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ON SETS BOUNDED TRUTH-TABLE REDUCIBLE
TO P-SELECTIVE SETS *

by Thomas THIERAUF (M, Seinosuke Topa (?) and Osamu Waranase (%)

Abstract — We show that if every NP set is polynomial-time bounded truth-table reducible to

o(1/\VTog n
some P-selective set, then NP s contained in DTIME (2" (1/vles n)) In the proof, we implement
a recursive procedure that reduces the number of nondeterministic steps of a given nondeterministic
computation

1. INTRODUCTION

The class NP is commonly considered as a class of problems that cannot
be solved efficiently, that is, by polynomial-time bounded, deterministic
Turing machines. Changing from (uniform) Turing machines to (nonuniform)
circuits, one of the important questions in computational complexity theory
is whether every NP problem is solvable by small, that is, polynomial-size,
circuits. Furthermore, assuming that NP problems can indeed be solved by
small circuits, it has been asked whether this is turn gives deterministic
algorithms for NP faster than the known exponential ones. In other words,
if NP is easy i the nonuniform complexity measure, how easy is NP in the
uniform complexity measure? We study such type of questions in this paper.
Karp and Lipton [KL82] have shown that if NP has small circuits then the
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136 T. THIERAUF et al.

Polynomial Hierarchy [Sto77] collapses, therby giving strong evidence that
the assumption might not hold. Note however, that this does not answer
the above question.

Small circuits can be coded by sparse sets and vice versa. Therefore, the
class of sets that have polynomial-size circuits coincides with the class of sets
that are (polynomial-time) Turing reducible to some sparse set. We denote
the latter class by R; (SPARSE). Hence, the above question is equivalent
to the following one: For which uniform deterministic complexity class C
do we have NP C RE (SPARSE) = NP C C?

Nontrivial answers to this question are only known for even stronger
assumptions such as that NP is contained in certain subclasses of
R; (SPARSE). For example, Mahaney [Mah82] showed that if every NP
set is many-one reducible to some sparse set then P = N P. That is,

NP C RL (SPARSE) = NP=P.

Ogiwara and Watanabe [OW91] extended Mahaney’s result to bounded
truth-table reductions, that is,

NP C R, (SPARSE) = NP=P.

This result have been improved further more recently, see [AHH193].
However, it is open whether the result can be improved to b (n)-bounded
truth-table reducibility for some nonconstant function b (n). Indeed, Saluja
[Sal93] showed that, at least with the technique used by Ogiwara and
Watanabe, such an improvement is impossible. Furthermore, for b(n) =
w (logn), Homer and Longpré [HL94] (see also [AHHT93]) constructed
an oracle relative to which NP C R{: (n)-tt (SPARSE), but P is different
from NP.

Small circuits can also be coded as leftcuts of real numbers and vice
versa [Ko83, Sel82b]. Leftcuts can be formalized in terms of P-selective
sets [Sel82b]. Therefore, the class of sets that have polynomial-size circuits
coincides with the class of sets that are (polynomial-time) Turing reducible to
some P-selective set. Let SELECT denote the class of P-selective sets. Thus,
we have RY (SELECT) = RE (SPARSE). However, for reductions that are
more restrictive than the Turing reduction, classes obtained by reducing to P-
selective sets can be different from classes obtained by reducing to sparse sets.
For example, Watanabe [Wat90] showed R} (SELECT) # RL (SPARSE)
(see [HHO*93] for more separations). Hence, it is interesting to investigate
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ON SETS BOUNDED TRUTH-TABLE REDUCIBLE TO P-SELECTIVE SETS 137

the consequences of N P being reducible to P-selective sets with respect to
some more restrictive type of reducibility.

Selman [Sel79] showed that if every NP set is many-one reducible to
some P-selective set then P = N P. Assuming that NV P sets are (unbounded)
truth-table reducible to P-selective sets, Toda [Tod91] and Beigel [Bei88]
showed that NP problems can be solved efficiently by randomized Las
Vegas type algorithms, a class denoted by R.

NP C RE (SELECT) = NP=R. (1)

In this paper, we show a deterministic uper bound on NP when considering
bounded truth-table reductions. Namely, we show

NP C RE,(SELECT) = NP C DTIME (2,10(1,\/@)

) @

Let us give a brief outline of our proof. We start by sketching the idea
to prove equation (1). The assumption NP C RE (SELECT) is essentially
used to show:

(*) for a given polynomial-time nondeterministic Turing machine M and
a string z, if M on input z has exactly one accepting path, then the path is
computable in deterministic polynomial time.

For M and z as above, the nondeterministic computation of M on z can
be viewed as a (binary) tree 7. Using the randomized hashing technique of
Valiant and Vazirani [VV86], one can construct subtrees 77, ..., Ty, of T,
all having the same root as 7', such that if T has an accepting path then,
say, m/4 of Ty, ..., T, have exactly one accepting path. Then from property
(*), for the T3,’s having exactly one accepting path, one can compute this
path. Thus, by choosing T} randomly for several times, one can compute
some accepting path of 7" with high probability if there are any. This is the
idea of showing NP = R.

We also use (*) for proving equation (2). Consider again a nondeterministic
computation tree 7" as above. Using our stronger assumption, namely that
NP C RE, (SELECT), we can construct subtrees 77, ..., T, of T such
that if 7' has some accepting path, then some 7}, has exactly one accepting
path, and, by property (*), such a path can be computed in polynomial
time. The important point here is that the number of subtrees, n, can be
chosen fairly small compared with m from above, or with the number of
paths in 7". Hence, the original NP question “Does T have an accepting
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138 T. THIERAUF et al.

path?” is reduced to another NP question “Is there a k such that 7}, has an
accepting path?”, and in addition, the size of the search space in the latter
NP question (searching for some k) is much smaller than in the former one
(searching for some path). Hence, for solving the reduced N P question, one
needs a smaller number of nondeterministic guesses. We show how to apply
this process recursively, thereby successively decreasing the search space of
the reduced NP questions obtained. In total, this yields a subexponential
algorithm to solve the original problem deterministically.

Related work was done by Jenner and Tordn [JT93]. They showed under
the assumption that functions that can be computed in polynomial time by
making truth-table queries to NP can already be computed in polynomial
time by making logarithmically many (adaptive) queries to N P (in symbols,
FPYP = ppNFPllogl) it follows that NP C DTIME (2"/%°8" ™) for any
k > 1. Note that their assumption is seemingly weaker than ours since it is
not hard to see that NP C RE (SELECT) implies FPYT = FpNPlog],
but the converse implication is not known to hold. It seems, however, not
possible to obtain our stronger upper bound on NP from their assumption
by their technique [Tor93]. -

Most notably, we mention that our result has been improved recently.
Namely, Agrawal and Arvind [AA94], Beigel, Kummer, and Stephan
[BKS94], and Ogihara [094] showed that N PgRgt (SELECT) = NP=P.
In fact, the result holds up to quasi-linear truth-table reducibility, i.e.,
O (n'~¢), for any € > 0, [AA94, 094]. The principal method in all three
papers is a standard search and pruning technique with the goal to find a
satisfying assignment for a given Boolean formula F' in polynomial time (if
there exist any). During the search, a set X of subformulas of F'is maintained
such that the following invariant is fulfilled: F € SAT < X N SAT # 0.
Initially, X = {F'}. While going breadth-first through the self-reduction tree
of F', X is successively extended and then pruned again such that the size
of X remains polynomially bounded. The pruning task is to determine an
z € X such that if X N SAT # () then (X — {z}) N SAT # . Then = can
be pruned from X since there will still be a satisfiable formula in X if there
are any, thereby maintaining the invariant. By assumption, formulas in X
can be reduced to a P-selective set. The crucial point in their proofs is to
also produce new Boolean formulas by or-ing together some (appropriate)
formulas of X, and to reduce them to the P-selective set as well. Since the
new instances are related to the formulas in X (by the or-function), this must
be reflected in the way these strings are mapped by the reduction. Exactly
this property is used to find an instance x to prune as described above.
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ON SETS BOUNDED TRUTH-TABLE REDUCIBLE TO P-SELECTIVE SETS 139

Thus, our approach is completely different from the one’s mentioned
above. Roughly speaking, the proofs in [AA94, BKS94, 094] essentially use
the fact that there are NP complete sets that are (disjunctively) self-reducible
and have an or-function in order to make their searching technique work.
In contrast, we use the completeness of certain NP sets, but we don’t use
such or-functions, and thus, we need to establish a more elaborate searching
technique. Therefore, although the main result we will derive in this paper
is already subsumed, we think that our proof technique is interesting for its
own, and hence, we encourage the reader to continue reading!

2. PRELIMINARIES

We follow the standard definitions and notations in computational
complexity theory (see, e.g., [BDG88, BDG91]).

We fix an alphabet ¥ = {0, 1}. For any set X C ¥*, we denote the
complement of X as X = * — X. Natural numbers are encoded in ©* by
using their binary representation. For any string z, let |z| denote the length
of z, and for any set X, let || X|| denote the cardinality of X. We consider a
standard one-to-one pairing function from ¥* x ¥* to ¥* that is computable
and invertible in polynomial time. For strings z and y, we denote the output
of the pairing function by (z, y); this notation is extended to denote tuples.
For example (z, y, z) is defined as ((z, y), z). For a function f, we simply
write f(z, y) instead of f ((z, y)).

We use the standard Turing machine as our computation model. P (resp.,
NP) denotes the class of languages that can be recognized by some
polynomial-time deterministic (resp. nondeterministic) Turing machine. For a
nondeterministic Turing machine M, we assume that every nondeterministic
configuration of M has at most two succeeding ones. Hence, each
nondeterministic computation of M on a given input can be described
by a string w, where the ¢-th bit of w indicates which branch to take at the
i-th nondeterministic branch point. In this context, we call a string w a path
of M, and, in case that w leads to an accepting configuration of M on a
given input, we call w an accepting path of M on that input.

For any sets A and B, we say that A is many-one reducible to B (and
write A <l B) if there is some polynomial-time computable function f,
the reduction, such that for any z € ¥*, we have z € A & f(z) € B. A
set C is called N P-complete if (i) every NP set is many-one reducible to
C, and (ii) C itself is in NP. The reducibility notions we are interested
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140 T. THIERAUF et al.

in are generalization of the many-one reduction. We say that A is truth-
table reducible to B (and write A < B) if there are two polynomial-time
computable functions, generator g that, for a given x € ¥*, produces a set
of strings, and evaluator e that, when knowing which of the strings produced
by g are in B, decides membership of x in A. That is, for any = € X*,

re€Ase(r,g(x),9g(x)nB)=1,

where we assume that g (z) (resp., g (z) N B) is encoded as a string. For
any b(n) > 0, we say that A is b (n)-truth-table reducible to B (and write
A Sf (n)-tt B) if the generator g produces at most b (n) strings for each input
of length n. We say that A is bounded-truth-table reducible to B (and write
A<t B)if Ais <f, -reducible to B, for some constant k > 0. Hard and
complete sets with respect to these reducibilities are defined analogously as
for the many-one reducibility.

For any class C of languages, let RE (C), RE (C), Rf(n)_tt (C), and

R{;t (C) respectively denote the class of sets that are S;-, Sg_, 55 (n)-tt*

and pr;t—reducible to some set in C.
P-selective sets were introduced by Selman [Sel79] as the polynomial-
time analog of semi-recursive sets [Joc68]. A set A is P-selective, if there

exists a polynomial-time computable function f, called a P-selector for A,
such that for all z, y € X%,

L f(z,y) € {, y}, and
2.if x € Aory € A, then f(z,y) € A

Intuitively, f selects the one of the two given strings that is “more likely”
to be in A. More formally, if f(z,y) = x and y € A, then x € A. The
class of P-selective sets is denoted as SELECT.

Ko [Ko083] showed that for every P-selective set A, using the P-selector
function f of A, one can define a linear ordering on a quotient of 3* such
that A is the union of an initial segment of this ordering. Toda [Tod91]
modified this to an ordering on a given finite set () (instead of ¥*). Here,
we use this ordering. That is, we define the relation =<¢ ¢ on @ as follows.
For all z,y € Q,

x2poye Iz, 2 €Q f (2, zig1) = & for i=1,....,n—-1,
f(x', 21):21, and f(zn;y):Zn~
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ON SETS BOUNDED TRUTH-TABLE REDUCIBLE TO P-SELECTIVE SETS 141

Define © =¢ gy & @ 20y Ay <502z Then =5 ¢ is an equivalence
relation on @, and < ) induces a linear ordering on the quotient @/ =5, .
This is refiected by the following partial ordering <7 g on Q:

x ~<f=Qy<:>x-<f,Qy/\:c7~éf_,Qy.

For simplicity, we omit the subscripts f an @) when both are clear from the
context. For technical reasons, we introduce a minimum and a maximum
element, denoted as L and T respectively, such that L < z < 7', for all
T € Q.

It is easy to see that the relations < and = are decidable in polynomial

time in » |z|. The crucial point is that A N @ is an initial segment of @
TEQR
with respect to <. That is, we have

FzeQui{l}:QnA={ycQly=<z}
and ()

QNA={yeQly»>z}

We call a string z witnessing (%) a cutpoint of A in @ (with respect to =).
A consequence of this property is thatVz,y € Q@ :x X yAy € A = x € A.

3. MAIN RESULT

In this section, we show that if all NP sets are bounded truth-
table reducible to some P-selective set, then every NP set is solvable

deterministically in g C/Vies steps. We begin by recalling a result of
Toda [Tod91] that will be used in our proof. We use a formulation in terms
of promise problems.

Dermvition 3.1. [ESY84]: A promise problem is a pair of sets (Q, R). A
set L is called a solution of the promise problem (Q, R), if for all z € Q,
we have z € R & z € L.

In other words, if L is a solution of a promise problem (Q, R), then
L coincides with R on all instances where the promise @ holds. That is,
QNR=nNL.

Toda [Tod91] showed that if all VP sets are Sg-reducible to some
P-selective set, then the promise problem (1-SAT, SAT) has a solution
in P, where 1-SAT is the set of Boolean formulas that have at most one
satisfying assignment. We restate his theorem in a slightly more general form
and include a proof for completeness.
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142 T. THIERAUF et al.

TueoREM 3.2 [Tod91]: If NP C Rf, (SELECT) then, for any N P machine
N the promise problem (1-L (N), L (N)) has a solution in P, where 1-L (N)
is the set of strings x such that N has at most one accepting path on input
x. Furthermore, if N is p(n) time bounded, then the solution is in DTIME
(g7 o p(n)), for some fixed polynomial qr.

Proof: Define the NP set BitPATH as follows. For a nondeterministic
Turing machine N, a string z, d, ¢ > 1, and 1 < ¢ < d,

(N, z, 0%, 0%, i) € BitPATH < there exists w € £5% such that
(1) wis an accepting path of N on input z,
(2) N on input z and path w halts in ¢ steps, and
(3) the i-th bit of w is 0.

By assumption, BitPATH is truth-table reducible to some P-selective set A.
Let g be the generator and e the evaluator of the reduction, and let f be
a P-selector for A.

Let N be an NP machine, and let polynomial p bound its running
time. Consider an instance z, || = n, for N such that N has exactly one
accepting path w on input z. Clearly, we can reconstruct w when knowing
the answers to the questions “z, = (IV, z, 0°("), 0P(") §) € BitPATH?”,
for ¢ = 1,..., p(n).

Let @ be the set of strings queried to A on z; by the generator of
the truth-table reduction, for i = 1,..., p(n), ie, @ = {yly € g(z), for
some i, 1 < % < p(n)}. If we know which point of @ is a cutpoint of
A wrt. = g, we would be able to get the correct answer to each query
“2, € BitPATH?”, thereby obtaining the unique accepting path w. Here,
note that ) has only polynomially many elements; thus, we can try all
elements y of @ and check whether we obtain an accepting path (namely,
w) assuming that y is a cutpoint. (Note that we can easily verify whether
a reconstructed path is an accepting path.) The following algorithm makes
this idea more precise. Here, NV and p are fixed parameters.

UNIQUE-ACCEPTING-PATH (z, |z| = n);

Qe U g,z 00m ot 5,

1<i<p(n)
for each y € QU {L} do
for i — 1 to p(n) do
if the evaluator e accepts (N, z, 07("), or(n), i) when the answers
to g (N, z, 0°(™)_ 0P(") ) are given according to cutpoint y
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ON SETS BOUNDED TRUTH-TABLE REDUCIBLE TO P-SELECTIVE SETS 143

then w, «— O else w; «— 1;

if w = wy...w, () 18 an accepting path of N on input x then accept;
reject.

Let My be a deterministic Turing machine that executes this algorithm.
Clearly, L (My) is a solution for (1-L(N), L (N)). Furthermore, there
exists some polynomial ¢r such that for any N, Mx halts in O (g7 (p (n)))
steps.

Now, we prove our main theorem.

Tueorem 3.3: If NP C RE. (SELECT) then NP C DTIME
btt
(2710(1/\/10511,)).

Proof: Let us first define two NP sets. The first one is similar to
the canonical universal NP complete set except that the number of
nondeterministic steps is stated explicitly. For a deterministic Turing machine
M, a string z, and d, t > 1,

(M, z, 0%, 0') € UNIV & there exists w € 2% such that

M accepts input (z, w) in at most ¢ steps.

Obviously, UNIV is N P complete. Our second set is defined similarly except
that it has, as an additional component, the prefix of an accepting path for
the considered machine. For a deterministic Turing machine M, a string
z,d,t > 1, and a string u, where |u| < d,

(M, z, o, of, u) € Prefizx PATH < thereexistsv € =14l sych that
M accepts input (z, wv) in at most ¢ steps.

Consider any instance 7 = (M, z, 09, 0') for UNIV. We can define
a binary tree 1" associated with 7 as follows. The nodes of T are of the
form (7, u), for u € »=4 which are instances for Pre fix PATH. T’s
root is (7, A) (where A is empty string). Clearly, 7 € UNIV < (7, \) €
Prefiz PATH. T’s leaves are nodes (7, u) such that |u| = d. A binary
string u € ©=¢ is viewed as a path from the root to (7, u). A string w € B¢
is called an accepting path of T if M accepts input (z, w), or, equivalently,
(1, w) € PrefixPATH. Clearly, T € UNIV if and only if there exists
an accepting path in 7.
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144 T. THIERAUF et al.

Let r and e be some integers that will be specified later. Below, we define
rld/€l subtrees T). of T in such a way that, if there is an accepting path in
T, then there exists a subtree T}, that has exactly one accepting path. That is,

r€UNIV & 3Jwen?: wisan accepting pathin T 3)
& 3k < rl¥°l . T, has exactly one accepting path. 4

At this point, we can explain our proof idea, that is, the strategy for deciding
whether 7 € UNIV in deterministic subexponential time. Consider the
promise problem (1-SubTREFE,SubTREF), where 1-SubTREFE is the
set of 7} with at most one accepting path, and SubTREE is the set of
Ty having an accepting path. Subl’'REFE clearly is an NP set. Then, by
Theorem 3.2, this promise problem has a solution in P. Thus, if T} has
exactly one accepting path, we can verify it in polynomial time. Hence,
both, equation (3) and (4) give N P-type predicates for deciding whether
7 € UNIV. While there are 2¢ possibilities for w in equation (3), we can
reduce the scope of & in equation (4) by choosing e large; in other words,
while d (binary) nondeterministic guesses are necessary in equation (3),
(dlogr)/e guesses are enough when using equation (4). On the other hand,
enlarging e will increase the time to decide the promise problem. We will see
below that by appropriately choosing e, we can fairly reduce the number of
nondeterministic guesses without increasing the time to decide the promise
problem too much. That is, the original N P-type predicate is reduced to
a simpler one. By iterating this process, we can finally solve the problem
without any guesses, i.e. deterministically, and we will see that the whole
process can be done in subexponential time.

Let us define the subtrees more precisely. We assign an integer label
to each node of 7. Subtree T3 of T is then defined as consisting of all
nodes having label & and their father nodes. The way to assign labels is
therefore crucial. In order to do so, we divide T into blocks of depth e.
More formally, for each h, where 0 < h < [d/e] — 1, and u € nh-e
we consider a set X (7, u) = {(7, wv)|v € X¢} of nodes in T, which is
regarded as a block of depth e !. Notice that if (7, u) € Prefiz PATH,
then some elements of X (7, u) also belong to Prefiz PAT H. Here, for the
decomposition of 7" satisfying equation (4), we would like to divide X (7, u)
into X1 (7, w), ..., Xr (7, w) so that if (7, u) € Prefic PATH then some

! Precisely speaking, when |u| = ([d/e] — 1)e (ie., h = [d/e] — 1), X (v, u) should be
{(r, wv)|v € 2411}, In the following, we omit explaining such exceptional cases.
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ON SETS BOUNDED TRUTH-TABLE REDUCIBLE TO P-SELECTIVE SETS 145

X, (7, u) has exactly one element in Prefiz PAT H. Key point of our proof
is that this is possible by using the assumption that Prefix PATH(€ N P)
is Sgt-reducible to some P-selective set. That is, we have the following
lemma.

Key LEmma: Let b, n > 0 and r = 6 (|b/2] + 1) — 1. Let L be any set
that is 55 +-reducible to some P-selective set. Then, for any X C 7, there
exist 7 disjoint subsets X1,..., X; of X with the following property.

XNL#£b0eFilr:||X,nL|=1.

Furthermore, we can compute Xi,..., X, in polynomial time w..t. n
and || X||.

Since PrefizxPATH is in NP, for some b > 0 it is <% -reducible
to some P-selective set by assumption. Thus, from the Key Lemma (with
L = PrefizPATH and X = X (7, u)) we can divide each X (7, u) into
r =6(|b/2] + 1) — 1 disjoint subsets X (7, u),..., X (7, u) of X (7, u)
such that

(1, u) € PrefizPATH & 35 <7 : X, (7, u)
has exactly one element in PrefitPATH ,

An important point to note here is that  does not depend on e.

The root of T', (7, A), gets label 1. Now, let (7, u) be some node of T,
where u = vy v3...up, for some 0 < h < [d/e] and v1,..., v, € E° All
nodes in a set X, (7, u) get the same label. The nodes in X7 (7, u) get the
same label as (7, u). For j > 1, consider the r-ary tree, where the nodes are
the sets X, (7, w). If we go through this tree in a breath first left to right

Figure 1. — Tree with branching factor 4 and its labeling.
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146 T. THIERAUF et al.

fashion, then the nodes in X (T,'u) get as label the smallest number that
not yet occured as a label. Figure 1 provides an example.

More formally, let the history of (7, u) be the sequence (ji,..., jn) of
indices, where each j; (1 < ¢ < h) is the index such that (7, v;..v;) €
Xj, (1, v1...v;—1). Note that each history is expressed as a path (from the
root to some node) of a r-ary tree.

Let left(j1,..., jn) be the number of nodes in the r-ary tree that are

in the same depth to the left of the node with history (41, ..., jn). That is,
left( ) =0, and

left(gr, s s 3) =7 - left (i, s Jn) +§ = 1.

Let v € 3¢ and let (j1,..., Jn, j) be the history of (7, uv). Then

label (1, u), if g=1,
label (1, wv) =
4+ (r—1) - left(j1,..., jn) +§ — 1, otherwise.

Now, for each k, where 1 < k£ < rld/el | define T, as the subtree of T
consisting of all nodes with label &k and their father nodes.

It is not hard to show that label is computable in polynomial time w.r.t.
I(7, )| and 2¢, and furthermore, that the labels are bounded by r[?/¢l,

Cram 1: T has an accepting path if and only if for some k, 1 < k < r[/¢],
Ty has exactly one accepting path.

Proof: Since each path of T belongs to one of the subtrees, the if part
is obvious.

Assume that 7' has an accepting path. Then (7, \) € PrefizxPATH,
hence, by the Key Lemma, some Xj, (7, A) has exactly one element
(t,v1) in PreficPATH. Then since (1, v1) € PreficPATH, again
by the Key Lemma, some X, (7, v1) has exactly one element (7, v1 v2) in
PrefizPATH. Continuing this argument, we can find ji, ..., ji4/¢] and
V1, ..., V[a/e] Such that each Xj, (7, v1..vi—1) has exactly one element
(1, v1...v5—1v;) in PrefizPATH. In particular, v; V2...U[q/e] 1S an
accepting path. Thus, T, where k = label (1, v1, v2...v[4/¢]), has exactly
one accepting path. [ Claim 1

Next, for each e > 1, consider the following set. For a deterministic Turing
machine M, a string z,d, ¢t > 1,and 1 < k < rldlel,
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(M, z, 04, 0%, k) € SubTREE, < T} has an accepting path,
where T} is the subtree of T defined by (M, =z, 04, 0") and e.

For each e, clearly SubTREFE, is in NP and thus we could now solve
the promise problem (1-SubTREE., SubTREF,.) deterministically in
polynomial time applying Theorem 3.2. But we should be careful about
the polynomial-time bound, which depends on the choice of e. Precisely
speaking, (1-SubTREE,, SubT REE,) has the following upper bound.

CLamM 2: For some polynomial gg and for all e > 1, there exists a

deterministic Turing machine M, such that
(i) on inputs of length n, M. is gs (n + 2°)-time bounded, and

(ii) L (M.) is a solution of (1-SubT REE., SubT REE,).

In other words, for every input n = (M, z, 0%, 0*, k), M, halts in
gs (|n| + 2°) steps, and if n € 1-SubT REE,, then n € SubT REE. < M,
accepts 7.

Proof: Let 7 = (M, z, 04, 0!) and 5 = (7, k). Consider the problem
of deciding whether n is in SubTREE,. We can solve this problem by
checking whether there exists some w € £¢ such that 1) M accepts (z, w)
in ¢ steps (i.e., w is an accepting path of the tree T defined by 7), and 2)
k = label (T, w) (i.e., the accepting path w belongs to T}). Thus, for some
polynomial ¢; and for all e > 1, this can be done nondeterministically in
q1 (|n| + 2°) steps. That is, SubTREE, € NTIME (g1 (n + 2¢)). Now the
claim follows from Theorem 3.2. [ Claim 2

Thus, we reached our goal to reduce the scope of the existential
quantifier; that is, 7 € UNIV < 3w € X% : w is an accepting path in
T & 3k < rl¥el . (7, k) € L(M,). Here, notice that we can easily
translate our reduced problem to a new instance for UNIV. Then we can
apply the above construction recursively!

CrLam 3: For any e, there exists a deterministic Turing machine M, such
that for every input 7 = (M, z, 09, %),
T € UNIV & (M., 7,07, 0") e UNIV,

where d' = [logr] - [d/e], r as above, and t' = qp (
fixed polynomial g;.

7| + 2¢), for some
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Proof: Let 7 = (M, z, 0% 0¢) and w be string of length at most
d' = [logr] - [d/e]. Machine M, is defined as follows. For a given input
(7, w), M, simply simulates M,, the machine defined in Claim 2, on input
(7, w), where w is interpreted as an integer k now. Note that 1 < k < r[@/¢],
Finally, M, accepts (7, w) if and only if M, accepts (7, k).

From Claim 1 and Claim 2, we have 7 € UNIV & M, accepts
(7, w), for some w. Since M, halts in g (|(7, k)| + 2°) steps, M, halts in
qu (I, w)| + 2°) steps, for some polynomial gy. O Claim 3

Note that although the time bound ¢ increases to ¢’, the crucial point is that
the number of nondeterministic steps d’ decreases about a factor (logr)/e.

Finally, to show hat every NP set L belongs to DTIME (2”0(1/‘/@)),
let My, be a deterministic machine and py be a polynomial such that for
every x € ¥,z € L & (Mp, x, ope(leh), or(zDy e UNIV.

Let z, || = n, be a string for which we want to decide membership
in L. Let e = [36(n)logr], where » = 6(|b/2] + 1) — 1 and function
6 will be chosen appropriately at the end of the proof. (We assume that
n is large enough so that e > 3.) First, define zop = z, dy = pr, (n),
to = pr(n), and 79 = (Mg, zg, 0%, 0%). For each i > 1, define
inductively z; = 7i—1, di = [logr]| - [di—1/e], ti = qu (|ri-1| + 2°),
and 7, = (M., z;, 0%, 0%), until d; < e(= [36(n)logr]). Let m
be the first integer such that d,,, < e. Then from Claim 3, we have
79 € UNIV @ m ¢ UNIV & ... & 71,,, € UNIV. On the other hand,
x €L mneUNIV.Hence,z € L & 1, € UNIV. That is, the problem
of deciding z € L is reduced to that of deciding 7, € UNIV.

Let us evaluate the deterministic computation time for deciding m, €
UNIV . First, we give an upper bound for ¢,,. Note that for some polynomial
p1, we have || < p1 (%), for ¢ = 1,..., m. Thus,

tm = qu (ITm-1| + 2°)
<qu (pl (tm—l) + 2e)
Squmogu(- - -(proqu(pr(n)+2°) - --)+2°.
Hence, for some constant ¢1 and ¢z, we have
tm < nc{" 20{" e _ 20;" (e+logn) < 20{” (c2 6(n)logr+log n).

On the other hand, note that for any d > e > 3, we have d =
[logr] - [d/e] < (3dlogr)/e < d/é(n). Thus,

m < logs () do < c3logn/logé(n),
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for some constant cs. Therefore, for some constant cy,

cglogmn

€4
tm < 2011"g 8(m) (¢y 6 (n)log r+log n) < on g 6(n) (g3 6 (n)log r+log n)’

which takes the smallest order when we choose § (n) = n'/V1°8™ Then,

cs//Iog m
for some constant c5, we have t,, < 2"° )

Clearly, “ry, € UNIV?” is deterministically decidable in polynomial time
W.I.L. |7 |. Also Ty, is deterministically computable in polynomial time w.r.t.
|7m|. Recall that |7, | < p1 (£m). Thus, the deterministic computation time
for computing 7, and deciding 7, € UNIV is polynomialy bounded by

tm. Therefore, with some constant cg, it is bounded by gnee/Vv 5™ That is,
z € L is deterministically decidable in gnee/Vicer steps. [J

It remains to prove the Key Lemma.

Key Lemma: Let b, n > 0 and » = 6 ([6/2] + 1) — 1. Let L be any set
that is §f_ -Teducible to some P-selective set. Then, for any set X C X",
there exist r disjoint subsets X3, ..., X, of X with the following property.

XNL#0 & 3Fi<r:|X,nL|=1.

Furthermore, we can compute Xi,..., X, in polynomial time w.r.t. n and
X1

Proof: Let g and e be the generator and the evaluator of a Sf_ ,-reduction
from L to a P-selective set A, and let f be a P-selector for A. Define Q)
to be the set of queries to A for all z € X; that is, @ = U g{z). Let <

denote <y . Recall that < is polynomial-time decidable w. rt n and || X]|.
For any u, v € Q U {L, T}, the interval [u, v) is the set {w € Qlu <

w < v}. For any set 7 of intervals, we simply write | JZ for |J 1.
IeT
For each x € X, we can define an associated set of intervals in ¢ that

characterizes the membership of = in L according to a cutpoint of A in
Q. More formally, letting g (z) = {y1 < ... S yp} (where h < b), yo =1,
and yp4+1 = T, we define

Ze = {lve, yi+1)le (z, g (%), {y1,---; 2 }) = 1, where ¢ € {0,..., h}}.

If two adjacent intervals, i.e., [y, ¥,4+1) and [y;+1, Y.+2), belong to Z,,
we regard them as one interval [y,, y,42). Note that each Z, has at most
|b/2] + 1 intervals.
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Let J, =UZy, J = |J Jq. and let z* be a cutpoint of A in @. Then,
reXN
forallz € X,wehavez € L & z* € J,, and hence, XNL £ 0 & z* € J.
By the Combinatorial Lemma stated below, we can select r = 6 (|b/2] +
1) — 1 subsets X7, ..., X, of X such that

VzeJ Fi<r, Azle X;:z € J,.

Now, we show that X7,..., X, have the property claimed in the lemma.
Suppose that X N L # (. Hence, z* € J. Then, from the above property of
Xi1,..., X;, there exists some X; that has exactly one z such that z* € J,.
This means that X; has exactly one element (namely, z) in L. (Recall that
z € L & z* € J;.) Therefore, | X;NL| =1 0O

ComBINATORIAL LEMMA: Let {Z,},cx be any family of sets of intervals
in @, where the index set X is finite, and each 7, consists of at most £
intervals. Let 7 be the set of intervals appearing in 7, for some = € X; ie.,
T ={I|I € Z, for some z € X}. Let J =JZ and J, = |J Z,. Then there
exist = 6/ — 1 disjoint subsets Xj,..., X; of X such that

Vzed, di<r,Aze X;:z€ J,.

Furthermore, if < is polynomial-time computable w.r.t. Y, |u|, then the

ueQ
selection of X7, ..., X, can be done in polynomial time w.r.t. £, || X||, and
> ul.
ueQ

Proof: First, we construct a mjnimum size cover of Z. We say that 7 is
a minimum size cover of 7 if () Z C Z, (ii) | JZ = J, and (iii) no Z' such
that ||Z']] < ||Z]| satisfies both, (i) and (ii).

Cramm 4: There is a polynomial-time algorithm that computes a minimum
size cover of 7.

Proof: The following greedy algorithm computes a minimum size cover
of 7.

MiNntMuM-Size-Cover (7, <)
I« 0;J UJz;
while J' # § do
z < a smallest point in J';
Select an I € 7 such that z € [ and ||I N J'|| is maximal,
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ZA'e—jU{I}; J — J -1
return 7.

Clearly, this algorithm runs in polynomial time. To show its correctness,
let Z = {11, ..., I} be a minimal cover of Z, and let these intervals be in

- i

increasing order according to their left endpoints. By J; we denote |J ;.
J=1

Let 7 = {I1,..., I} be the output of Minmmum-Size-CovER, where each I; is

N 2
selected at the i-th iteration of the while-loop. By J; we denote | I;.
J=1
Since 7 is a minimal cover, we have k < h. We will argue that k = h,
and hence 7 is a minimal cover for J as well. Note that both J, and J2
are initial segments of J. Therefore, by the choice of I,, we have Ji C J,
for all : =1,..., k, and thus h < k, since otherwise, 7 would not cover J.

O Claim 4

For each I € 7, define support(l) to be an x such that I € Z,, and let
support (1) = {support (I)|I € T}. (If there is more than one z such that
I € I, choose one of them for support(l).) We will partmon support (I )
into r = 61—1 groups X1, ..., X;, such that for any two z, 2’ € support (I)

(%) if I is an interval in Z with support(I) = z and I has nonempty
intersection with J,, then x and z’ will be in different groups.

Let us first see why property (%) of the partitioning X1, ..., X, satisfies
the condition of the lemma. Consider any z € J. Since 7 is a cover of J )
there is some I € I containing z. Let = support(I) and let X; be the
subset containing z. Then, since J,» NI = @ for all ' # z in X,, z is the
only element of X, such that z € J,.

To construct a partitioning of support(Z) having property (%), consider
the following undirected (simple) graph G = (V, E).

V = support(I), and
E={{z,2'}3I €T :support(I)=x and Jp NI #0}.

Observe that property (%) is equivalent to that G is 6/ — 1 colorable. To
show this property of G, we first consider the following directed version
G' = (V, E') of G, where

E' ={(z,2")|31 € T : support(I) = z and Jo NI # 0}

Cramv 5: Every vertex of G’ has an outdegree of at most 34 — 1.
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Proof: Notice first that every interval in Z intersects with at most three
intervals in Z, since otherwise, one can define a cover of J that has less
elements than Z, contradicting the minimality of Z. Similarly, every interval
in 7 intersects with at most two intervals in Z. On the other hand, each
z € V has at least one interval in 7 and thus at most £ — 1 intervals not
in 7. Therefore, J, intersects with at most 3 (£—-1)+2=3¢-1 intervals
inZ O Claim 5

CLaM 6: Every subgraph of G has a vertex with degree at most 6 £ — 2

Proof: Consider any subgraph G = (V, E) of G. From Claim 5, it is clear
that G has at most (34 — 1)||V|| edges; that is, the sum of the degrees of
all vertices is at most 2 (3£ — 1) ||V]|. Hence, there is a vertex with degree
at most 2(3¢ — 1) = 6£—2. O Claim 6

From Claim 6, we derive the crucial property of G.

CramMm 7: G is 6 £ — 1-colorable. That is, there exists a partition X1, ..., X,
of V, where r = 64 — 1, such that every X; forms an independent set
in G. Furthermore, some polynomial-time algorithm computes the partition
from a given G.

Proof: We show by induction on the size of V that the simple greedy
algorithm that colors vertices in descending order of their degree needs at
most 6 ¢ — 1 colours. This clearly holds for ||V| < 6£ — 1. For larger V,
let z be the vertex of G that is colored last by the algorithm and let G be
the subgraph of G obtained by deleting z from G. Then, by Claim 6, we
can apply the induction hypothesis to G, that is, the algorithm needs at most
64— 1 colors for G. Now, since the degree of z is at most 6 ¢ — 2, the
algorithm will find a color for z. [ Claim 7

Theorem 3.3 can be extended to Sf (n)_tt-reductions, for functions b, as
long as b is poly-logarithmically bounded. That is, for b (n) < (logn)*, for
some constant a, if there exists a P-selective set A that is Sl}: (n)-t ,-hard for

NP, then NP C DTIME (27°"/V"*™).
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