
INFORMATIQUE THÉORIQUE ET APPLICATIONS

J. CASTRO

C. SEARA
Complexity classes between ΘP

k and ∆P
k

Informatique théorique et applications, tome 30, no 2 (1996),
p. 101-121
<http://www.numdam.org/item?id=ITA_1996__30_2_101_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1996__30_2_101_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Apphcations/Theoretical Informaties and Applications
(vol 30, n° 2, 1996, pp 101-121)

COMPLEXITY CLASSES BETWEEN e£ AND

by J. CASTRO C1) and C. SEARA (2)

Abstract — We give different characterizations of the classes Pj t (NP) , which are located
between B% and A2 First we show that these classes are equal to the classes AC*"1 (NP) Second
we prove that they are also equivalent to certain binary search classes over NP Third we show
that they can be characterized as the classes defined by circuits of size O(log? n) with NP oracle
gâtes All the proofs given for these relationships remain valid under re lat ivizat ions, so taking E][
instead of NP we can obtain similar characterizations for the classes P] o g 1 (X%)> which are located
between 6 f + 1 and A ^ + 1 These relationships can be used to prove O-lowness properties for some

classes inparticular, we clanfy the situation ofthe classes in L2 whose membership to L2 ~ was
not clear With these results we solve open questions that arose in [Wa-90], [AW-90] and [LS-91]
Finally, we give an oracle relative to which classes P l o g l (NP) and Pio g i+i (NP) are different

1. INTRODUCTION

The works of Buss and Hay [BH-91] and Wagner [Wa-90] showed several
characterizations for the class of languages logspace Turing reducible to an
NP set. Among other characterizations, they proved independently that this
class coïncides with the following ones:

• PiOg(NP), the class of languages recognized by determimstic polynomial
time oracle machines making only O(logn) queries to an NP set.

• P||(NP), the class of languages accepted by deterministic polynomial
time oracle machines doing one round of parallel queries to an NP set.

• NP(n^^') , the class of problems that can be solved doing a binary
search over witnesses for strings in sets m NP. The bound n°^ is the range
over which the search is allowed to take place.
All these équivalences remain valid replacing NP with any level Ej; of the
polynomial time hierarchy (k > 2). This multiplicity of equivalent définitions

(') Dept Llenguatges 1 Sistemes Informaties, Universitat Pohtècnica de Catalunya, Pau
Gargallo 5, 08028 Barcelona, Spain, E-mail castro@lsi upc es

(2) Dept Matemàtica Aplicada II, Universitat Pohtècnica de Catalunya, Pau Gargallo 5,
08028 Barcelona, Spain, E-mail seara@ma2 upc es

Informatique théorique et Apphcations/Theoretical Informaties and Applications
0988-3754/96/02/$ 4 00/© AFCET-Gauthier-Villars

1 0 2 J. CASTRO AND C. SEARA

indicates that classes Piog(EJL) are natural ones, and it suggests to consider
the classes @£, defined by 9Q = P and 6^ + 1 = Piog(E£), as constitutional
parts of the polynomial time hierarchy [Wa-90],

Wilson [Wi-87] [Wi-90] introduced the notion of relativized circuits by
allowing oracle gâtes in the circuits, and he studied properties of relativized
versions of AC and NC. He defined an oracle gâte as a fc-input, one-output
gâte that, on input x of length fc, will produce the value 1 on its output edge
if and only if x is in the specified oracle set. A straightforward simulation
shows that the classes of languages accepted by S^-relativized AC and
NC circuits are included in A^+1. The first motivation of our work was
to find relationships between these classes and those mentioned in the first
paragraph.

Below we show connections between classes of languages recognized by
polynomial time oracle machines which make polylog queries to an NP
set and other classes defined on different ways. More exactly, the class
P logi(NP) of problems which can be solved by deterministic polynomial
time oracle machines making O(log* n) queries to NP is shown to be
equivalent to the following ones:

• AC2"1 (NP), the class of sets accepted by NP-relativized AC circuits
of depth OQog^n).

• NP(2°(log*n)), the class of problems that can be solved doing a binary
search over witnesses for strings in sets in NP. The bound 2°(log*") is the
range over which the search is allowed to take place.

• The class of languages accepted by NP-relativized circuits of size
O(logln).

These three équivalences are proved, respectively, in sections 3, 4 and 5
below, and they solve questions asked by Wagner in [Wa-90] and by Allender
and Wilson in [AW-90]. All the proofs given for these results are valid under
relativizations. In particular, they remain valid replacing NP with any Ie vel
E-T of the polynomial time hierarchy (k > 2); so we can obtain similar
équivalences for the classes P l og i(E^), which are located between ©£+1 and
A£+ 1 . Recently Ogiwara in [Og-94] completed these results proving that the
class AC ï~1(NP) coincides with NC*(NP). Therefore, he showed a new
characterization of P log.(NP) in terms of NP-relativized NC circuits.

In section 6 we apply to the low hierarchy some results from section 3.
The low and high hiérarchies in NP were defined by Schöning [Sc-83], to
provide a formai framework for analyzing the internai structure of NP. Later

Informatique théorique et Applications/Theoretical Informaties and Applications

103

he also introduced a refinement of the low and high hiérarchies based on the
A-levels of the polynomial time hierarchy [Sc-86b]. In [Sc-86b], [KS-85],
[BB-86], [BS-92] and [AH-92] several classes of sets were located in the low
hierarchy. Long and Sheu [LS-91] introduced a new refinement of the low
and high hiérarchies based on the 0-levels of the polynomial time hierarchy,
and they sharpened most of the known lowness results. However they could
not locate in the new refinement the NP sets that are Turing equivalent to
some tally set or NP sets that are either standard or gênerai left cuts for
some real number x, We show that results of section 3 can be used to prove
6-lowness properties for some complexity classes. In fact, applying those
results, we clarify the situation of the aforementioned classes.

In the last section we prove that there is an oracle relative to which classes
Plog*(NP) and Plog.+i(NP) are different for any integer i > 1. With this
resuit we improve the relativized séparations for ©f and A f given by Buss
and Hay in [BH-91] and by Lozano and Torân in [LT-91].

2. DEFINITIONS AND NOTATION

£ dénotes an arbitrary alphabet of size at least two. For x G £*, \x\
dénotes the length of x. A tally set is any set over {1}*. L(M) dénotes the
set accepted by Turing machine M, and L(M, A) (or alternatively, L(MA))
dénotes the set accepted by an oracle machine M using the oracle set A.
The classes P and NP have their standard définitions, and P(A) and NP(A)
are, respectively, their A-relativized counterparts.

Polynomial time many-one reducibility (denoted by <^) and polynomial
time Turing reducibility (denoted by < j.) have their usual définitions. We say
that a class C is closed under <fn-reducibility (respectively <£-reducibility)
if it vérifies:

B G C and A < ^ B (resp. A <Ç B) =^> A G C.

DÉFINITION 2.1: For any class C and for any bounding function f, we dénote
by Py(C) the class of languages accepted by deterministic polynomial time
oracle machines that on inputs of length n make at most O(f(n)) queries
to an oracle set in C.

DÉFINITION 2.2 [BH-91]: Pu (C) is the class of languages accepted by
deterministic polynomial time oracle machines which make one round of
parallel queries to a set B G C. By a round of parallel queries to B we mean

vol. 30, n° 2, 1996

104 J. CASTRO AND C. SEARA

that the oracle machine writes a set of strings separated by delimiters on a
query tape and then invokes an oracle for B; the oracle returns a string of
YES/NO answers on an answer tape that specify membership of each query
string to B. Note that within one round of parallel queries, all of them must
be formulated bef ore any answer is known. In gênerai, we dénote by Py (C)
the class of sets recognized by deterministic polynomial time oracle machines
that on inputs oflength n make O(f(n)) adaptive rounds of parallel queries
to a set B E C.

We say that the sets A and B are Turing equivalent if A <y. B and
B <j . A. We use the symbol =£ to dénote Turing equivalent sets.

DÉFINITION 2.3 [BT-89]: Ex(TALLY) is the class of sets Turing equivalent
to a tally set,

E T (T A L L Y) = {A | there exists a tally set T such that A =£ T}.

The classes of the polynomial time hierarchy, including 6-classes, are
l£ ,AP ,eP | * > 0 } , where:

£jP = n^ = A^ = Go = P, and for k > 0,

For any set A, {E^(A),n^(A), A^(A),ej[(A) | k > 0} are the classes of
the polynomial time hierarchy relative to A.

In section 6 of [Wa-90] the Extended Boolean hierarchy is introduced as
the hierarchy of classes NP(r(n)) deflned as follows:

A e NP(r(n)) <̂ >̂ 3 B E NP such that cB(x, l + l)< cB(x, l) for all
r(\x\)

1,1 <l < r{\x\) and CA(X) = ^ CB(X, I)mod2\

where CA dénotes the characteristic fonction of the set A. It was known that
NP(n°(1 ') = 9 ^ (see [BH-88] and [Wa-90]), and NP(2"°(1)) - Af (see
[Wa-90]), but similar results for other superpolynomial bounding functions
were not known. We shall study this problem in section 4. In a similar way

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN G£ AND A£ 105

the hierarchy of classes C(r(n)) can be defined for any class C: just taking
C instead of NP in the définition of NP(r(n)) (see [AW-90]).

For définitions and notation about circuits we follow Wilson [Wi-87]
[Wi-90]. A Boolean circuit with bounded fan-in is an acyclic directed graph
whose nodes are labelled with an operator. Nodes of indegree zero are the
input and constant ones, nodes of indegree one are labelled by négations and
nodes of indegree two are labelled by AND and OR operators. Circuits with
unbounded fan-in have no restriction on the indegree of nodes labelled AND
or OR. Since we are interested in deciding set membership, the circuits have
only a single output gate; the circuit accepts an input string if the length of
the string in binary is the same as the number of input gates of the circuit
and it outputs 1 when the string is given on its input gates.

The size of the circuit is the number of nodes of the circuit and its depth
is the length of the longest directed path from the input to the output in
the graph. The size represents a measure of the hardware resources and the
depth is a measure of the parallel time. A circuit family {Cn}n>\ accepts
a set L if, for all n, Cn has n input nodes and accepts only those strings
in L of length n. Note that, if the nih circuit could be independent of the
(n — l)th circuit then there would exist a family of circuits which would
accept a nonrecursive set. Therefore, it is necessary to require some kind of
uniformity in the description of the circuits {Cn}n>i. We shall use in this
paper one of the most frequently used concepts of uniformity:

DÉFINITION 2.4: A circuit family {Cn}n>i is O (log n)-uniform if there is a
deterministic logspace Turing machine that on any input of length n outputs
an encoding of Cn.

Classes of languages NC = |J,>0NC* and AC = | J ï > 0 AC* are defined
as follows:

L G NC*(AC*) <̂ => 3 {Cn}n>i, bounded fan-in (unbounded fan-in)

circuits O(logn)- uniform with size O(n ^)

and depth O(log' n) which recognizes L.

In this paper we work with relativized circuits, that is, oracle gates are
allowed. These gates can détermine the membership of a string to an oracle
set. In an NC circuit an oracle gate that has m input bits is defined to have
size 1 and depth [log m]. In an AC circuit (unbounded fan-in) the size and
depth of these gates is 1.

vol. 30, n° 2, 1996

1 0 6 J. CASTRO AND C. SEARA

We shall use the notation AC*(C) (NCl(C)) for the class of languages
recognized by a family of unbounded fan-in (bounded fan-in) circuits with
polynomial size and O (log* n) depth using as oracle a set in C.

Low and high hiérarchies within NP relative to the E^ and A]u -classes of
the polynomial time hierarchy were introduced by Schöning in [Sc-83] and
[Sc-86b]. Afterwards, a refinement of these hiérarchies based on the Gi-
classes was introduced by Long and Sheu in [LS-91], Taking into account
that for any set A e NP it holds that

+ for any fc >

and as a conséquence

el Ç Si (A) Ç e£+ 1 for any k > 2,

they defined the low and the high hiérarchies within NP, relative to the
E £ , A^ and ©^-classes, in a natural way, Concretely, they defined the low
hierarchy as follows:

DÉFINITION 2.5:

1. [Sc-83] Relative to the E^ -classes of the polynomial time hierarchy, the
Y,-classes of the low hierarchy are

{L£- S I fe > 0}, where\Ik^ = {A E NP | E

2. [Sc-86b] Relative to the A^ -classes of the polynomial time hierarchy,
the A-classes of the low hierarchy are

{hl'A I k > 1}., wherehl'A = {A G NP | Al(A) C AJL }•

3. [LS-91] Relative to the el-classes of the polynomial time hierarchy, the
e-classes of the low hierarchy are

{L?k'
Q \k>2], wherehl'0 = {A e NP | e

Starting from previous results showed in [Sc-83], Long and Sheu proved
some basic relationships among the E, A and ©-classes of the low hierarchy.
One of them shows that

P.S c LP,e c L P.A L P
- i - H - H - H-

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN G£ AND A£ 107

Besides these basic relationships, they showed 6-lowness results for several
classes located in the A-levels of the low hierarchy. In section 6 we will
use a property of 6^ classes shown in section 3 that will enable us to prove
©-lowness properties for some classes.

3. RELATING Piog*(NP) WITH AC1"1 (NP)

We start this section proving a relation between P w (C) and AC ï - 1(C)
for a wide range of classes C.

PROPOSITION 3.1: Let C 7̂ 0 be a class of languages closed under
<^-reducibility; thenfor all i > 1, it holds Piog*(C) C A C ^ C) .

Proof: We proceed by induction on i. First we consider the case i — 1. Let
MA be a fixed polynomial time oracle machine that on inputs of length n
makes d(n) E O(logn) queries to a set A in C. We define L as the language
of pairs (x,y), such that, interpreting y as giving the first \y\ query answers
of MA on input x, it holds \y\ < d(\x\) and the answer to the query number
\y\ + 1 is "YES", or \y\ — d(\x\) and M accepts x.

It is easy to see that L <J^ A\ so language L belongs to C. We shall
use this language as oracle to simulate the machine MA by a family of
circuits. Concretely, the member of this family which opérâtes on inputs of
length n works as follows.

On input x, the circuit has a first level of queries {x,y) E L? for all y,
\y\ < d(n). After that, it détermines the right answers (and therefore the
right computation) to the queries of MA on x by Computing in parallel
the unbounded AND's of all the query answers {x,y), (x,yf) that satisfy
yf = t/l and (x,y) E L or y1 — yO and {x,y) £ L. Finally, the circuit
computes the OR of all the AND gates and gives the result of MA on x.
As d{n) E O(logn) this circuit has polynomial size and constant depth, so
the case i = 1 is shown.

We suppose now that the result is true up to i — 1 by induction hypothesis.
Let M be a fixed polynomial time oracle machine that on inputs of length
n makes d(n) E O(log^ n) queries to A in C, and let p(n) be a polynomial
bounding the length of configurations of MA.

Let us consider the following language:

L = {(t/,aj,j) \M' starting at the configuration y reaches after

[tid^Dlog"1 |x|"|queries a configuration which has a 1

as the jthbü},

vol. 30, n° 2, 1996

1 0 8 J. CASTRO AND C. SEARA

It is clear that L is in Plo<ri-i(A) and then, by induction hypothesis, it is
recognized by a circuit family {Ci,.n}n>i in AC*~2(C).

Now, we can simulate MA with the circuit family {Cn}n>i defined
as follows. The circuit Cn, which works on inputs of length n, has
logn levels each one composed by p(n) copies of C£./(n), with l(n) =
p(n) + n + [logp(n)"|, placed in parallel. The input of the j t h circuit Cu^
in level k + 1 is formed by the output of level k (j)(n) bits), the input of
the circuit (n bits) and j (|"logp(n)] bits). On input x, \x\ = n, level k of
circuit Cn gives the configuration of MA on x after k\d{n) log"1 n] queries
have been issued. So, last level gives the configuration ƒ of MA on x after
all the queries have been made. Cn ends with a small circuit D E AC°(P)
that computes whether x E L[MA) knowing the configuration ƒ.

Clearly, the language accepted by the family of circuits {Cn}n>i
is L[MA), this family is logspace uniform, has polynomial size and
C ^ l o g ^ n) depth. D

In the next theorem we will see that, when we consider NP, the inclusions
are actually équations. This result can be shown using a generalization of
the census technique, but we give a detailed proof in order to later also have
a proof for other relationships shown in the next sections (see theorem 4.1
and proposition 5.1).

THEOREM 3.2: For all i > 1, Plogi(NP) = AC*"1 (NP).

Proof: Note that, by proposition 3.1, we only have to prove that
ACZ~1(NP) Ç P logi(NP). Given a circuit with oracle gâtes we define
the level of a query as follows: queries at the first level are the queries that
depend on no other queries, queries at the second level all depend on some
query at the first level, and so on.

Let {Cn}n>i be a family of circuits in ACÏ~1(NP) with depth
d(n) G O(logi~1 n) and p(n) a polynomial bound on the number of queries
in each level. We define X as the set of séquences (x.ii.J2>t - - - ,id(n)> °i)
belonging to {0,1}* x {0 ,1 , . . . , p (n)} d (n) x R l) (where n = \x\) such that
there exist strings s\, s-2, • . . , ̂ /(n) in {0 ,1}^") , each of them representing
possible answers to the queries at levels 1,2,... ,cf(n) respectively and
verifying the following properties:

s^n) n a s 3d(n) "YES" answers and these answers are correct if the inputs
to queries of level d(n) are computed from x, si, S2, • •., sr/(n)_i.

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN 0£ AND A£ 109

sd(n)-i n a s Jd(n)-i "YES" answers and these answers are correct if the
inputs to queries of level d(n) — 1 are computed from x, s\, S2, • . . , ^d(n)-2•

5i has j i "YES" answers and these answers are correct' if the input to
the circuit is x.

Finally, (j i , j 2 ï . •. Jd(n)>Oj) > (û-^2, - • •, id(n)><>i), where > dénotes the

lexicographical order and o} E {0.1} is the output of the circuit Cn on

input x taking s i , 52, • • •-, Sd(n) a s t n e answers to the queries.

F acts:

1. X E NP.

2. X is closed by lexicographical < order: if (a i , a 2 , . . . ,ad(n) ,oo) <
(61,62, • • •, &d(n)) 05) and (x, 61, 62, • • . ; &d(n) ; °&) ^ ^» t n e n

(x , a i ï a 2 , . - - , a d (n) , o a) is also in X.

3. Fixed x of length n, we define

This maximum vérifies:

For all /, 1 < l < d(n), m; is the number of "YES" answers of Cn on
input x at the lth level of queries.

Om is the value computed by the circuit.

Fact 1 is easy to prove if we note that the circuits have polynomial size
and, in each level of queries, we only have to check the "YES" answers (of
queries to a set in NP) supposing that the answers of queries in previous
levels are known.

Fact 2 is an easy conséquence of the définition of X.

To show fact 3 just observe that the tuple (fci, &2, . . . , kd(n)-> °k) where
for all Z, 1 < l < d(n), k\ is the number of "YES" answers of Cn

on input x at the lth level of queries and o^ is the value computed by
Cn on input x, satisfies that (ar, ifci, ^2, - - -, &<£(„), o*.) £ X . Moreover, if
there was {x,iui2,... ,«<*(„),Oi) G X such that { x ^ i , z 2 ï . . . , %d(n)y0i) >
(x. fei, &2,. • - ; fed(„), o/t) it would imply that either

3 j ; 1 < j < d(n) : ii = fei,...,^-! = fej-i,ij > fej

or otherwise ox > o^. In the first case, i\ — k\...., ij-i = fc^-i implies that
the queries answered "YES" in the first j — l levels of queries must be exactly

vol. 30, n° 2, 1996

1 1 0 J. CASTRO AND C. SEARA

the same (remember the meaning of A/'s). Therefore, queries to oracle gâtes
of level j are the same in both cases and i3 > k3 is an obvious contradiction.
On the other hand, in the second case, if o% > o& and for all j , 1 < j < d(n)
is i3 ~ kj, using a similar argument we also get a contradiction.

Now, using facts 1, 2 and 3, it is easy to prove that ACÏ~'1(NP) Ç
Plog*(NP). Given an input x of length n to the circuit Cn we can détermine
if Cn accepts x with an oracle machine which proceeds as follows:

Using binary search, it détermines

(mi, 7712,... , %)) O m)

As for all Z, 1 < l < d(n)9 it holds 0 < ij < p(n) and 0 < ot < 1, the search
can be done with at most d(n)log(p(n) -f 1) + 1 G O(logl n) queries to
X. Knowing the maximum, the machine accepts x iff om — 1. This oracle
machine recognizes the language accepted by the circuits.

Finally, knowing that X G NP by fact 1, we conclude that

where L({Cn}n>i) dénotes the language accepted by the family
{C„}n>i. D

Remark 3.3: Proof of theorem 3.2 remain valid under relativizations.
Therefore, we can generalize the statement of this theorem in the following
way: 'Tor any class C and for all i > 1, Plog,(NP(C)) = AC i-1(NP(C))".
In particular, for all i > 1 and k > 1, it holds P l o g ,(s£) = A C * " 1 ^) .
Moreover, as this proof will be the kernel of those of corollary 3.4 and the
results of sections 3 and 4 below, this remark about relativizations will
remain valid in those points.

With a similar reasoning and considering Pii logï-i(NP) instead of
AC*"1 (NP), we can rewrite theorem 3.2 in terms of P|| log ï-i(NP).

COROLLARY 3.4: For any integer i > 1, P log,(NP) = P||iog*-i(NP).

Proof: (Ç) Observe that AC^^NP) Ç Pylog*-i(NP), therefore this
direction follows directly from theorem 3.2.

(2) (sketch) Given a polynomial time oracle machine M that on inputs
of length n makes at most ö(logz~x n) rounds of parallel queries, we can
define (doing a few evident changes) the set X as in the proof of theorem 3.2
and verifying the same properties. Now, this direction is also clear. •

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN 9? AND AÏ 111k

Using last theorem, we finish this section showing that polynomial time
oracle machines that make O(logn) queries to a set in 6^ + 1 can not
recognize sets outside ©][+1. This is a surprising property which helps to
show 0-lowness results, as we will see in section 6.

THEOREM 3.5: For k > 1, it holds Piog(©£+1) = 0£+ 1 .

Proof: First we note that 6£ + 1 is closed under <^-reducibility. Then,
applying proposition 3.1, we have

Rewriting Ö^+1 as AC°(£Ju) {see remark 3.3), we get

Note that for any class C, AC°(AC°(C)) = AC°(C): replacing oracle gâtes
by the corresponding AC°(C) circuits we will get an AC°(C) circuit {see
[Wi-90] for formai proofs of this kind of relationships). Therefore, we can
write

^ 0 P P a

4. BINARY SEARCH OVER NP WITH SUPERPOLYNOMIAL BOUNDING
FUNCTIONS

The Boolean hierarchy BH was defined independently by Köbler [Kö-85],
Wechsung and Wagner [WW-85], and Cai and Hemachandra [CH-86]. From
the various equivalent formulations of the classes NP(fc) of the Boolean
hierarchy, we consider the following. For k > 1,

NP(fc) ^^ 3B G NP such that cB(x,l + 1) < cB(xJ)
for all 1,1 < l < k and

fc
l) mod2,

and BH = IJfc>i NP(fc). It was shown that the Boolean hierarchy coincides
with the constant query classes (for this result and other interesting properties
of BH see [KSW-87], [Be-91] and [CGHHSWW-88]).

vol. 30, n° 2, 1996

1 1 2 J. CASTRO AND C. SEARA

The Extended Boolean hierarchy, introduced in [Wa-90], considers classes
NP(r(n)) for bounding functions r(n). Naturally, classes NP(r(n)) are
defined as

A G NP(r(n)) ^^> 3 5 G NP such that cB(xJ + 1) < cD(x,l)
for all 1,1 < l <r{\x\)

r(\x\)

and Cj\(x) = ^ CB(XJ) mod2.
1=1

It is shown in [BH-91] and [Wa-90] that NPfn^ 1)) = Gf. Also, in the
second paper it is proved that

Wagner asked in [Wa-90] what could be said about other superpolynomial
bounding functions. We answer this question below, using ideas from the
proof of theorem 3.2.

THEOREM 4.1: For all i > 1,

Proof: Q) Given a set A G NP(r(n)), where r(n) E 2°(l°ë%n\ we know
by définition that there exists a set B G NP such that

cB(x, l + 1) < CB{X, l) for all 1 < l < r(\x\) and
r(\x\)

We consider a Turing machine M with oracle B which on input x works
as follows:

First, it détermines the maximum / such that (x,ï) G B. By the first
property of B this can be done with a binary search with only logr(|x|)
queries to B,

Second, using the second property of J3, M accepts x iff the maximum
l is odd.

Clearly, L(M, B) = A, M works in polynomial time and on inputs of
length n makes at most O(log' n) queries.

Informatique théorique et AppHcations/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN 0? AND A£ 1 1 3k

(Ç) By the theorem 3.2, it is sufficient to prove that AC*"1 (NP) Ç
% n)\

Given {Cn}n>i a family of circuits in AC ï~1(NP) with depth d(n) G
O{Yogl~l n) and p(n) a polynomial bound on the number of queries in each
level, we define the set X as in the proof of theorem 3.2. Remember facts 1,
2 and 3 that this set vérifies. From fact 3, it is easy to see that

x e L(Cn) <=̂ > (m = max{(n, i2 , . . . , id(n) ,0 i) |

{x,ii>i2,-.-,id(n),Oi) G X}) is odd .

Taking into account that for all Z, 1 < l < d(n), it holds 0 < i\ < p(n)
and 0 < o? < 1, we have,

Now, considering B — {(x,l) | (ar, Z) =
using facts 1 and 2, we conclude that

D

5. P log,(NP) AND CIRCUITS OF SMALL SIZE

Allender and Wilson showed in [AW-90] that for functions r(n) bounded
by a polynomial in n, NP(O(r(n))) is equal to the class of languages which
are reducible to languages in NP via réductions of size log r(n) + 0(1).
Thus, as a conséquence, they obtained circuit characterizations of Piog(NP).
However, it was not known whether similar results hold for other kinds of
bounding functions. Now, we shall prove that the same results remain true
for functions r(n) bounded by 2n x .

PROPOSITION 5.1: For any function r(n) bounded by 2n°(1), NP(O(r(n)))
is equal to the class of languages which are reducible to languages in NP
via réductions of size bounded by logr(n) + 0(1).

Proof: (Ç) This direction can be done following exactly the (left to right)
proof of theorem 4 of [AW-90]. Given A € NP(r(n)) let B be the set
in NP such that

1. x e A <ï=> max{/ < r(n) | (x,l) e B] is odd ,

2. If (xy 1} € B, then {x, l - 1) E B.

vol. 30, n° 2, 1996

1 1 4 J. CASTRO AND C. SEARA

First, query if {x. 10 . . . 0) is in B\ call the answer to this query b\. Next
query if (x, b\ 1 . . . 0} is in B. It is clear how to proceed. Note that exactly
[logr(n)] gates are necessary.

(D) Let A be reducible to a complete set B in NP via circuits {Cn}n>i
of size logr(n) + 0(1). Let d(n) be the depth of circuit Cn and let
Pi(n)-P2(n); • • - >Pd(n)(n) be the number of queries of that circuit on
levels 1,2,... ,d(n) respectively. Note that these functions can not be
superpolynomial and:

Pi(n) +P2{n) + '"+ pd(ra)(n) < logr(n) 4- a,

where a is a constant. We define the set X as in the proof of theorem 3.2 (but
with the new bounds p i (n) , . . . :Pd(n)(n) o n m e levels of queries). Clearly,
facts 1, 2 and 3 remain true. Now, as in the proof of theorem 4.1, we have

x G L(Cn) <=> {m = max{(iiJi2}.'.J«(i(n)»oi) |
(x>iiii2,...,id(n)i0t} e X }) is odd;

where for all/, 1 < l < d(n), it holds 0 < i\ < pi(n) and 0 < oh < 1. Thus

m < 2(pi(n) + I)(p2(n) + 1) • • • (pd{„)(n) + 1) G O(r(n)). D

Now, from theorem 4,1 and proposition 5.1 we have a new characterization
for P log.(NP).

COROLLARY 5.2: For all i > 1, P w (N P) w ̂ w^/ to the class oflanguages
which are reducible to languages in NP via circuits of size O(\ogl n),

This corollary gives a strong connection between classes defined by
polynomial oracle machines with few queries to an NP set and classes
defined by small size circuits with NP oracle gates.

6. APPLICATIONS TO THE LOW HIERARCHY

With the contribution of several authors, the following classes have been
located in the A-levels of the low hierarchy

L ^ A : sparse NP sets [KS-85], NP n (co-NP/log) [BS-92], NP n APT
[KS-85], NP sets that are standard or gênerai left cuts for some real number
x [AH-92], NP sets that are <fn-reducible to some sparse set [AH-92], and
NP sets that are <j.-equivalent to some tally set [BB-86].

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN 6£ AND A£ 1 1 5

L3 : A : co-sparse NP sets [KS-85], NP n P-close [Sc-86b], NP sets that
are <^_tt-reducible to some sparse set [AH-92], and NP sets that are
<^-equivalent to some sparse set [Sc-86a].

For each of these classes, sparse sets play a key role in their being low
classes. The A-lowness of sparse NP sets can be shown starting from the
following result of Mahaney [Ma-82].
(1) if S is a sparse set in NP, then NP(5) Ç Af.

Now, applying the P-operator to both sides of the inclusion Y^(S) C Af (1),
we get

T> A

and immediately, S G L2
! .

Kadin [Ka-89] later improved Mahaney's result (1) in the following way,
(2) if S is a sparse set in NP, then NP(5) Ç Gf.
As it is noted in [LS-91], this result suggests that sparse NP sets may

"p (Pi
actually belong to L2 ' . In fact, Long and Sheu proved that all the classes

P A P @ PA

in L3 ' given before are actually in L3 ' , and that almost all ones in L2 '
actually belong to L ^ 0 (see [LS-91]). The only classes from L ^ A that they
could not locate in L^*0 were the classes NP n Ex (TALLY) and NP sets
that are standard or gênerai left cuts for some real number x. Concretely, for
NPnET(TALLY), they established the following: if A G NPn E T (TALLY)
and there is a tally set T G NP such that A =Ç T, then A e L ^ 0 . On
the other hand, if every tally set T such that A =Ç T is in Af — ©f, then
A £ L2 ' ". Finally, if neither of these two cases occur, they did not know
whether A belongs to L2 '"

Using theorem 3.5 of section 3 we can solve the problem from above.
First at ail, we point out how theorem 3.5 can be applied to show O-lowness

p 0properties. For example, to see that sparse NP sets are in L2 ' , we apply
the Piog-operator to both sides of the inclusion S^(5) Ç Qf (2) to obtain

(where the last équivalence cornes from theorem 3.5) and therefore 5 E L2 ' .
Concerning the 6-lowness of NP n E T (TALLY), first we show

PROPOSITION 6.1: Let A be a set such that A <£ T where T is a tally set
in the class 6f, then NP(A) Ç 9f.

vol. 30, n° 2, 1996

1 1 6 J. CASTRO AND C. SEARA

Proof: Let N be a nondeterministic polynomial time oracle machine
with time bounded by q(n) on inputs of length n. We will show that
L(NA) G AC0(NP), and then, by theorem 3.2, we will get the result.

On inputs of length n the machine N only asks queries of length at
most q{n) to A. By hypothesis, there exists a deterministic polynomial time
oracle machine M with time bounded by p{n) such that A is the language
recognized by MT. On inputs of length m, the machine M can ask queries
of length at most p(m) to T and the relevant queries are a subset of the
set { l , ! 2 , . . . , ^ ™) } .

Let t{n) be the string of length p(q(n)) that represents the answers to the
queries 1 G Tl, l2 G T ? , . . . , P ^ " » G T? If string t(n) is known, it is easy
to simulate machine NA on inputs of length n without using any oracle. In
other words, there exists a nondeterministic polynomial time Turing machine
N' such that N\x,t{\x\)) = NA(x).

Now, we can construct the AC°(NP) circuit that recognizes L(NA).
On inputs of length n the circuit has a first level of query gates
1 G r ? , l2 G T ? , . . . , 1^9(")) G r ? ; note that each one of them can be
replaced by an AC°(NP) circuit because T is in 0^. Let t(\x\) be the string
of outputs of these gates; following the first level of queries the circuit has a
gâte with input (x,t(|^|)) querying to the language recognized by N'. The
result is an AC0 (NP) circuit that accepts L(NA). D

Now, applying the Piog-operator to the containment NP(A) Ç 6^, it
follows

COROLLARY 6.2: Let A be a set such that A <Ç. T where T is a tally set
in the class ©£, then

As a conséquence of corollary 6.2 we can answer affirmatively the question
before. Therefore, the situation for the class NPnEx(TALLY) is as follows:
if A is in NP and A =£ T, where T G Af - 9f, then A £ L^ 9 . On the
other hand, if A ~^ T, where T G 0 ^ then A G L ^ 0 . These two cases
cover all the possibilities for T because if A is in NP and A =Ç T, T has
to belong to Af. For the class of NP sets that are gênerai or standard left
cuts of some real number x the situation is analogous because these sets
are in ET(TALLY) (see [AH-92]).

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN ©l AND A£ 117

7. SEPARATION WITH ORACLES

In [LT-91] a set A is given such that the A-relativized counterparts of 0 f
and A^ are different (this is also shown in [BH-91]). Here, applying similar
methods, we extend that result by showing that there exists a relativized
world where Plogi(NP) is different from Plogi+i(NP) for any integer i > 1.

THEOREM 7.1: There exists a recursive set A such that for any integer i > l,

Proof: We will introducé a language Li+i(A) with the property that for
any A, Li+\{A) E Plog*+i-(NP(A)). Afterwards, a spécifie oracle A will be
constructed so that for ail i > 1, Li+1(A) £ Plog*(NP(A)). Let Ll+1(A)
be the set defined as follows:

Li+1(A) = {0n | A=flogi+1 nl =0 or the minimum word of length

[log*+1 n] in A is even}.

First, we can see that for any A, L Ï + I (A) G Plogi+i(NP(A)): Note that
the language 5 = {y | 3x G A, \x\ = \y\,x < y} belongs to NP(A), and for
any integer m > 0, it vérifies:

i) minS=m = minA=m

ii) if z and y are words of length m such that z > y and y E 5, then
2 belongs to 5.
Now it is clear how to proceed, doing a binary search over the words of
length flog*"1"1 n] we only have to do [log?+1 n] queries to S to find the
minimum.

Second, we construct a spécifie oracle A such that Li+i(A) £
P|| logi-i(NP(A)). Note that this class is the same as P logi(NP(A)), as
it is shown in corollary 3.4. Let us consider Mi,M2,... and JVi , ^ , . . .
enumerations of the deterministic and nondeterministic Turing machines
respectively, where a machine a has running time bounded by a polynomial
pa- It is well known that, for every set B, the set:

K(B) = {{j, y, 0*) | Nj with oracle B accepts y in at most t steps}

is complete for the class NP relative to B. So, we can suppose that
deterministic machines always make queries of type (i, t/,0*) to the oracle
K{A).

vol. 30, n° 2, 1996

1 1 8 J. CASTRO AND C. SEARA

A is constructed in stages. At stage s = {a^i,c), if the machine Ma on
input 0Us makes at most clog*"1 ns rounds of parallel queries, we will add
words of length |~logï+1 n5] to A, diagonalizing away from the language
recognized by Ma.

Let us suppose that Ma makes at most clog*""1^ rounds of parallel
queries (otherwise, we finish stage s). We say that machine Ma behaves
correctly with input 0Hs and oracle K{A) if it accepts (rejects), and the
minimum word of length [log?+1 ns~\ in A is even (odd). If so, we will add
a new odd (even) word w to A of length |~log2+1 n s] and that is smaller than
the existing ones, in such a way that it does not affect the positive answers
of the queries to K{A). This property can be achieved by keeping a list A{

of words that are not valid choices for w: for every query q — (j^y^ö1) of
Ma to K(A) answered positively, we will include in A' the list of words that
are not in A and are queried in a certain accepting path of Nj on input y.

Machine M a , with the new oracle, either behaves incorrectly or has a
round of queries r, (1 < r < clog*"1 ns) such that, at any previous round
r', 1 < r' < r, the answers to the queries remains the same, but at round r
there is, at least, one more query answered positively. In other words, if we
dénote by (ui,U2, ...,Ud(na)), where d(n$) = c l o g 2 " 1 ^ , the séquence of
numbers of queries answered positively in each round by the machine Ma

with oracle K(A), the new séquence (vi,t>2, •••ï^d(na))» corresponding to Ma

with the new oracle K(A U {w})9 will be greater (in lexicographical order)
than (ui, U2,..., u^n^). Since the number of different séquences is bounded
by b(ns) = (pa(ns) + l)d(n*) that is a function in 20^°^n'\ repeating the
procedure above b(ns) times we can diagonalize away from M a .

stage 0

A(0) := 0

riQ : = 0

endstage

stage 5 = (a.i.c)

Let ns be the smallest integer such that

(1) log4+1 ns is larger than the length of any string queried or added
to A at any previous stage

(2) 2{b{ns)Wa{ns)) < 2 l o« i + l f\ where b(ns) = {pa(ns) + l)c}o^ln'

Check that Ma(0
ns) has at most clog*"1 ns rounds. If not, skip the stage

A(s) := A(s - 1)
d := 1; ud := inog<+1n.l

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN Sï AND Af 1 1 9k

repeat

A(s) := A(s) U {ud}

Aï := 0
compute all the queries made by Ma on input O™5 with oracle A(s)

for all the queries qi = {JhyjnO
tji) do

if Njt with oracle A(s) accepts yjl in less than tjt steps then

A1 :— A! U {words queried in the minimum accepting

path for N ^ that are not in A(s)}

endif

endfor

d := d + 1

ttd := max{# : |a?| = |~log?+1 n s] and (x is even <̂ >̂ Ud-i is odd)

and re ^ A7 and x < Ud-\}

unti\On* e L(Ma,K(A(s))) ^> 0n* G L(Ma:K(A(s) U {ud}))

if Ma(-Rr(i4(s))) behaves correctly then

A(s) := A(s) U {urf}

endif

endstage.

Note that the selected word u^ included in A (s) in each itération always
exists since in A! there are at most p\{ns) reserved words and before
including u^ we could have included at most b(ns) G 2o(l 0g l"a) words of
length [log'+1 ris] in A. •

Remark 12: The set A constructed above gives a relativized séparation
between Plog*(NP) and P^(NP) for any fonction g(n) E a;(log^ n):
Essentially, the only necessary change in the proof is to replace all
références to words of length flog2+1 n] by références to words of length
\g(n)~\. With this change, the condition (2) of the algorithm becomes
2(b(ns) +p2

a(ns)) < 2 ^ «) 1 that is also satisfiable.

CONCLUSIONS

We have shown different circuit characterizations of the class P l og;(NP):
this class coincides with AC?~1(NP) and also with the class of sets
recognized by NP-relativized circuits of size O (log2 n). All the proof s given
are valid under relativizations, so these characterizations can be generalized

vol. 30, n° 2, 1996

1 2 0 J. CASTRO AND C. SEARA

to arbitrary levels of the polynomial time hierarchy. Ogiwara has completed
this kind of équivalences obtaining an NC circuit characterization of these
classes: he has shown that AC*"1 (NP) = NC'(NP) (see [Og-94]). Note
that these results show that the well known inclusions AC0 C NC1 Ç L
collapse when the relativized versions to NP are considered, in contrast with
the genera! relativized case (see [Wi-87]).

ACKNOWLEDGEMENTS

We are very grateful to José L. Balcâzar and Borja Valles for reading earlier
versions of this paper. We would like to thank Eric Allender, Fred Green,
Birgit Jenner, Ming-Jye Sheu and Chris Wilson for helpful discussions. Two
anonymous référées deserve our thanks for many valuable suggestions and
comments.

REFERENCES

[AH-92] E. ALLENDER and L. HEMACHANDRA, Lower bounds for the low
hierarchy, Journal of the ACM, 1992, 39 (1), pp. 234-250.

[AW-90] E. ALLENDER and C. B. WILSON, Width-bounded reducibility and
binary search over complexity classes, Proc. 5th IEEE Conf. on
Structure in Complexity Theory, 1990, pp. 122-129.

[BB-86] J. L. BALCÂZAR and R. BOOK, Sets with small generalized
Kolmogorov complexity, Acta Informatica, 1986, 23, pp. 679-688.

[BH-91] S. Buss and L. HAY, On truth-table reducibility to SAT, Information
and Computation, 1991, 91, pp. 86-102.

[BS-92] J. L. BALCÂZAR and U. SCHÖNING, Logarithmic advice classes,
Theoretical Computer Science, 1992, 99, pp. 279-290.

[BT-89] R. BOOK and S. TANG, A note on sparse sets and the polynomial-
time hierarchy, Information Processing Letters, 1989, 33 (3),
pp. 141-143.

[Be-91] R. J. BEIGEL, Bounded queries to SAT and the Boolean hierarchy,
Theoretical Computer Science, 1991, 84, pp. 199-223.

[CGHHSWW-88] J. CAI, T. GUNDERMANN, J. HARTMANIS, L. HEMACHANDRA, V. SEWELSON,
K. WAGNER and G. WECHSUNG, The Boolean hierarchy I: Structural
Properties, SIAM J. Comp., 1988, 17 (6), pp. 1232-1252.

[CH-86] J. CAI and L. HEMACHANDRA, The Boolean hierarchy: hardware
over NP, Proc. Ist Conference on Structure in Complexity Theory,
LNCS, 1986, 223, Springer-Verlag, pp. 105-124.

[KS-85] K. Ko and U. SCHÖNING, On circuit-size and the low hierarchy in
NP, SIAMJ. Comput, 1985, 14 (1), pp. 41-51.

[KSW-87] J. KÖBLER, 11 SCHÖNING and K. WAGNER, The différence and the
truth-table hiérarchies for NP, R.A.I.R.O., 1987, 21, pp. 419-435.

[Ka-89] j t KADIN, P N P [l o s n ^ and sparse Turing-complete sets for NP,
J. Comput System ScL, 1989, 39 (3), pp. 282-298.

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY CLASSES BETWEEN e£ AND A£ 1 2 1

[Kö-85] J. KÖBLER, Untersuchung verschiedener polynomieller Reduktion-
sklassen von NP, thesis, University of Stuttgart, 1985.

[LS-91] T. LONG and M-J. SHEU, A refinement of the low and high
hiérarchies, Technical report OSU-CISRC-2/91-TR6, The Ohio
State University, 1991.

[LT-91] A. LOZANO and J. TORÂN, Self-reducible sets of small density, Math,
Systems Theory, 1991, 24, pp. 83-100.

[Ma-82] S. MAHANEY, Sparse complete sets for NP: solution of a conjecture
of Berman and Hartmanis, J. Comput. System ScL, 1982, 25,
pp. 130-143.

[Og-94] M . OGIWARA, NCfc(NP) = AC*"1 (NP), STACS 94, LNCS, 1994,
775, Springer-Verlag, pp. 313-324.

[Sc-83] U. SCHÖNING, A low and a high hierarchy within NP, ƒ. Comput.
System ScL, 1983, 27, pp. 14-28,

[Sc-86a] U. SCHÖNING, Complete sets and closeness to complexity classes,
Mathematical Systems Theory, 1986, 19, pp. 29-41.

[Sc-86b] U. SCHÖNING, Complexity and Structure, LNCS, 1986, 211,
Springer-Verlag.

[WW-85] G. WECHSUNG and K. WAGNER, On the Boolean closure of NP,
manuscript 1985 (extended abstract as: G. Wechsung, On the
Boolean closure of NP, Proc. Conf. Fundam. Comp. Theory,
Cottbus 1985, LNCS, 1985, 199, pp. 485-493.

[Wa-90] K. WAGNER, Bounded query classes, S1AM J. Comput., 1990, 19
(5), pp. 833-846.

[Wi-87] C. B. WILSON, Relativized NC, Math. Systems Theory, 1987, 20,
pp. 13-29.

[Wi-90] C. B. WILSON, Decomposing NC and AC, SIAM J. Comput., 1990,
19 (2), pp. 384-396.

vol. 30, n° 2, 1996

