INFORMATIQUE THÉORIQUE ET APPLICATIONS

F. BLANCHET-SADRI

Equations on the semidirect product of a finite semilattice by a g-trivial monoid of height k

Informatique théorique et applications, tome 29, $\mathrm{n}^{\circ} 3$ (1995), p. 157-170

http://www.numdam.org/item?id=ITA_1995__29_3_157_0
© AFCET, 1995, tous droits réservés.
L'accès aux archives de la revue «Informatique théorique et applications» implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

EQUATIONS ON THE SEMIDIRECT PRODUCT OF A FINITE SEMILATTICE BY A \mathcal{J}-TRIVIAL MONOID OF HEIGHT k (*)

by F. Blanchet-Sadri $\left.{ }^{1}{ }^{1}\right)$

Communicated by J.-E. Pin

Abstract

Let \mathbf{J}_{k} denote the kth level of Simon's hierarchy of \mathcal{J}-trivial monoids. The 1st level J_{1} is the M -variety of finite semilattices. In this paper, we give a complete sequence of equations for the product $\mathbf{J}_{1} \star \mathbf{J}_{k}$ generated by all semidirect products of the form $M \star N$ with $M \in \mathbf{J}_{1}$ and $N \in \mathbf{J}_{k}$. Results of Almeida imply that this sequence of equations is complete for the product \mathbf{J}_{1}^{k+1} or $\mathbf{J}_{1} \star \ldots \star \mathbf{J}_{1}(k+1$ times $)$ generated by all semidirect products of $k+1$ finite semilattices and that $\mathbf{J}_{1} \star \mathbf{J}_{k}$ is defined by a finite sequence of equations if and only if $k=1$. The equality $\mathbf{J}_{1} \star \mathbf{J}_{k}=\mathbf{J}_{1}^{k+1}$ implies that a conjecture of Pin concerning tree hierarchies of \mathbf{M}-varieties is false.

Résumé. - Soit \mathbf{J}_{k} le niveau k de la hiérarchie de Simon des monoïdes \mathcal{J}-triviaux. Le premier niveau \mathbf{J}_{1} est la \mathbf{M}-variété des monoüdes idempotents et commutatifs ou demi-treillis. Dans cet article, nous donnons une suite complète d'équations pour le produit $\mathbf{J}_{1} \star \mathrm{~J}_{k}$ engendré par les produits semidirects de la forme $M \star N$ avec $M \in \mathbf{J}_{1}$ et $N \in \mathbf{J}_{k}$. Des résultats d'Almeida entraînent que cette suite d'équations est aussi complète pour le produit \mathbf{J}_{1}^{k+1} ou $\mathbf{J}_{1} \star \ldots \star \mathbf{J}_{1}$ ($k+1$ fois) engendré par les produits semidirects de $k+1$ demi-treillis et que $\mathbf{J}_{1} \star \mathbf{J}_{k}$ est défini par une suite finie d'équations si et seulement si $k=1$. L'égalité $\mathbf{J}_{1} \star \mathbf{J}_{k}=\mathbf{J}_{1}^{k+1}$ entraîne qu'une conjecture de Pin concernant des hiérarchies d'arbres de \mathbf{M}-variétés est fausse.

1. INTRODUCTION

Let \mathbf{J}_{k} denote the \mathbf{M}-variety of \mathcal{J}-trivial monoids of height k. The first level \mathbf{J}_{1} is the M-variety of finite semilattices. In this paper, we give an equational characterization of the product $\mathbf{J}_{1} \star \mathbf{J}_{k}$ generated by all semidirect products of the form $M \star N$ with $M \in \mathbf{J}_{1}$ and $N \in \mathbf{J}_{k}$. A result of Almeida [3] gives an equational characterization of the product

[^0]$\mathbf{J}_{1} \star \ldots \star \mathbf{J}_{1}\left(k+1\right.$ times) or \mathbf{J}_{1}^{k+1}, which turns out to be our equational characterization of $\mathbf{J}_{1} \star \mathbf{J}_{k}$. The equality $\mathbf{J}_{1} \star \mathbf{J}_{k}=\mathbf{J}_{1}^{k+1}$ implies that a conjecture of Pin concerning tree hierarchies of \mathbf{M}-varieties is false. Almeida [3] implies that $\mathbf{J}_{1} \star \mathbf{J}_{k}$ is defined by a finite sequence of equations if and only if $k=1$. The methods used in this paper were developed by Almeida [1], [2].

1.1 Preliminaries

The reader is referred to the books of Eilenberg [15], Lallement [19] or Pin [20] for terminology not defined in this paper.

Let A be a finite set called an alphabet, whose elements are called letters. We will denote by A^{*} the free monoid over A. The elements of A^{*} are the finite sequences of letters called words. The empty word (denoted by 1) corresponds to the empty sequence.

Let L be a subset of A^{*} (or a language over A) and \sim be an equivalence relation on A^{*}. We say that \sim saturates L if L is a union of classes modulo \sim or for every $u, v \in A^{*}, u \sim v$ and $u \in L$ imply $v \in L$.

The syntactic congruence of L is the congruence \sim_{L} on A^{*} defined by $u \sim{ }_{L} v$ if and only if for every $x, y \in A^{*}, x u y \in L$ if and only if $x v y \in L$. We can show that \sim_{L} is the coarsest congruence saturating L. The syntactic monoid of L is the quotient monoid $M(L)=A^{*} / \sim_{L}$.

Let S and T be semigroups. We say that S is a quotient of T if there exists a surjective morphism $\varphi: T \rightarrow S$ and we say that S divides $T(S \prec T)$ if S is a quotient of a submonoid of T. The division relation is transitive. The syntactic monoid of a language. L is the smallest monoid recognizing L, where smallest is taken in the sense of the division relation.

A variety V is a class of semigroups closed under division and products. By the well-known theorem of Birkhoff such a variety is defined by equations that must hold for all elements of semigroups in V. Thus equations give rise to varieties.

An S-variety is a class of finite semigroups closed under division and finite products and an M-variety is a class of finite monoids closed under division and finite products. Equivalently, a class \mathbf{V} of finite monoids is an M -variety if V satisfies the following two conditions:

- if $T \in \mathbf{V}$ and $S \prec T$, then $S \in \mathbf{V}$;
- if $S, T \in \mathbf{V}$, then $S \times T \in \mathbf{V}$.

Eilenberg has shown the existence of a bijection between the \mathbf{M}-varieties and some classes of languages called the \star-varieties of languages.

A class \mathcal{V} is a \star-variety of languages if

- for every alphabet $A, A^{*} \mathcal{V}$ is a set of recognizable languages over A closed under boolean operations;
- if $\varphi: A^{*} \rightarrow B^{*}$ is a free monoid morphism, then $L \in B^{*} \mathcal{V}$ implies $L \varphi^{-1}=\left\{u \in A^{*} \mid u \varphi \in L\right\}$ is in $A^{*} \mathcal{V}$;
- if $L \in A^{*} \mathcal{V}$ and $a \in A$, then $a^{-1} L=\left\{u \in A^{*} \mid a u \in L\right\}$ and $L a^{-1}=\left\{u \in A^{*} \mid u a \in L\right\}$ are in $A^{*} \mathcal{V}$.

If V is an M -variety and A is an alphabet, we denote by $A^{*} \mathcal{V}$ the set of recognizable languages over A whose syntactic monoid is in V. Equivalently, $A^{*} \mathcal{V}$ is the set of languages of A^{*} recognized by a monoid of \mathbf{V}. If \mathcal{V} is a \star-variety of languages, we denote by \mathbf{V} the \mathbf{M}-variety generated by the monoids of the form $M(L)$ where $L \in A^{*} \mathcal{V}$ for some alphabet A.

A result of Simon enables us to describe the \star-variety of languages corresponding to the \mathbf{M}-variety of \mathcal{J}-trivial monoids denoted by \mathbf{J}.

A word $a_{1} \ldots a_{i} \in A^{*}$ is a subword of a word u of A^{*} if there exist words $u_{0}, u_{1}, \ldots, u_{i} \in A^{*}$ such that $u=u_{0} a_{1} u_{1} \ldots a_{i} u_{i}$. For each integer $k \geq 0$, we define an equivalence relation \sim_{k} on A^{*} by $u \sim_{k} v$ if and only if u and v have the same subwords of length less than or equal to k. We can verify that \sim_{k} is a congruence on A^{*} with finite index. Note that $u \sim_{1} v$ if and only if u and v have the same letters. The set of letters that occur in a work u will be denoted by $u \alpha$.

A language L over A is called piecewise testable if it is a union of classes modulo \sim_{k} for some integer k, or equivalently if it is in the boolean algebra generated by all languages of the form $A^{*} a_{1} A^{*} \ldots a_{i} A^{*}$ where $i \geq 0$ and $a_{1}, \ldots, a_{i} \in A$. Simon [24] has proved that a language is piecewise testable if and only if its syntactic monoid is \mathcal{J}-trivial. For every alphabet A, we will denote by $A^{*} \mathcal{J}_{k}$ the boolean algebra generated by all languages of the form $A^{*} a_{1} A^{*} \ldots a_{i} A^{*}$, where $0 \leq i \leq k$ and $a_{1}, \ldots, a_{i} \in A$. One can show that \mathcal{J}_{k} is a \star-variety of languages and we will denote by \mathbf{J}_{k} the corresponding \mathbf{M}-variety. The \mathbf{M}-variety \mathbf{J} is the union of the \mathbf{M}-varieties \mathbf{J}_{k}.

1.2 Product of varieties of semigroups

Let S and T be semigroups. To simplify the notation we will represent S additively (without necessarily supposing that S is commutative) and T multiplicatively.

An action of T on S is a function

$$
\begin{aligned}
& T \times S \rightarrow S \\
& (t, s) \mapsto t s
\end{aligned}
$$

satisfying for every $t, t^{\prime} \in T$ and $s, s^{\prime} \in S$:

- $t\left(s+s^{\prime}\right)=t s+t s^{\prime} ;$
- $t\left(t^{\prime} s\right)=\left(t t^{\prime}\right) s$.

Given an action of T on S, the semidirect product $S \star T$ is the semigroup defined on $S \times T$ by the multiplication

$$
(s, t)\left(s^{\prime}, t^{\prime}\right)=\left(s+t s^{\prime}, t t^{\prime}\right)
$$

The multiplication in $S \star T$ is associative. Thus $S \star T$ is a semigroup.
In this paper, we only consider semidirect products $S \star T$ given by actions of T on S that are described by monoid homomorphisms $\varphi: T^{1} \rightarrow$ End S from T^{1} into the monoid of endomorphisms of S. In the terminology adopted by Eilenberg [15], this means that we only consider left unitary actions, that is actions of T on S that satisfy $1 s=s$ for every $s \in S$. Here T^{1} denotes the semigroup $T \cup\{1\}$ obtained from T by adjoining an identity if T does not have one, and $T^{1}=T$ otherwise.

If V and W are varieties of semigroups, the product $V \star W$ is the variety generated by all semigroups of the form $S \star T$ with $S \in V$ and $T \in W$. The product of two \mathbf{S}-varieties (or \mathbf{M}-varieties) is defined analogously. The operation \star defined on varieties is associative.

There remain many problems to be solved on products of S -varieties (or \mathbf{M}-varieties). The most important of these is the following. Given two decidable \mathbf{S}-varieties (or \mathbf{M}-varieties), is the product decidable? A particular case of this problem is well known in the theory of semigroups. Karnofsky and Rhodes [18] have established the decidability of the \mathbf{M}-varieties $\mathbf{A} \star \mathbf{G}$ and $\mathbf{G} \star \mathbf{A}$. Here, \mathbf{A} denotes the \mathbf{M}-variety of aperiodic monoids and \mathbf{G} the \mathbf{M}-variety of groups.

This paper deals in particular with products of the form \mathbf{J}_{1}^{k}. It is known that $\bigcup \mathbf{J}_{1}^{k}$ is the \mathbf{M}-variety \mathbf{R} of all finite \mathcal{R}-trivial monoids (Stiffler [25]) $k \geq 0$
and that \mathbf{J}_{1}^{k} is decidable (Pin [21]).

1.3 Equations on products of varieties of semigroups

Let A^{+}be the free semigroup over a denumerable alphabet A and let u, $v \in A^{+}$. We say that a semigroup S satisfies the equation $u=v$ or the equation $u=v$ holds in S (and we write $S \models u=v$) if for every morphism $\varphi: A^{+} \rightarrow S, u \varphi=v \varphi$. This means that, it we substitute elements of S for the letters in u and v, we reach equalities in S. For example, S is idempotent if it satisfies the equation $x=x^{2}$ and S is commutative if it satisfies the equation $x y=y x$. For a sequence \mathcal{E} of equations and an equation $u=v$, $\mathcal{E} \vdash u=v$ (and we say $u=v$ is deducible from \mathcal{E}) means that for every semigroup S, if $S \vDash \mathcal{E}$, then $S \vDash u=v$.
Let $\mathrm{V}(u, v)$ be the class of finite semigroups S satisfying the equation $u=v$. It is easy to show that $\mathbf{V}(u, v)$ is an \mathbf{S}-variety.

Let $\left(u_{i}, v_{i}\right)_{i>0}$ be a sequence of pairs of words of A^{+}. Consider the following S -varieties:

$$
\begin{gathered}
\mathbf{W}=\bigcap_{i>0} \mathbf{V}\left(u_{i}, v_{i}\right) \\
\mathbf{W}^{\prime}=\bigcup_{I>0} \bigcap_{i \geq I} \mathbf{V}\left(u_{i}, v_{i}\right) .
\end{gathered}
$$

We say that \mathbf{W} is defined by the equations $u_{i}=v_{i}(i>0)$. This corresponds to the fact that a finite semigroup is in \mathbf{W} if and only if it satisfies the equations $u_{i}=v_{i}$ for every $i>0$. We say that \mathbf{W}^{\prime} is ultimately defined by the equations $u_{i}=v_{i}(i>0)$. This corresponds to the fact that a finite semigroup is in \mathbf{W}^{\prime} if and only if it satisfies the equations $u_{i}=v_{i}$ for every i sufficiently large.

The arguments above apply equally well to \mathbf{M}-varieties. We only need to replace A^{+}by A^{*} throughout.

Eilenberg and Schützenberger [16] have proved the following result. Every nonempty M-variety is ultimately defined by a sequence of equations, or every S -variety containing the trivial semigroup is ultimately defined by a sequence of equations. If \mathbf{V} is the \mathbf{S}-variety ultimately defined by the equations $u_{i}=v_{i}, i>0$, then the same equations ultimately define the \mathbf{M} variety consisting of all the monoids in \mathbf{V}. Also every \mathbf{M}-variety generated by a single monoid is defined by a (finite or infinite) sequence of equations.

Equational characterizations of all the \mathbf{M}-varieties \mathbf{J}_{k} are known [23], [5], [6], [10], [11]. In particular,

- the \mathbf{M}-variety \mathbf{J}_{1} is defined by the equations $x=x^{2}$ and $x y=y x$, so \mathbf{J}_{1} is the \mathbf{M}-variety of idempotent and commutative monoids;
- the \mathbf{M}-variety \mathbf{J}_{2} is defined by the equations $x y z x=x y x z x$ and $(x y)^{2}=(y x)^{2} ;$
- the M-variety \mathbf{J}_{3} is defined by the equations $x z y x v x w y=x z x y x v x w y$, $y w x v x y z x=y w x v x y x z x$ and $(x y)^{3}=(y x)^{3}$.

Defintion 1.1: Let $k \geq 1$ and let $A=\left\{x_{1}, x_{2}, \ldots\right\}$ be a denumerable alphabet of variables including $x\left(x=x_{1}\right)$.
\mathcal{E}_{k} is the sequence of all equations (over A) of the form

$$
u_{i} \ldots u_{1} v_{1} \ldots v_{j}=u_{i} \ldots u_{1} x v_{1} \ldots v_{j}
$$

where

$$
\begin{aligned}
& \{x\} \subseteq u_{1} \alpha \subseteq \ldots \subseteq u_{i} \alpha \\
& \{x\} \subseteq v_{1} \alpha \subseteq \ldots \subseteq v_{j} \alpha
\end{aligned}
$$

and where $i+j=k$.
Theorem 1.1 [10]: Let $k \geq 1$. The \mathbf{M}-variety \mathbf{J}_{k} is defined by \mathcal{E}_{k}.
These results lead to the following question. Can the \mathbf{M}-varieties \mathbf{J}_{k} be defined by a finite sequence of equations? This question has been answered in [11]. The \mathbf{M}-varieties \mathbf{J}_{k} can be defined by a finite sequence of equations if and only if $k=1,2$ or 3 .

Equations are known for the product of the S-variety of semilattices, groups, and \mathcal{R}-trivial semigroups by the S-variety of locally trivial semigroups [15]. These results have important applications to language theory [14], [15].

Pin [22] has shown that the \mathbf{M}-variety $\mathbf{J}_{1} \star \mathbf{J}_{1}$ is defined by the equations $x u x=x u x^{2}$ and $x u y v x y=x u y v y x$. A result of Irastorza [17] shows that the \mathbf{M}-varieties $\mathbf{J}_{1} \star\left(Z_{k}\right)$ are not defined by finite sequences of equations. Here, $\left(Z_{k}\right)$ denotes the \mathbf{M}-variety generated by the cyclic group Z_{k} of order k which is defined by the equations $x^{k}=1$ and $x y=y x$. Almeida [3] has shown that \mathbf{J}_{1}^{k} is defined by a finite sequence of equations if and only if $k=1$ or 2 . Ash [4] has shown that $\mathbf{J}_{1} \star \mathbf{G}=\mathbf{I n v}$ is defined by the equation $x^{\omega} y^{\omega}=y^{\omega} x^{\omega}$. The \mathbf{M}-variety of groups \mathbf{G} is defined by the equation $x^{\omega}=1$, and Inv denotes the \mathbf{M}-variety generated by the inverse semigroups.

2. ON A COMPLETE SEQUENCE OF EQUATIONS FOR $\mathbf{J}_{1} * \mathbf{J}_{k}$

In this section, in order to simplify the notation, we will denote also by \mathbf{J}_{k} the \mathbf{S}-variety generated by \mathbf{J}_{k}. It will be convenient to denote by \mathbf{J}_{0} the S-variety defined by the equation $x=y$. In this section, we work essentially with semigroups.

Our results follow from an approach to the semidirect product that was introduced in Almeida [1].

The free object on the set X in the variety generated by an \mathbf{S}-variety (or \mathbf{M}-variety) \mathbf{V} will be denoted by $F_{X} \mathbf{V}$. We will also write $F_{i} \mathbf{V}$ as an abbreviation for $F_{\left\{x_{1}, \ldots, x_{i}\right\}} \mathbf{V}$. For every $i \geq 1$ and $k \geq 1$, the free object $F_{i}\left(\mathbf{J}_{k}\right)$ can be viewed as a set of representatives of classes modulo \sim_{k} of words over $\left\{x_{1}, \ldots, x_{i}\right\}$. This set is finite. For $i \geq 1$ and $k \geq 1$, let $p_{i, k}:\left\{x_{1}, \ldots, x_{i}\right\}^{+} \rightarrow F_{i}\left(\mathbf{J}_{1} \star \mathbf{J}_{k}\right)$ be the canonical projection that maps the letter x_{j} onto the generator x_{j} of $F_{i}\left(\mathbf{J}_{1} \star \mathbf{J}_{k}\right)$, and let $q_{i, k}:\left\{x_{1}, \ldots, x_{i}\right\}^{+} \rightarrow F_{i}\left(\mathbf{J}_{k}\right)$ be the canonical projection that maps the letter x_{j} onto the generator x_{j} of $F_{i}\left(\mathbf{J}_{k}\right)$. If $u \in\left\{x_{1}, \ldots, x_{i}\right\}^{+}$, then $u q_{i, k}$ can be viewed as a representtive of the class modulo $\sim k$ of u.

Defintition 2.1: Let $k \geq 1$ and $u \in\left\{x_{1}, \ldots, x_{i}\right\}^{+}$.
$u \alpha_{i, k}$ is the set of all pairs of the form

$$
\left(u^{\prime} q_{i, k}, x\right) \in\left(F_{i}\left(\mathbf{J}_{k}\right)\right)^{1} \times\left\{x_{1}, \ldots, x_{i}\right\}
$$

where $u=u^{\prime} x u^{\prime \prime}$ for some $u^{\prime}, u^{\prime \prime} \in\left\{x_{1}, \ldots, x_{i}\right\}^{*}$.
In the case of $k=0,\left(F_{i}\left(\mathbf{J}_{0}\right)\right)^{1}=\{1\}$ and so $u \alpha_{i, 0}=\{1\} \times u \alpha$.
The following lemmas will help us give an equational characterization of $\mathbf{J}_{1} \star \mathbf{J}_{k}$. Lemma 2.1 provides an algorithm to decide when an equation holds in $\mathbf{J}_{1} \star \mathbf{J}_{k}$.

Lemma 2.1: Let $k \geq 0$ and $u, v \in\left\{x_{1}, \ldots, x_{i}\right\}^{+}$. Then

$$
\mathbf{J}_{1} \star \mathbf{J}_{k} \models u=v
$$

if and only if $u \alpha_{i, k}=v \alpha_{i, k}$.
Proof: For $k=0$, we have that $\mathbf{J}_{1} \vDash u=v$ if and only if $u \alpha=v \alpha$. Since $F_{i}\left(\mathbf{J}_{k}\right)$ is finite for every $i \geq 1$ and $k \geq 1$, a representation of free objects for a semidirect product of S-varieties obtained in [1] implies that $F_{i}\left(\mathbf{J}_{1} \star \mathbf{J}_{k}\right)$ is also finite for every $i \geq 1$ and $k \geq 1$. Moreover, there
is an embedding of $F_{i}\left(\mathbf{J}_{1} \star \mathbf{J}_{k}\right)$ into $F_{Y}\left(\mathbf{J}_{1}\right) \star F_{i}\left(\mathbf{J}_{k}\right)$ that maps x_{j} into $\left(\left(1, x_{j}\right), x_{j}\right)$. Here $Y=\left(F_{i}\left(\mathbf{J}_{k}\right)\right)^{1} \times\left\{x_{1}, \ldots, x_{i}\right\}$ and the action in the semidirect product of the free objects is given by $x_{j}\left(s, x_{j^{\prime}}\right)=\left(x_{j} s, x_{j^{\prime}}\right)$ for $s \in\left(F_{i}\left(\mathbf{J}_{k}\right)\right)^{1}$. The word $x_{j_{1}} \ldots x_{j_{r}}$ is mapped into

$$
\left(\left(1, x_{j_{1}}\right)+\left(x_{j_{1}}, x_{j_{2}}\right)+\ldots+\left(x_{j_{1}} \ldots x_{j_{r-1}}, x_{j_{r}}\right), x_{j_{1}} \ldots x_{j_{r}}\right)
$$

Suppose that $\mathbf{J}_{1} \star \mathbf{J}_{k} \models u=v$, or that $u p_{i, k}=v p_{i, k}$. This is equivalent to the two conditions $u \alpha_{i, k}=v \alpha_{i, k}$ and $\mathrm{J}_{k} \vDash u=v$. Observe that $\mathbf{J}_{k} \models u=v$ if and only if $u q_{i, k}=v q_{i, k}$. The result follows since $u \alpha_{i, k}=v \alpha_{i, k}$ implies $u q_{i, k}=v q_{i, k}$.

Let $k \geq 1$. Let $u, v \in\left\{x_{1}, \ldots, x_{i}\right\}^{+}$be such that $u \alpha_{i, k}=v \alpha_{i, k}$. Let $x \in u \alpha$ and consider the first occurrence of x in u.

Case 1. If x is the last letter occurring for the first time in u, then there is a factorization $u=u_{1} x u_{2}$ with $u_{1}, u_{2} \in\left\{x_{1}, \ldots, x_{i}\right\}^{*}, x \notin u_{i} \alpha$ and $u_{2} \alpha \subseteq\left(u_{1} x\right) \alpha$. In such a case, since $u \alpha_{i, k}=v \alpha_{i, k}$, there is also a factorization $v=v_{1} x v_{2}$ with $v_{1}, v_{2} \in\left\{x_{1}, \ldots, x_{i}\right\}^{*}$ and $x \notin v_{1} \alpha$.

Case 2. If x is not the last letter occurring for the first time in u, then there is a factorization $u=u_{1} x u_{2} y u_{3}$ with $u_{1}, u_{2}, u_{3} \in\left\{x_{1}, \ldots, x_{i}\right\}^{*}, x \notin u_{1} \alpha$, $u_{2} \alpha, \subseteq\left(u_{1} x\right) \alpha$ and $y \notin\left(u_{1} x u_{2}\right) \alpha$. In such a case, since $u \alpha_{i, k}=v \alpha_{i, k}$, there is also a factorization $v=v_{1} x v_{2} y v_{3}$ with $v_{1}, v_{2}, v_{3} \in\left\{x_{1}, \ldots, x_{i}\right\}^{*}$, $x \notin v_{1} \alpha$ and $y \notin\left(v_{1} x v_{2}\right) \alpha$.

Lemma 2.2: In Case 1 and Case 2, $u_{2} \alpha_{i, k-1}=v_{2} \alpha_{i, k-1}$.
Proof: Let $u_{2}=u_{2}^{\prime} z u_{2}^{\prime \prime}$ with $z \in\left\{x_{1}, \ldots, x_{i}\right\}$. Consider the pair $\left(u_{2}^{\prime} q_{i, k-1}, z\right)$ in $u_{2} \alpha_{i, k-1}$. The pair $\left(\left(u_{1} x u_{2}^{\prime}\right) q_{i, k}, z\right)$ is in $u \alpha_{i, k}$. Since $u \alpha_{i, k}=v \alpha_{i, k}$, there is a factorization $v=v^{\prime} z v^{\prime \prime}$ with $\left(u_{1} x u_{2}^{\prime}\right) q_{i, k}=$ $v^{\prime} q_{i, k}$. It follows that the \sim_{k}-class of $u_{1} x u_{2}^{\prime}$ is equal to the \sim_{k}-class of v^{\prime} and hence $x \in v^{\prime} \alpha$ and, in Case $2, y \notin v^{\prime} \alpha$. Therefore, the chosen occurrence of z in $v=v^{\prime} z v^{\prime \prime}$ must be in v_{2}. There is then a factorization $v_{2}=v_{2}^{\prime} z v_{2}^{\prime \prime}$ such that $v^{\prime}=v_{1} x v_{2}^{\prime}$. Hence ($\left.u_{2}^{\prime} q_{i, k-1}, z\right)=\left(v_{2}^{\prime} q_{i, k-1}, z\right)$ and the pair $\left(u_{2}^{\prime} q_{i, k-1}, z\right)$ is in $v_{2} \alpha_{i, k-1}$. Then inclusion $u_{2} \alpha_{i, k-1} \subseteq v_{2} \alpha_{i, k-1}$ follows. The reverse inclusion is similar.

Defintion 2.2: Let $k \geq 1$ and let $A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a denumerable alphabet of variables including x and $y\left(u=x_{1}\right.$ and $\left.y=x_{2}\right)$.
\mathcal{C}_{k} is the sequence of all equations (over A) of the form

$$
u_{k} \ldots u_{1} x=u_{k} \ldots u_{1} x^{2}
$$

where

$$
\{x\} \subseteq u_{1} \alpha \subseteq \ldots \subseteq u_{k} \alpha
$$

\mathcal{D}_{k} is the sequence of all equations (over A) of the form

$$
u_{k} \ldots u_{1} x y=u_{k} \ldots u_{1} y x
$$

where

$$
\{x, y\} \subseteq u_{1} \alpha \subseteq \ldots \subseteq u_{k} \alpha
$$

We define \mathcal{C}_{0} as the sequence consisting of the equation $x=x^{2}$ and \mathcal{D}_{0} the sequence consisting of $x y=y x$.

Let J_{k} denote the variety of all semigroups that satisfy all the equations in \mathcal{E}_{k}. The variety J_{k} is locally finite, or every finitely generated semigroup in J_{k} is finite. For a class \mathcal{C} of semigroups, we denote by \mathcal{C}^{F} the class of all finite semigroups of \mathcal{C}. The equality $\mathbf{J}_{k}=\left(J_{k}\right)^{F}$ holds. By [1], if $k \geq 1$, then the equality $\left(J_{1} \star J_{k}\right)^{F}=\mathbf{J}_{1} \star \mathbf{J}_{k}$ holds and $J_{1} \star J_{k}$ is locally finite. Hence $J_{1} \star J_{k}$ is generated by $\mathbf{J}_{1} \star \mathbf{J}_{k}$ and so $F_{i}\left(\mathbf{J}_{1} \star \mathbf{J}_{k}\right)$ is the free object on $\left\{x_{1}, \ldots, x_{i}\right\}$ in the variety $J_{1} \star J_{k}$.

Theorem 2.1: Let $k \geq 0$. The variety $J_{1} \star J_{k}$ is defined by $\mathcal{C}_{k} \cup \mathcal{D}_{k}$.
Proof: We first want to show that $J_{1} \star J_{k} \models \mathcal{C}_{k} \cup \mathcal{D}_{k}$. Let $u, v \in$ $\left\{x_{1}, \ldots, x_{i}\right\}^{+}$be such that $u=v$ is an equation in \mathcal{D}_{k} (the case of equations in \mathcal{C}_{k} is similar). By Lemma 2.1, it suffices to show that $u \alpha_{i, k}=v \alpha_{i, k}$. Let $u=u_{k} \ldots u_{1} x y$ and $v=u_{k} \ldots u_{1} y x$ be such that $\{x, y\} \subseteq u_{1} \alpha \subseteq \ldots \subseteq u_{k} \alpha$. Note that

$$
\left(\left(u_{k} \ldots u_{1}\right) q_{i, k}, x\right)=\left(\left(u_{k} \ldots u_{1} y\right) q_{i, k}, x\right)
$$

since the words $u_{k} \ldots u_{1}$ and $u_{k} \ldots u_{1} y$ are \sim_{k}-equivalent. Note also that

$$
\left(\left(u_{k} \ldots u_{1} x\right) q_{i, k}, y\right)=\left(\left(u_{k} \ldots u_{1}\right) q_{i, k}, y\right)
$$

The equality $u \alpha_{i, k}=v \alpha_{i, k}$ follows.
Conversely, we want to show that if $u, v \in\left\{x_{1}, \ldots, x_{i}\right\}^{+}$are such that $u \alpha_{i, k}=v \alpha_{i, k}$, then $\mathcal{C}_{k} \cup \mathcal{D}_{k} \vdash u=v$. So, assume that $u \alpha_{i, k}=v \alpha_{i, k}$. Let $x \in u \alpha$ and consider the first occurrence of x in u and v. As in Lemma 2.2, we denote by u_{1} (respectively v_{1}) the longest prefix of u (respectively v) in which the letter x does not occur, and we denote by u_{2} (reespectively v_{2}) the longest segment of u (respectively v) following the first occurrence of x in u (respectively v) that does not involve any new letters. By Lemma 2.2, the equality $u_{2} \alpha_{i, k-1}=v_{2} \alpha_{i, k-1}$ holds. By the inductive hypothesis on
k, we conclude that the equation $u_{2}=v_{2}$ is deducible from $\mathcal{C}_{k-1} \cup \mathcal{D}_{k-1}$. By a result of [3] (Proposition 2.3), since $\mathcal{C}_{k-1} \cup \mathcal{D}_{k-1} \vdash u_{2}=v_{2}$ and $u_{2} \alpha \subseteq\left(u_{1} x\right) \alpha$, then $\mathcal{C}_{k} \cup \mathcal{D}_{k} \vdash u_{1} x u_{2}=u_{1} x v_{2}$.

Let $z \in\left\{x_{1}, \ldots, x_{i}\right\}$. Let u^{\prime} (respectively v^{\prime}) be the longest prefix of u (respectively v) before the first occurrence of z. We show that the equation $u^{t}=v^{t}$ is deducible from $\mathcal{C}_{k} \cup \mathcal{D}_{k}$. If z is the first letter in u (and so also the first letter in v), then the equation $u^{\prime}=v^{\prime}$ becomes $1=1$. We assume that it is true for the first occurrence of $z=x$ (as in Lemma 2.2), or $\mathcal{C}_{k} \cup \mathcal{D}_{k} \vdash u_{1}=v_{1}$. Here $u_{1} x u_{2}=u_{1} x v_{2}=v_{1} x v_{2}$ is deducible from $\mathcal{C}_{k} \cup \mathcal{D}_{k}$. If x is the last letter occurring for the first time in u (as in Case 1 of Lemma 2.2), we obtain that the equation $u=v$ is deducible from $\mathcal{C}_{k} \cup \mathcal{D}_{k}$. Otherwise, the induction step allows us to proceed until the first occurrence of another letter, say $z=y$ (as in Case 2 of Lemma 2.2). After every letter of u has been found, we obtain the deducibility of the equation $u=v$ from $\mathcal{C}_{k} \cup \mathcal{D}_{k}$.

Since $\mathbf{J}_{1} \star \mathbf{J}_{k}=\left(J_{1} \star J_{k}\right)^{F}$, any sequence of equations for $J_{1} \star J_{k}$ is also a sequence of equations for $\mathbf{J}_{1} \star \mathbf{J}_{k}$.

Corollary 2.1: Let $k \geq 0$. The \mathbf{S}-variety $\mathbf{J}_{1} \star \mathbf{J}_{k}$ is defined by $\mathcal{C}_{k} \cup \mathcal{D}_{k}$.
Note that if two words u and v form an equation $u=v$ for $\mathbf{J}_{1} \star \mathbf{J}_{k}$, then $u \sim{ }_{k+1} v$. Equations for other \mathbf{S}-varieties generalizing the \mathbf{S}-varieties \mathbf{J}_{k} have been built from properties of congruences generalizing the congruences \sim_{k} (see [7], [8], [9], [12]).

Pin has given the equational characterization of $\mathbf{J}_{1} \star \mathbf{J}_{1}$ of Theorem 2.2 and Almeida the characterization of \mathbf{J}_{1}^{k} of Theorem 2.3.

Theorem 2.2. (Pin [22]): The \mathbf{S}-variety $\mathbf{J}_{1} \star \mathbf{J}_{1}$ is defined by $\mathcal{C}_{1} \cup \mathcal{D}_{1}$ or equivalently by the two equations $x u x=x u x^{2}$ and $x u y v x y=x u y v y x$.

Theorem 2.3 (Almeida [3]): Let $k \geq 0$. The \mathbf{S}-variety \mathbf{J}_{1}^{k+1} is defined by $\mathcal{C}_{k} \cup \mathcal{D}_{k}$.

From the preceding results, we deduce the following corollary.
Corollary 2.2: Let $k \geq 0$. The \mathbf{S}-varieties $\mathbf{J}_{1} \star \mathbf{J}_{k}$ and \mathbf{J}_{1}^{k+1} are equal and hence the \mathbf{S}-variety $\mathbf{J}_{1} \star \mathbf{J}_{k}$ is decidable.

A result of Almeida [3] implies the following.
Corollary 2.3: The \mathbf{S}-variety $\mathbf{J}_{1} \star \mathbf{J}_{k}$ is defined by a finite sequence of equations if and only if $k=1$.

As mentioned at the beginning of this section, we have worked essentially with semigroups in section 2. As explained in [3], since the S-variety generated by the \mathbf{M}-variety \mathbf{J}_{k} is monoidal, results such as Theorems 2.2 and 2.3, and Corollaries $2.1,2.2$ and 2.3 can be translated to results on the \mathbf{M}-varieties $\mathbf{J}_{1} \star \mathbf{J}_{k}$ and \mathbf{J}_{1}^{k+1}.

3. ON A CONJECTURE OF PIN

Theorem 3.1 gives a new proof that a conjecture of Pin concerning treehierarchies of \mathbf{M}-varieties is false (another proof was given in [13] using different techniques). Let M_{1}, \ldots, M_{k} be finite monoids. The Schützenberger product of M_{1}, \ldots, M_{k}, denoted by $\diamond_{k}\left(M_{1}, \ldots, M_{k}\right)$, is the submonoid of upper triangular $k \times k$ matrices with the usual multiplication of matrices, of the form $x=\left(x_{i j}\right), 1 \leq i, j \leq k$, in which the (i, j)-entry is a subset of $M_{1} \times \ldots \times M_{k}$ and all of whose diagonal entries are singletons, that is

1. $x_{i j}=\varnothing$ if $i>j$;
2. $x_{i i}=\left\{\left(1, \ldots, 1, m_{i}, 1, \ldots, 1\right)\right\}$ for some $m_{i} \in M_{i}$ (here, m_{i} is the i th component in the k-tuple);
3.

$$
\begin{gathered}
x_{i j} \subseteq\left\{\left(m_{1}, \ldots, m_{k}\right) \in M_{1} \times \ldots \times M_{k} \mid m_{1}=\ldots=\right. \\
\left.m_{i-1}=1=m_{j+1}=\ldots=m_{k}\right\}
\end{gathered}
$$

(here, 1 is the identity of M_{1}, \ldots, M_{k}).
Condition (2) allows to identify $x_{i i}$ with an element of M_{i} and Condition (3) $x_{i j}$ with a subset of $M_{i} \times \ldots \times M_{j}$. If

$$
\bar{m}=\left(m_{i}, \ldots, m_{j}\right) \in M_{i} \times \ldots \times M_{j}
$$

and

$$
\bar{m}^{\prime}=\left(m_{i^{\prime}}^{\prime}, \ldots, m_{j^{\prime}}^{\prime}\right) \in M_{i^{r}} \times \ldots \times M_{j^{\prime}}
$$

then $\bar{m} \bar{m}^{\prime}=\left(m_{i}, \ldots, m_{j-1}, m_{j} m_{i^{\prime}}^{\prime}, m_{i^{\prime}+1}^{\prime}, \ldots, m_{j^{\prime}}^{\prime}\right)$ if $j=i^{\prime}$, and is undefined otherwise. This multiplication is extended to sets in the usual fashion; addition is given by set union.

We will denote by \mathcal{T} the set of trees on the alphabet $\{a, \bar{a}\}$. Formally, \mathcal{T} is the set of words in $\{a, \bar{a}\}^{*}$ congruent to 1 in the congruence generated by the relation $a \vec{a}=1$. Intuitively, the words in \mathcal{T} are obtained as follows: we draw a tree and starting from the root we code a for going down and \vec{a} for going up. For example,

is coded by $a a \bar{a} a a \bar{a} a \bar{a} a \bar{a} \bar{a} \bar{a} a \bar{a}$. The number of leaves of a word t in $\{a, \bar{a}\}^{*}$, denoted by $l(t)$ is by definition the number of occurrences of the factor $a \bar{a}$ in t. Each tree t factors uniquely into $t=a t_{1} \bar{a} a t_{2} \bar{a} \ldots a t_{k} \bar{a}$ where $k \geq 0$ and where the t_{i} 's are trees. Let t be a tree and let $t=t_{1} a t_{2} \bar{a} t_{3}$ be a factorization of t. We say that the occurrences of a and \bar{a} defined by this factorization are related if t_{2} is a tree. Let t and t^{\prime} be two trees. We say that t is extracted from t^{\prime} if t is obtained from t^{\prime} by removing in t^{\prime} a certain number of related occurrences of a and \bar{a}. We now give Pin's tree hierarchy construction using Schützenberger's product.

To each tree t and to each sequence $\mathbf{V}_{1}, \ldots, \mathbf{V}_{l(t)}$ of \mathbf{M}-varieties is associated an \mathbf{M}-variety $\nabla_{t}\left(\mathbf{V}_{1}, \ldots, \mathbf{V}_{l(t)}\right)$ defined recursively by:

1. $\nabla_{1}(\mathbf{V})=\mathbf{V}$ for every \mathbf{M}-variety \mathbf{V};
2. if $t=a t_{1} \bar{a} a t_{2} \bar{a} \ldots a t_{k} \bar{a}$ with $k \geq 0$ and $t_{1}, \ldots, t_{k} \in \mathcal{T}$, $\nabla_{t}\left(\mathbf{V}_{1}, \ldots, \mathbf{V}_{l(t)}\right)$ is the \mathbf{M}-variety of monoids that divide some $\nabla_{k}\left(M_{1}, \ldots, M_{k}\right)$ with $M_{1} \in \nabla_{t_{1}}\left(\mathbf{V}_{1}, \ldots, \mathbf{V}_{l\left(t_{1}\right)}\right), \ldots, M_{k} \in \nabla_{t_{k}}$ $\left(\mathbf{V}_{l\left(t_{1}\right)+\ldots+l\left(t_{k-1}\right)+1}, \ldots, \mathbf{V}_{l\left(t_{1}\right)+\ldots+l\left(t_{k}\right)}\right)$.

When $\mathbf{V}_{1}=\ldots=\mathbf{V}_{l(t)}=\mathbf{V}$, we denote simply by $\diamond_{t}(\mathbf{V})$ the M-variety $\nabla_{t}\left(\mathbf{V}_{1}, \ldots, \mathbf{V}_{l(t)}\right)$. More generally, if T is a language contained in \mathcal{T}, we denote by $\nabla_{T}(\mathbf{V})$ the smallest \mathbf{M}-variety containing the \mathbf{M}-varieties $\nabla_{t}(\mathbf{V})$ with $t \in T$.

Let \mathbf{I} denote the trivial \mathbf{M}-variety. In [21], the following equalities are shown: $\nabla_{(a \bar{a})^{k+1}}(\mathbf{I})=\mathbf{J}_{k}$ and $\nabla_{(a \bar{a})^{*}}(\mathbf{I})=\mathbf{J}$. Also, it is shown there that if \mathbf{V} is an arbitrary \mathbf{M}-variety, then $\nabla_{(a \bar{a})^{2}}(\mathbf{V}, \mathbf{I})=\mathbf{J}_{1} \star \mathbf{V}$.

Among the many problems concerning these tree hierarchies, is the comparison between the \mathbf{M}-varieties inside a hierarchy. More precisely, the problem consists in comparing the different \mathbf{M}-varieties $\nabla_{t}(\mathbf{V})$ (or even $\left.\diamond_{T}(\mathbf{V})\right)$. A partial result and a conjecture on this problem was given in Pin [21]. It was shown that for every \mathbf{M}-variety \mathbf{V}, if t is extracted
from t^{\prime}, then $\nabla_{t}(\mathbf{V}) \subseteq \nabla_{t^{\prime}}(\mathbf{V})$, and it was conjectured that if $t, t^{\prime} \in T^{\prime}$, $\nabla_{t}(\mathbf{I}) \subseteq \nabla_{t^{\prime}}(\mathbf{I})$ if and only if t is extracted from t^{\prime}. Here, T^{\prime} denotes the set of trees in which each node is of arity different from 1.

Theorem 3.1: The above conjecture is false.

Proof: To see this, let $k>1$ and let $t=a^{k+1}(\bar{a} a \bar{a})^{k+1}$ and $t^{\prime}=a(a \bar{a})^{k+1} \bar{a} a \bar{a}$. The equalities $\nabla_{t}(\mathbf{I})=\mathbf{J}_{1}^{k+1}$ and $\nabla_{t^{\prime}}(\mathbf{I})=$ $\diamond_{(a \bar{a})^{2}}\left(\mathbf{J}_{k}, \mathbf{I}\right)=\mathbf{J}_{1} \star \mathbf{J}_{k}$ hold. But $\mathbf{J}_{1} \star \mathbf{J}_{k}=\mathbf{J}_{1}^{k+1}$ by Corollary 2.2 (Mvariety version), and it is easy to verify that the tree t is not extracted from the tree t^{\prime}.

REFERENCES

1. J. Almeida, Semidirect Products of Pseudovarieties from the Universal Algebraist's Point of View, J. of Pure and Applied Algebra, 1989, 60, pp. 113-128.
2. J. Almeida, Semidirectly Closed Pseudovarieties of Locally Trivial Semigroups, Semigroup Forum, 1990, 40, pp. 315-323.
3. J. Almeda, On Iterated Semidirect Products of Finite Semilattices, J. of Algebra, 1991, 142, pp. 239-254.
4. C. J. Ash, Finite Semigroups with Commuting Idempotents, J. of Australian Math. Soc., Ser., A, 1987, 43, pp. 81-90.
5. F. Blanchet-Sadri, Some Logical Characterizations of the Dot-Depth Hierarchy and Applications, Ph. D. Thesis, McGill University, 1989.
6. F. Blanchet-Sadri, Games, Equations and the Dot-Depth Hierarchy, Computers and Mathematics with applications, 1989, 18, pp. 809-822.
7. F. Blanchet-Sadri, On Dot-Depth Two, R.A.I.R.O. Informatique Théorique et applications, 1990, 24, pp. 521-530.
8. F. Blanchet-Sadri, Games, Equations and Dot-Depth Two Monoids, Discrete Applied Mathematics, 1992, 39, pp. 99-111.
9. F. Blanchet-Sadri, The Dot-Depth of a Generating Class of Aperiodic Monoids is Computable, J. Foundations Comput. Sci., 1992, 3, pp. 419-442.
10. F. Blanchet-Sadri, Equations and Dot-Depth One, Semigroup Forum, 1993, 47, pp. 305-317.
11. F. Blanchet-Sadri, Equations and Monoid Varieties of Dot-Depth One and Two, Theoretical Comput. Sci., 1994, 123, pp. 239-258.
12. F. Blanchet-Sadri, On a Complete Set of Generators for Dot-Depth Two, Discrete Applied Mathematics, 1994, 50, pp. 1-25.
13. F. Blanchet-Sadri, Some Logical Characterizations of the Dot-Depth Hierarchy and Applications, J. Comp. Syd. Sci. (à paraître).
14. J. A. Brzozowski and I. Simon, Characterizations of Locally Testable Events, Discrete Mathematics, 1973, 4, pp. 243-271.
15. S. Ellenberg, Automata, Languages and Machines, B, Academic Press, New York, 1976.
16. S. Eilenberg and M. P. Schưtzenberger, On Pseudovarieties, Advances in Mathematics, 1976, 19, pp. 413-418.
17. C. Irastorza, Base Non Finie de Variétés, Lecture Notes in Comput. Sci., Springer Verlag, Berlin, 1985, 182, pp. 180-186.
18. J. Karnofski and J. Rhodes, Decidability of Complexity One-Half for Finite Semi-groups, Semigroup Forum, 1982, 24, pp. 55-66.
19. G. Lallement, Semigroups and Combinatorial Applications, Wiley, New York, 1979.
20. J. E. Pin, Variétés de langages formels, Masson, Paris, 1984; Varieties of Formal Languages, North Oxford Academic, London, 1986 and Plenum, New York, 1986.
21. J. E. Pin, Hiérarchies de concaténation, R.A.I.R.O. Informatique Théorique, 1984, 18, pp. 23-46.
22. J. E. Pin, On Semidirect Products of Two Finite Semilattices, Semigroup Forum, 1984, 28, pp. 73-81.
23. I. Simon, Hierarchies of Events of Dot-Depth One, Ph. D. Thesis, University of Waterloo, 1972.
24. I. Simon, Piecewise Testable Events, Proc. 2nd GI Conference, Lecture Notes in Comput. Sci., Springer Verlag, Berlin, 1975, 33, pp. 214-222.
25. P. Stiffler, Extension of the Fundamental Theorem of Finite Semigoups, Advances in Mathematics, 1973, 11, pp. 159-209.

[^0]: (*) Received September 1992; accepted September 1994.
 ${ }^{1}$) Department of Mathematics, University of North Carolina, Greensboro, NC 27412, USA.
 E-Mail: blanchet@iris.uncg.edu
 This material is based upon work supported by the National Science Foundation under Grants No. CCR-9101800 and CCR-9300738. Many thanks to the referees of preliminary versions of this paper for their valuable comments and suggestions.

