, PSPACE}, if K C RgT (SPARSE)
then K = P.

2. [3] For any K € {PP, C_P, PSPACE}, if K C RY; (R? (SPARSE))
then K = P.

For the Mod,P classes, there are similar results exploiting the special

word-decreasing self-reducibility structure of certain complete sets for these
classes [30, 3].

Toeorem 4.11:
1. [30] For all k > 2, if Mod,P C Rl (SPARSE) then Mod,P = P.
2. [3] For all k > 2, if Mod;P C RE (SPARSE) then Mod;P = P.

It is an open question whether Mod, P C RI. (RY (SPARSE)) implies
Mod;P = P.

4.2. The complexity of small descriptions

If a set A is reducible to a sparse set, does it follow that A is reducible
to some sparse set that has a “simple” description relative to A? In this
subsection we discuss this well-studied question and state applications (in
the form of collapse results) of certain specific answers to this question. This
study originates in the notions of equivalence and reducibility to sparse sets
(see for example [36, 2, 15]). It concerns the complexity (relative to A) of
small descriptions for sets A which are reducible to sparse sets. Gavalda and
Watanabe [15] obtained an important lower bound for the case of Turing
reductions by constructing a set B that is Turing reducible to a sparse set
but is not Turing reducible to any sparse set in NP (B) N co-NP (B). This
result implies that the class of sets Turing equivalent to some sparse set is a
proper subclass of P/poly resolving what was a long-standing open question.
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Tueorem 4.12 [15]): There is a set B that is in R]} (SPARSE) but is not
Turing reducible to a sparse set in NP (B) N co-NP (B).

The separation of equivalence and reduction classes for restricted truth-
table reducibilities is further investigated in [2]. In a broader setting it is of
interest to know for various classes of sets that reduce to sparse sets, the
complexity of the easiest sparse sets to which such sets reduce. This question
is first investigated in [3] where upper bounds for the relative complexity of
sparse descriptions are proved for certain truth-table reducibilities.

THEOREM 4.13 [3]: Any set A that disjunctively reduces (respectively,
bounded disjunctively reduces, 2-truth-table reduces) to a sparse set in fact
disjunctively reduces (respectively, bounded disjunctively reduces, 2-truth-
table reduces) to a sparse set that is in AY (A) (respectively, ©F (A), ©F (A)).

The notion of small descriptions is formalized in [15, 5]. Let < , be a
reducibility. A sparse set S is a sparse r-description for a set A if A < ,.S. For
every set A in R, (SPARSE), we are interested in finding upper bounds for
the complexity of sparse r-descriptions relative to A. A sparse r-description
satisfying the established upper bound is called a simple sparse r-description
(with respect to that upper bound).

Simple sparse descriptions for a set A can be used to derive lowness
properties for A. In order to prove the lowness of a set A that reduces to a
sparse set, first a suitable bound for the complexity of a sparse description for
A is derived. Using this description, a deterministic enumeration technique
similar to that of Mahaney [28] or a census technique similar to that of Kadin
[21] is used to replace the sparse oracle S (and thus A). For self-reducible
sets stronger (unrelativized) simplicity results and consequently, unrelativized
lowness results can be derived. In [5] this approach is extensively used and
several new lowness results are proved for sets that reduce to sparse sets
for reducibilities of different strengths. These lowness results are based on
suitably obtained simple descriptions for the concerned set. We state some
of these results that in turn yield collapse results.

THEOREM 4.14:

1. [5] For every set A € Rﬁ (SPARSE) there is a sparse set S € NP (A)
such that A € R} (S).

2. [3] For every set A € Rﬁ (SPARSE) there is a sparse set in A} (A)
to which A disjunctively reduces.
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Tueorem 4.15 [5]:

1. For every word-decreasing ? self-reducible set A in Rs (SPARSE) there

exists an FPNY -printable sparse set S such that A < ZS and thus A is low
for AIZ’ .
2. For every word-decreasing self-reducible set A in RY (SPARSE) there

exists an FPNF -printable sparse set S such that A < I,ZS and thus A is
low for AL.

Theorem 4.15 yields the following interesting collapse results.

Tueorem 4.16 [5]:

1. If an NP-complete set monotonously reduces to a sparse set then
PH = AL

2. If an NP-complete set disjunctively reduces to a sparse set then
PH = Af.

A skeletal inclusion structure between some subclasses of RY. (SPARSE)
is given in Figure 1 (see [10, 25, 2, 3, 11, 15, 29] for results). The inclusion

R2(SPARSE) = RE(TALLY)

R2(co-SPARSE) ., RY{SPARSE)
h

(SPARSE) = RJ(TALLY)

RE;(R2(SPARSE))
o RZ,(SPARSE)

RP(SPARSE) = RP(TALLY) R%(co-SPARSE) = R%(TALLY)

Rl (SPARSE)

Re, (SPARSE) R?,(co SPARSE)

RZ,(TALLY)

Re(TALLY) = RZ,(TALLY)

Figure 1. — Structure of inclusions. (Dotted lines indicate
that it is not known whether the inclusions are proper.)

(?) These self-reducibility results hold for a notion of self-reducibility defined in [5] which
generalizes the word-decreasing and polynomially related self-reducibilities defined 1n [6] and [24]
respectively.
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structure is interesting in the light of different collapse consequences for
the different subclasses of RS (SPARSE) (assuming that NP is contained
in that subclass).

5. COLLAPSES

In this section we consider monotonous reductions composed with
randomized reductions to sparse sets. As a consequence of the main theorem
we show that if a bounded Turing hard set for NP reduces to a sparse set via
a co-rp many-one reduction, then NP = RP. This extends the result proved
in [32] that NP C Ry;"? (SPARSE) implies NP = RP.

For the proof we need the following folklore result on amplifying
randomized reductions having one-sided error.

LemMa 5.1: If A < 57"PB then for every polynomial p there exist a
polynomial-time function f computing sets of strings and a polynomial q
such that

z € A= Prob|[f(z, w) CB]=1, and

z ¢ A= Prob[f (z, w) C B] < 27D

where w is chosen uniformly at random from the set 344z

Now we are ready to prove our main result. Suppose that an NP-complete
set A is in R’,;( n)-h (R7, " (B)) for some set B. The theorem below brings
out an interesting trade-off between the number k(n) of queries in the
monotonous reduction and the density of the set B. (If A < ]k’,(n)_hB we
say that A k (n)-monotonous reduces to B.)

THEOREM 5.2: Let k, cp be non-decreasing, polynomial-time functions. If
there exists a set B such that densityp(n) < cp (n) and Ry, ¥ (B) contains

a k (n°M))-monotonous hard set for NP, then

NP C | | RTIME (n/ - cp (/)0 F (7)),
320
Proof: Let A be some NP set, and let ¢ be a polynomial and P4 be
a polynomial-time set such that A = {z|3w e LX) . (2, w) € Py}.
Let wmayx (z) denote the lexicographically greatest w € £¢(#1) such that
(z, w) € Py. We apply the left set technique developed in [31] and adapted
for Hausdorff representations in [3] combined with probability amplification
to device a randomized algorithm that on input € A computes wmax ()
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with high probability. As in the deterministic setting the algorithm performs
a breadth-first search through the tree of witness prefixes for an input z.
More specifically, let

L(A)={{z, y) 13w, v:lyl=|ul, y<u, (z,w)€ Pa}

be the set of all pairs (z, y) such that z € A and y is lexicographically
smaller than the length |y | prefix of wmax. Since L (A4) is in NP it follows
by the assumption of the theorem and by Proposition 3.5 that L (A) is
reducible to some set in Ry, ' © (B) via a Hausdorff reduction that on input
(z, y), asks k(| z|°) queries of length at most |z |° for an FP function k
and a suitable constant ¢. Our algorithm uses the information provided by
the reduction of L (A) to B to eliminate with very high probability only
such prefixes that don’t lead to wmax (7):

input z, |z| = n
N = {e}
for i := 1 to ¢(n) do

— Expand N to {y0|y € N} U{yl|y € N}

— In case the size of N exceeds (cp(n¢) + 1)F(*)*1 use the
randomized procedure described below to prune N back to that
size retaining the length ¢ prefix of wmax with very high probability

end

if there is a w € N such that (z, w) € P4 then accept else reject end

It is clear that the algorithm rejects every instance x ¢ A with probability
1. The main part of the proof consists in implementing the randomized
pruning procedure such that the algorithm accepts every instance z € A
with probability at least 3/4.
Let I,, denote the index set {1, ---, k(n)}, and for any i € I, U {0} let
S'(I2") denote the subset {j € I, | j < i} (tesp., {j € I | j > i}). Further,
let p be a polynomial such that for all 7, (1 — 27P("))a(n)*(n®) > 3/4 From
the definition of the Hausdorff reducibility and using Lemma 5.1 it follows
that there is a polynomial s and a polynomial-time function f such that
for all z, y, |z| = n,
e there exists an 1 € I, U {0} such that for all j € s,
Prob [f (4, z, y, w) C B] = 1 and for all j € I},
Prob [f (4, ¥, y, w) C B] < 27¢",
e (z,y) € L(A) if and only if 7 is odd,
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where w is chosen uniformly at random from 3* (). Moreover, by combining
f (4, z, y, w) with all the queries in the sets f (I, z, y, w), I < j, we can
assume that f (4, z, y, w) C B implies f (j — 1, z, y, w) C B, for
i=2,..., k(n°).

In the sequel let x be an arbitrary but fixed instance in A. For simplicity,
we denote Wmax (£) by Wmax and |z | by n. Let N = {y1, ..., y:} be a
lexicographically ordered set of prefixes (all of same length) that includes
the prefix, say yp, of wmax of that length. We use some crucial properties of
the function f for the design of a randomized procedure that prunes N to a
subset of size at most (cp (n¢) + 1)¥")+1 and retains y;, with probability
at least (1 — 27 P(P))k(n),

PRUNE(z, N), N = {31, ..., w}

guess randomly wy, ..., w; € 257
for ; := 1 to k(n°) do
compute an index set J; C {1, ..., ¢t} of candidates for A,

where A is the index of the prefix yp of wmax in IV
end
. k(n°)
return {y; |j € Ui, " Ji}
The above procedure computes for every ¢ = 1, ..., k(n°) an index

set J; of size at most (cp (n°) + 1)* such that h is contained in some .J;
with probability at least (1 — 27P(M¥"°) Let Jy = {0}, then the sets J;,

i =1, ..., k(n) are computed as follows. If ¢ is odd,
Ji = O
for each j € J;—1 do
Q=9

for k == j+ 1 to t do
if £ (i, 2, yp, wi) € Uy £ (6 7,9, wi) and || Q|| < cp (n°) then
Ji = J;u{k -1}
Q = QUf(], Ty Yks wk)
end
end
if |Q|| < cp(n®) then J; := J; U {t} end

end
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and if ¢ is even,

J, = O
for each 7 € J,_; do
Q=0

for k := 5 — 1 downto 1 do
if (3,2, yp, wi) € Uf:—13+1 f (i, 2, g, wy) and || Q || < cp (n€) then

J, = J, U {k}
Q=QUf{, =, Y, wr)
end
end
if |Q]|| < cp(n®) then J, := J, U {0} end

end

Cram: The ser returned by procedure PRUNE is of size at
most (cg (n¢) + 1)F )Y and contains vy, with probability at least
(1 _ 2——])(11))]9(725).

Proof: Tt is straightforward to show that || J, || < (|| Q|| + 1) || J—1]|
for s = 1, ..., k(n®), and thus the cardinality of Ufz(?c) J, is at most
(e (n) + D )+1,

The strategy behing the computation of the index sets J, is as follows. Let
r1 be the maximum index 7 such that Prob [f (1, =, y, w) € B] =1

for all k = 1, ..., r. Since for &k = 1, ..., h, the pair (z, yi) is
in L(A) it follows by the properties of the Hausdorff reducibility that
h<ri <t Ifr =tthen f(1, z, yr, wr) C Bfor k=1, ..., ¢, and

thus 71 = ¢ is included into J; with probability 1. Otherwise, if 1 < ¢ then
with probability at least 1 — 277(") the string w;,+1 is chosen such that
F (%, yr g1, wea) € B Since f (1, @, yp, w) S Bfork=1,..., 7,
Le. ” U71;1:1 f(zr L, Yk, wk) ” <cp (nc)’ but f(11 Ty Yri+1s ’LU7~1+1) ,¢- B,
it follows that 7 is included into J; with probability at least 1 — 27P("),
Now, if 1 = h then the probability that r; = h is included into Jy is at
least 1 — 27P("),

Otherwise, if 71 > h then assume that the algorithm includes r1 into Jj,
and let I be the least index [ such that Prob{f (2, z, y, w) € B] =1
for all k =1, ..., r1. Since for k = h + 1, ..., 71, the pair {z, yi) is
not in L (A) it follows by the properties of the Hausdorff reducibility that
1<l <h+1.Ifly=1then f(2, 2, yp, wp) CBfork=1,..., 71, and
thus /; — 1 = 0 is included into J» with probability 1. Otherwise, if 3 > 1
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then with probability at least 1 — 27P(")  the string wy,—1 is chosen such that
S, 2, y,—1, wi,—1) € B. Since f (2, z, yp, wp) C Bfork =1y, ..., 71,
e || Uy, f (i, @, yr, wi) || < cg (n€), but £(2, @, yr,—1, wi,—1) € B, it
follows that Iy — 1 is included into J, with probability at least 1 — 27P(%),
Now, if I3 — 1 = h then the probability that r; and l; — 1 = h are included
into J; and Jy, respectively, is at least (1 — 2'1’(”))2.

In general, if ¢ = 25(: =254+ 1) and l; — 1 < h (resp., r; > h) then
assume that rq1, Iy, ..., [; (tesp., r1, l2, ..., i) were included into Jp,
Ja, ..., Ji, respectively, and let ;41 (resp., l;+1) be the maximum index
r (resp., minimum index {) such that Prob [f (i + 1, z, v, w) C B] =1
forall k =1;, ---, r (tesp.,, forall k =1, ..., r;). Since for k =1;, ..., h
(resp., for kK = h + 1, ---, 1), the pair (z, yr) is (resp., is not) in
L(A), it follows by the properties of the Hausdorff reducibility that
h < rig1 < rioq1 (tesp., li—1 < liy1 < h+1). If riy1 = ri—1 (resp.,
li+1 = li—1) then r;y1 (resp., liy1) is included into J;4; with probability
1. Otherwise, with probability at least 1 — 277(")  the string Wy, +1 (T€sp.,
wy,,,—1) is chosen such that f (i + 1, &, Yr.,, 41, Wr,41) & B (resp.,
FO+1, 2z, Yy, -1, wi,,—1) ¢ B). Thus it follows that 741 (resp., lit1)
is included into J;y1 with probability at least 1 — 27P(") implying that the
probability that r1, I3, ..., 7i41 (resp., 71, lg, ..., liy1 — 1) are included
into Ji, Jy, ---, Jit1, respectively, is at lieast (1 — 27P(m))it1,

This completes the proof of the claim since by the properties of the
Hausdorff reducibility it holds for some i < k (n) that h = r; or h = [; — 1,
depending on ¢ being odd or even. O

By the Claim, the set N contains wmay after the execution of the for-loop
in the main program-with probability at least (1 — 2~P(n))k(n® )a(") | which is
more than 3/4 by the choice of p. Finally, to check the running t1me of the
algorithm, observe that the main for-loop is executed ¢ (n) times, and that
the size of N never exceeds 2 - (¢p (n¢) + 1)M)+1. =

From Theorem 5.2 we can derive the following immediate consequences.

CoroLLARY 5.3: If NP is contained in Rin(Rm © (SPARSE)), then
NP = RP and PH C BPP.

Proof: Since by Theorem 3.8, Rp . (Rn *(SPARSE)) =
RV (Ry P (SPARSE)), NP = RP follows directly from Theorem 5.2.
That NP C BPP implies PH C BPP is stated in [23]. W

Along the same lines as Theorem 5.2 (but without the probability analysis)
we can prove the follewing trade-off result.
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THEOREM 5.4: Let k, cp be non-decreasing, polynomial-time functions. If
there exists a set B such that density p(1") < cp (n) and RY (B) contains a
k (n)°Y) -monotonous hard set for NP, then

NP C | J DTIME (n/ - cp (n? )02y,
320

Theorems 5.2 and 5.4 yield the following corollaries which are similar
to the results in [17] regarding truth-table reductions of NP-complete sets
to sets of different densities.

CoroLLARY 5.5: If B is a set of density O (log n) such that an NP-
complete set is reducible to a set in RE(B) (resp., Ry, Y (B)) by a
O (log n)/log (log n)-monotonous reduction then P=NP (resp., RP=NP).

COROLLARY 5.6: If an NP-complete set is reducible to a set in RY (SPARSE)
(resp., Rm P (SPARSE)) by a O (log n)-monotonous reduction then
NP C DTIME (20008°m)) (esp., NP C RTIME (20(log*n))y,

An interesting point to note in the above corollaries is that the number of
queries in the conjunctive reduction is unbounded and it plays no role in the
trade-off. The trade-off is purely between the density of B and the number

of queries in the monotonous reductions.

Finally, we consider consequences for K € {PP, PSPACE, C-P}
being contained in RY.(R; P(SPARSE)). Using the facts that
RV (R " (SPARSE)) C RE.(SPARSE), and K C RE (SPARSE)
implies K C 212) (see Section 4), the following theorem is obtained as a
consequence of Corollary 5.3.

THeOREM 5.7: For K € {PP, (PSPACE), C_P}, if a bounded Turing hard
set for IC co-rp many-one reduces to a sparse set then K C BPP.

6. PROMISE PROBLEMS AND RANDOMIZED REDUCTIONS TO SPARSE SETS

In this section we investigate consequences of some solution of the promise
problem (1SAT, SAT) reducing to a sparse set, where 1SAT is the set of
boolean formulas having at most one satisfying assignment. In particular, we
show that no solution of the promise problem (1SAT, SAT) bounded Turing
reduces to a set in Ry, ¥ (SPARSE) unless NP = RP. We first give the
definition of promise problems and state its relation to randomized reductions.
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DerINITION 6.1 [13]: A promise problem is a pair of sets (Q, R). A set
L is called a solution of the promise problem (Q, R) if for all x € Q,
€L & x € R.

Observe that a solution for the promise problem (1SAT, SAT) has to agree
with SAT in the formulas having a unique satisfying assignment as well as in
the unsatisfiable formulas. Let USAT be the set of formulas having a unique
satisfying assignment. The well known result of Valiant and Vazirani stating
the NP-hardness of USAT under (a different kind of) randomized reductions
[39] has the following implication for the promise problem (1SAT, SAT).

THEOREM 6.2 [39]: If there is a solution of the promise problem (1SAT, SAT)
in RP then NP = RP.

We now improve Corollary 5.3 by weakening the assumption that NP is
contained in Ri. (R '* (SPARSE)).

THEOREM 6.3: If there is a solution in RY,. (Ry. " (SPARSE)) for the
promise problem (1SAT, SAT) then NP = RP.

Proof: Let L € Rb. (R " (SPARSE)) = Ry, , (R * (SPARSE)) be
a solution of the promise problem (1SAT, SAT). Then we have for all
xz € 1SAT, z € L & x € SAT. The natural (prefix) left set associated
with SAT is the set

L (SAT)

={{z,y)|3u, v:|y|=|ul, y <u, uvis asatisfying assignment for z}

of all pairs (z, y) such that z € SAT and y is lexicographically smaller
than the length |y| prefix of the maximum satisfying assignment for z.
We first show that the promise problem (Q, L (SAT)) has a solution
L' € RV, (R "? (SPARSE)), where Q = {(z, y)|z € 1SAT}.

By the definition of L (SAT) it is clear that L (SAT) is accepted by some
NP machine which on inputs (z, y), x € 1SAT, has at most one accepting
path. Thus there is a (parsimonious) many-one reduction function g from
L (SAT) to SAT such that g (z, y) € 1SAT for all pairs {z, y) for which
x € 1SAT. Now define L' = {(z, y)|g(z, y) € L}. Clearly g many-one
reduces L' to L, implying that I € R}, , (R " (SPARSE)).

Furthermore, since L is a solution of (1SAT, SAT), and since for all
(z, y) € Q, g(z, y) € 1SAT, it follows for all {(z, y) € @ that
g(z, y) € L if and only if g(z, y) € SAT. Since g many-one reduces
both L (SAT) to SAT and L' to L, we have for all (z, y) € Q that

Informatique théorique et Applications/Theoretical Informatics and Applications



REDUCTIONS TO SPARSE SETS 177

(z,y) € L' & (z,y) € L(SAT), i.e., L' is a solution for the promise
problem (@, L (SAT)).

Consider a modification of the algorithm described in the proof of
Theorem 5.2 which uses the reduction of L' to a sparse set B (instead of
L (SAT) to B) to guide the search for the maximum satisfying assignment
Wmax. We claim that on input z € 1SAT N SAT this algorithm computes
with high probability the unique satisfying assignment w5, for x. This is
a consequence of the fact that on input x € 1SAT N SAT the algorithm
considers only pairs {z, y) in Q, implying that (z, y) € L' & (z, y) €
L (SAT). Hence the set accepted by the algorithm is an RP solution for
the promise problem (1SAT, SAT) and by Theorem 6.2 it follows that
NP=RP. R

Regarding the possible existence of solutions for (1SAT, SAT) in the
deterministic reduction class Rl (RE (SPARSE)) we get the following
result.

TueoREM 6.4: If there is a solution of (1SAT, SAT) in R, (RY (SPARSE))
then (1SAT, SAT) has a solution in P, implying that Few = P and
USAT € co-NP.

Proof: The first implication follows along the lines of the previous
theorem. The consequence Few = P follows from [37] using the containment
Few C PFe"F [26], and USAT € co-NP follows from [20]. W
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