VILIAM GEFFERT

A hierarchy that does not collapse : alternations
in low level space

Informatique théorique et applications, tome 28, n°5 (1994),
p- 465-512

<http://www.numdam.org/item?id=ITA_1994_ 28 5 _465_0>

© AFCET, 1994, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ITA_1994__28_5_465_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 28, n® 5, 1994, p. 465 a 512)

A HIERARCHY THAT DOES NOT COLLAPSE:
ALTERNATIONS IN LOW LEVEL SPACE (*)

by Viliam Gerrerr (1)

Abstract. — The alternation hierarchy of s(n) space bounded machines does not collapse for
s(n) below log (n). Thar is, for each s (n) between log log (n) and log (n) and each k 2 2, Tj_1-
SPACE (s (n)) and 1;_1-SPACE (s (n)) are proper subsets of %x-SPACE (s (n)) and also of
I1;-SPACE (s (n)). Moreover, X-SPACE (s (n)} is not closed under complement and intersection,
similarly, I1.-SPACE (s (n)) is not closed under complement and union.

Résumé. — La hiérarchie de machines bornées en espace par s(n) ne s’écroule pas en dessous
de log (n). Plus précisément, pour tout s(n) compris entre loglog(n) et log(n) et pour tout
k 2 2, X_1-SPACE (s (n)) er II;_,-SPACE (s (n)) sont des sous-ensembles propres de -
SPACE (s (n)) et II;-SPACE (s (n)). De plus, £ -SPACE (s (n)) n’est pas fermé par complément
ni par intersection, et de fagon similaire, I1;-SPACE (s (n)) n’est pas fermé par complément ni
par union.

1. INTRODUCTION

In the structural complexity theory, many hierarchies have been studied
and various relations between them have been established. However, direct
proofs showing collapsing or noncollapsing hierarchies are very rare.

For example, the strong exponential time hierarchy is finite, as has been
shown in {12], and so is the hierarchy of interactive proof systems [1].
Infinite hierarchies are even more rare. Most of the known results concern
classes relativized by oracles ([11, 2, 25]), giving both finite and infinite
hierarchies.

During the last few years, very important results have been achieved for
the alternation hierarchy of space-bounded computations. First, some space
bounded hierarchies were shown to be finite ([15, 24, 19]). These results were
then superseded by the result of Immerman and Szelepcsényi showing that the

(*) Received February, 11, 1993, revised I?ecember 13, 1993, accepted December 22, 1993.
M Department of Computer Science, P. J. Safarik University, Jesennd 5, 04154 Kosice, Slovakia.

Informatique théorique et Applications/Theoretical Informatics and Applications
0988-3754/94/05/$ 4.00/© AFCET-Gauthier-Villars



466 V. GEFFERT

nondeterministic space is closed under complement ([13, 22]). This implies
that the alternation hierarchy of s (n) space-bounded machines collapses to
NSPACE (s (n)) = £1-SPACE (s (n)), ie.,
/
Yx-SPACE (s (n)) = lI4-SPACE (s (n)) = X1-SPACE (s (n)),

for each k£ > 1 and each s (n) > log (n). Taking this fact into consideration,
the question of whether there is an infinite hierarchy for sublogarithmic
space bounds naturally arises.

The first sign indicating that the alternation hierarchy behaves radically
“different for space below log (n) was the proof [6] that £1-SPACE (s (n)) &
113-SPACE (s (n)), for each s (n) between log log (n) and log (n). This result
was then slightly improved in [23] by showing that s(n) can be bounded
from below by any unbounded fully space constructible function / (n). There
exist sublogarithmic, unbounded, and fully space constructible functions,
but they are necessarily nonmonotone and hence the corresponding space
complexity classes do not contain DSPACE (log log (n)) ([7, 20, 8]).

The next step was the separation of the first three levels of this hierarchy
[9], i.e., £1-SPACE (s (n)) & X2-SPACE (s (n)) & £3-SPACE (s (n)), sym-
metrically, II1-SPACE (s (n)) & I2-SPACE (s (n)) & II3-SPACE (s (n)),
for space bounds between loglog (n) and log (n). Then the third and fourth
levels were separated [16], i.e., $3-SPACE (s (n)) & £4-SPACE (s (n)) and
II3-SPACE (s (n)) & II4-SPACE (s (n)). Finally, it has been shown that the
hierarchy does not collapse below the level five [3]; £4-SPACE (s (n)) &
¥5-SPACE (s (n)). Figure 1 summarizes the known results, arrows indicate
the proper inclusions.

21‘222;-5232242?2
“1 ——9“2—-)“ —-;II4 “5
Figure 1

We shall show that the alternation hierarchy of space bounded machines is
infinite, namely, that for each s (n) > loglog (n) with sup s(n)/log(n) =
’ n—eco

0, and each k£ > 2, we have

Sk—1-SPACE (s (n)) G 3¢-SPACE (s (n)),
IIx—1-SPACE (s (n) & T1-SPACE (s (n)),

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 467

Sk—1-SPACE (s (n)) G II;-SPACE (s (n)),
II;_1-SPACE (s (n)) G x-SPACE (s (n)).

Moreover, £;-SPACE (s (n)) and [I;-SPACE (s (n)) are incomparable, i.e.,

2-SPACE (s (n)) — II;-SPACE (s (n)) # @,
I0.-SPACE (s (n)) — £-SPACE (s (n)) # @.

Finally, we show that £;-SPACE (s (n)) is not closed under complement and
intersection, and that IT;-SPACE (s (n)) is not closed under complement and
union. Since machines using less than loglog (n) space can recognize the
regular languages only ([21, 14]), this settles the alternation space hierarchy
problem;

— the hierarchy collapses to 31-SPACE (s (n)) for the superlogarithmic
case,

~ the hierarchy is infinite for space bounds between log log (n) and log (n)
[this paper],

— the hierarchy collapses to the deterministic constant space for space
bounds below loglog (n).

The open problems of this hierarchy are the exact relations
among Xo-SPACE(s(n)) = DSPACE(s(n)), X1-SPACE(s(n)) =
NSPACE (s (n)), and II;-SPACE (s (n)).

The paper is organized as follows: we begin in Section 2 by giving some
basic definitions and lemmas that will be used later.

Section 3 discusses the so-called n — n + n! method which was used
first in [21] to show that the deterministic machines using less than log (n)
space cannot distinguish between inputs 1* and 1"*+"'. This method has
been extended to the nondeterministic case [8]. We shall now generalize this
method simultaneously in two directions: first, it can be applied not only to
the tally inputs, but also to some binary inputs having a periodic structure.
Second, it can be used, in a modified form, for the Xj/Ilg-alternating
machines as well.

The key observation of the Section 4 is the fact that the computation trees
of the alternating machines can be viewed as if they were the trees describing
an evaluation order of operators in the ordinary boolean formulas, and hence
put into the conjunctive/disjunctive normal forms.

Section 5 brings another new proof technique - the notion of
Yk /Ix-SPACE (s (n)) resistant strings and languages. Roughly speaking,

vol. 28, n° 5, 1994



468 V. GEFFERT

a pair of strings wi, wg is Ly /Ix-SPACE (s (n)) resistant if no machine
can use any Y /Ilx-alternating s (n) space bounded machine as its oracle
to distinguish between the substrings w; and w; on the input tape.
We shall show that having given languages with X /II;-SPACE (s(n))
resistant words, we can design languages that are 311 /Il 4+1-SPACE (s (n))
resistant.

Section 6 gives an induction base for this anti-oracle mechanism by
exhibiting some ¥ /II;-SPACE (s (n)) resistant languages, for each s(n)
between loglog(n) and log(n). Then the infinite space hierarchy is
established and some closure properties under boolean operations are
shown.

Update

The existence of the infinite hierarchy have been proved independently
by two other groups of authors, namely, by M. Liskiewicz and R. Reischuk
[171, and also by B. von Braunmiihl, R. Gengler, and R. Rettinger [4], so
now there exist three independent solutions. The proof in [17] is also based
on the n — n + n! method, using a different argument, but the witness
languages are very similar. The proof in [4] is completely different, its
argument holds for the weakly space bounded machines as well, but requires
witness languages having a much higher information content.

2. PRELIMINARIES

We shall consider the standard Turing machine having a finite
control, a two-way read-only input tape with the input enclosed in two
endmarkers, and a separate semi-infinite two-way read-write worktape,
initially empty.

The reader is assumed to be familiar with the notion of alternating Turing
machine, which is at the same time a generalization of nondeterminism
and parallelism. See [5] for a more exact definition and properties of
alternating machines. We shall now introduce this notion in a slightly
different way.

DerFinmrion 1: A memory state of a Turing machine is an ordered triple
g = {r, u, j), where r is a state of the machine’s finite control, u is a
string of worktape symbols written on the worktape (not including the left
endmarker or blank symbols), and j is a position of the worktape head.

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 469

A configuration is an ordered pair p = (g, %), where g is a memory state
and ¢ is a position of the input tape head.

The size of a memory state ¢ = (7, u, 7) is the length of the worktape
space used, i.e., | u|. We shall denote it by /q/. The size of a configuration
p =g, 1) is, by definition, /p/ = /q/. The size of the initial configuration
pr = <QI7 0) = ((7‘], =) 0)’ 0) is zero.

We may assume, without loss of generality, that the machine is not allowed
to write the blank symbol on the worktape or reduce the size of its memory
state. Therefore, if a configuration p, can be reached from p; by some
computation path, then /p/ > /p1/.

We also assume that the machine making a constant number of alternations
has its set of finite control states divided into pairwise disjoint sets
Yk, g1, Zg—o, i_3, ... (for Xj-alternating machines, & € N) or
g, Xg—1, g2, Xk-—3, ... (for [I;-alternating machines) such that if the
machine can get, by a single computation step, from a finite control state
r € Xytor, thenr’ € ¥; or ' € II;_y. Similarly, for » € II; we have
e I or v € 4.

The finite control states in X = U Y; are called existential, those in

l
II= U II; are universal. Each memory state or configuration inherits the

l
type of the finite control state included.

An alternation is a computation step changing the finite control state
re Zitor € Mj_j,orr € II;tor’ € ¥;_1. Clearly, a computation path
beginning in any X /II;-configuration can make at most & — 1 alternations,
for each £ > 1.

DeFmviTION 2: @) A configuration p is 3;-accepting, if it is of type ¥; and
there exists an alternation-free computation path from p to p’ such that
(i) either p' is a halting configuration that accepts the input,

(ii) or the machine enters a II;_j-accepting configuration in the next
computation step from p’.

b) A configuration p is Ilj-accepting, if it is of type II; and each
alternation-free path from p

(i) either halts and accepts the input,
(ii) or enters a ¥;_;-accepting configuration.

The rejection is a little more complicated, since infinite cycles must also
be considered:

vol. 28, n° 3, 1994



470 V. GEFFERT

¢) p is Xy-rejecting, if it is a ¥;-configuration and all alternation-free paths
from p are
(i) either halted in configurations that reject the input,
(ii) entering 1I; _;-rejecting configurations,
(iil) or executing infinite cycles.
d) p is Il;-rejecting, if it is a II;-configuration having an alternation-free
path from p that
(1) either halts and rejects the input,
(ii) enters a X;_;-rejecting configuration,
(iil) or executes an infinite cycle.
. By definition, a Xj/IIx-machine accepts the input if the initial
configuration is determined .to be ¥ /IIx-accepting, respectively.

Dernimion 3: Let A be an alternating Turing machine and w be its input.
We define Spaces (w) as the size of the maximal configuration that is
reachable by A from the initial configuration p;y = (¢, 0) on the input w
(enclosed in the endmarkers “»” and “«”). The machine A is s(n) space
bounded, if for each input w

Spacey (w) < s(|w])- (1)

The classes of languages recognizable by alternating O (s(n)) space
bounded machines making at most £ — 1 alternations, with the initial finite
control state existential or universal, will be denoted by Xx-SPACE (s (n))
or IIz-SPACE (s (n)), respectively.

It is not too difficult to show that, for each machine A, there exists a
constant ¢ such that the number of different memory states not using more
than S space on the worktape can be bounded by

number of memory states
of size at most S <5, 2)
c> 6,
for each S > 1. The condition ¢ > 6 is technical, it will be used later. It is
easy to bound c¢ by any fixed constant from below. (This condition is used to
bound some polynomials of ¢° by a fixed power of 5, e.g., we shall need
(5 +1) + (¥ +1) + (c%)? < (c%)3, for each S > 1)
Before passing further, we shall put the machine A into the following
normal form:

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 471

LemMMA 1: For each s(n) space bounded %y [lli-alternating Turing
machine A, there exists an equivalent Xy [I1x-SPACE (s (n)) machine A’
such that for each input w, each i = 0, ..., |w|+ 1, and each h = 0,
..., Spacey (w), there exists a configuration p having used exactly h space
on the worktape with the input head position equal to 1 that is reachable from
the initial configuration on w.

Proof: We can replace the original machine A by a new machine A’ that
simulates A but that, each time A is going to extend the worktape space
(by rewriting the leftmost blank on the worktape by a nonblank symbol),
A" performs the following actions:

a) If A is in an existential configuration, then A’, branching existentially,
decides whether

al) to carry on the simulation of A,

a2) or to move the input head to the left endmarker. Each time the input
head is moved one position to the left, A’ branches existentially again and

a2.1) either moves more to the left (go to a2),
a2.2) or extends the worktape space, and then halts and rejects the input.

a3) The third computation branch does the same as the second (a2), but
the input head is moved to the right endmarker.

b) The same actions are taken if A is in universal configuration, but
all branches are universal, and the space extension in b2.2 (c¢f. a2.2) is
terminated by accepting the input.

It is easy to see that for each 7 = 0, ..., |w|+ 1 and each h = 0,
..., Space 4 (w) there exists a configuration p = (g, ¢ ) of size /p/ = h that
is reachable from the initial p;. The machine A’ has more computation paths
than does the original machine A, but “new” computation paths have been
added so that they cannot affect the accept/reject status of the computation
tree, and hence both A and A’ recognize the same language. Note that neither
the number of alternations nor the space used have been changed. [

DeriNITION 4: Let S 2 0 and let p be a configuration with the input head
positioned on a substring w of input o w 3, or going to enter w in the next
computation step. p is S-bounded on w, if no computation path beginning
in p uses more that S worktape space before it leaves w by crossing its
left/right margin for the first time. (But the space used can exceed S once
the left/right margin of w has been crossed.)

vol. 28, n°® 5, 1994



472 V. GEFFERT

Clearly, if a configuration p' is reachable from p by a path never leaving w
and p is S-bounded on w, then p’ is also S-bounded on w.

DerniTION 5: Let S 2 0. Strings w; and we are S-equivalent for a
machine A, if A has a computation path from the configuration (g4, 4 )
entering w1 to {¢p, ip) leaving wy on the input aw; B, for i4, ip €
{lal,|a|+|wi|+1},if and only if A has a path from (g4, 74 ) entering w
to (gp, g ) leaving wy on awy B, for iy, iy € {|a|, ||+ |w2|+1},
respectively. (The margins of w; and wy are crossed only in the first and last
computation steps). This holds for any g4, gp such that /g4/ < /gg/ < S,
and each «, 8.

LEMMA 2: Let aw) B and acvwy B be some inputs for a machine A such
that wyi, wy are S-equivalent for some S > 0. Then A can get from a
configuration p to p' on the input awy 3 if and only if A can get from p to p'
on awsy B, for any p, p' satisfying [p/ < [P’/ < S, with the input head
positioned on o or (3. (Since w1, wy may be of different lengths, the input
head positions of p and p' are relative here, to the left margins of « or 3.)

Proof: The argument is a straightforward induction on the number of
times the input head crosses the margins of w; and wy on inputs o w; B
and o wy B, respectively, using the fact that no configuration can use more
than S space along the path from p to p’. Paths from p to p’ may be different
inside wi, ws, but they are equal outside wy, wa. (See fig. 2.) U

iot Wy B8 II 'la Wy 841
Ny e L
B (N DR

G 0 [ e

Figure 2

LemmMa 3: If wy, wa are S-equivalent, then ag wi o] W1 Q3 ... Qip—1 W1 Gy
and ag Wy o] W2 Q2 ... Gp—1 W2 Qp are S-equivalent, for any ag, a1, ..., On.
Proof: As a special case of Lemma 2, for p entering oo w1 3/a w, 8 and p’
leaving oo wy B/awsy B, we get that if wy, wy are S-equivalent, then so are

awy B and awsy B. The rest of the argument is a straightforward induction
onn. O

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 473

Individual computation paths not using more than S space cannot
distinguish S-equivalent wy, wy for inputs a wi # and a wy B. But beware;
even within S space, an alternating machine may reject oz wi 8 but accept
awy B. This can be achieved by a “cooperation” of several computation
paths. Consider the situation shown by Figure 3. Symbols “&” and “Vv”
represent universal and existential decisions, respectively. The sets of
configurations reachable on the margins of w; and wp are the same. But
if p1, p2 are Il;-rejecting and p3, py4 Ilj-accepting configurations, then p is
II;42-rejecting on o w; B but II;4,-accepting on o ws B.

L%
[ b
Pyl

Therefore, the S-equivalence is “weak”, it does not guarantee the equal
acceptance. However, it does guarantee the equal amount of worktape space
used.

wl I

3] o W, B
| N 2 1
*, [ » & Py |
—s Vv Py 1 \v/' p::
P2 Pyl — Py
Py

Figure 3

o RO

<

Lemma 4: Let w1, wy be S-equivalent for some S > 0. Then

a) a configuration p is S-bounded on o wi 3 if and only if it is S-bounded
on awwa B, for any «, 3, and each p with the input head positioned on o or 3.
(The input head positions are relative to the left margins of o or (3.)

b) p is S-bounded on wy if and only if it is S-bounded on wa, for each p

that is going to enter wy, wy by crossing their left/right margins in the next
computation step.

Proof: a) We shall show that if the configuration p is S-bounded on
awy B then it is S-bounded on awy 8. The converse is also true, by a
very similar argument.

Suppose that p is S-bounded on o wj &, but not S-bounded on «wsy 3.
Then the machine must enter a configuration using more than S space on ws,
since the segments of computation paths taking place on a or 3 are exactly
the same for oo wq  and awy 3, unless the space used exceeds S. Therefore,
there exists a configuration p’ on wz, reachable from p by a path never
leaving ocwy 3, such that the machine is going to extend the worktape space
from S to S + 1 in the next step.

vol. 28, n°® 5, 1994



474 V. GEFFERT

Before doing so, by Lemma 1, our machine in the normal form decides
whether to carry on or to move the input head to the left/right endmarker.
That is, we have computation paths that move the input head outside wy
and then extend the worktape space, i.e., we have a configuration p” of
size S, with the input head positioned on o (or ), reachable from p on
awy B, that is going to use space S + 1 in the next step. By Lemma 2,
p” is also reachable from p on o w; B. But this is a contradiction, since p
is S-bounded on «w; G.

b) The argument for (b) is a special case of (a), with « = 8 = ¢, for
paths that enter w1, we by the first computation steps. Here we analyze

configurations reachable from p that are leaving w;, ws by crossing their
margins. [

DErINITION 6: Let p be a configuration with the input head positioned on a
substring w of input oo w 3, or going to enter w in the next step. We define
Exy , the exit set of w for p, as the set of all configurations reachable
from p on w that are leaving w by crossing its margins.

LemMMA 5: a) If a configuration p' is reachable from p by a path never
leaving w, then Expy o C Exp .

b) If a configuration p is S-bounded on w, then [p"] < S for each
/!
p' € Exp .

¢) If a configuration p is S-bounded on S-equivalent strings w1 and wo,
then Exp «, = Exp w,, for each p going to enter w1, wy in the next step. (By
Lemma 4b, it is sufficient to suppose that p is S-bounded on wy or w3.)

The following technical lemma shows an important property of
sublogarithmic functions. This lemma will be used later.

LEMMA 6: For each function s (n) satisfying lim s(n)/log(n) = 0, each
n—oo

c > 6, and each H > 1, there exists 1. > 2 such that
6
(cs("H)) <vVn<[Vn]< % <n-—1<mn, foreach n > n.

Proof: If lim s(n)/log(n) = 0, then for each € > 0 there exists
n—o0

7 > 2 such that s(n)/log(n) < e, for each n > 7. Among others,
n > n >n,if H > 1 and n > 7. Hence, for each H > 1 and each
e

> 0, we have % > 2 such that s (n)/log (nf) < ¢, for each n > 7. But

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 475

e =1/2.H.6.log(c) >0, for H > 1 and ¢ > 6. Thus, for each ¢ > 6 and
each H > 1, we have 7. > 2 such that

S (TLH) 1
log(nf) < 1. oz (0’ and hence also
Y\ 6
(™) <va

for each n > 7. Since v/n < [Vn] < % <n-—1<mn, for each n > 7,
this completes the proof of the lemma. [

The condition nll’n;o s(n)/log(n) = 0 is equal to Sup s (n)/log(n) =0,
for each s(n) : N — N.

3. THE N - N + N! METHOD

It was shown in [8] that a nondeterministic machine using less than log (n)
space cannot distinguish between inputs 1” and 1%1t**', for each i > 0. In
this section, we shall extend this result from the tally inputs to binary inputs
with a periodic structure. Namely, Lemma 3, Lemma 4, and Theorems 1/2
in [8] are actually special cases of Lemma 7, Lemma 8, and Theorem 1 of
this section, respectively. Simultaneously, the “n — n + n!” method will be
generalized to the alternating machines with a constant number of alterations.

LemMa 7: Let S > 1 and d > 1. Then, for each input of the form w™ such
that |w| = dandm > (c°)% = MY, we have that if there exists a computation
path from a configuration py = (q1, i) to p2 = (g2, 1), /p1/ < [p2/ < S,
such that the input head never visits the right (left) margin of w™, then the
shortest computation path from pi to pa never moves the input head farther
than M?.d = (cS)z. d positions to the right (left, respectively) of i.

That is, each S space bounded computation path beginning and ending at
the same input position has a “short-cut” not wider than M? blocks of w.

Proof: The argument is very similar to the proof of Lemma 3 in [8] but,
instead of all input tape positions on a tally input, we shall rather consider
memory states at block boundaries between adjacent w’ s.

Suppose that the furthest configuration along the computation path from p;
to p2 is pr = (gF, h), with h —i > M2.d. Let g, be the last memory state
along the path from p; to pr such that the input head was at the left margin
of the j-th block w to the left of the position ¢, for j =1, ..., M? + 1, and
let £, be the first memory state along the path from pr to p2 with the input

vol. 28, n° 5, 1994



476 V. GEFFERT

head back at the left margin of the same w-block. (See fig. 4, where the g,’s
and ¢;’s have been represented by rectangles.)

Since, by (2), there are at most M? different pairs of memory states not
using more than S space, there must be at least one pair of memory states
in the sequence (g1, t1), (g2, t2), ..., (qam241, tirz4+1) Which is repeated.
Thus we have j' < j” such that (g;-, tj) = (gj, tj») = (g, t).

Figure 4

But then we can remove the computation paths from g¢; to gj» and
from ¢, to t;/, and we have again a valid computation path from p; to ps.
The path from g;~ to £;+ via pp is shifted more to the left, by an integer
multiple of d = |w]. This is possible even for w over the binary tape
alphabet, because w™ has the periodic structure and the input head scans
identical symbols on the tape positions that are equal modulo d = |w|.
This process can be repeated until we obtain the shortest computation path
from p; to p2.

The argument holds not only for nondeterministic machines, but also
for the alternating machines. However, it is possible that the configuration
pr = (qr, h) is X;/Ilj-accepting while pl = (gr, b — d.(5" — j'))
is X;/II;-rejecting, or vice versa. For example, there may exist another
computation path from pp that is not reachable from pl. O

The next lemma shows that each computation path on the periodic
input w™ is independent from block positions, i.e., it can be “moved”
freely along the input tape, by integer multiples of the block length |w|,

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 477

provided that it does not consume more than S space and begins/ends at
least M? + 1 = (c°)? + 1 w-blocks away from either margin.

LemMa 8: Let S > 1, d > 1, and let w™ be an input for the machine A
such that |w| = d and m > (¢5)® = MS. Then, if there exists a computation
path from a configuration (qi1, i) to (g2, i + h), a1/ < [q2/ < S, such
that the input head never visits either of the margins, there exists a path from
(q1, 7) to (g2, j + h), for each j satisfying

(M? +1).d<j<(m—(M*+1)).d+1,
(M?24+1).d<j+h<(m—(M?+1).d+1,
j mod d = 7 mod d.

Proof: The argument is obvious; since, by Lemma 7 (see fig. 5), the
shortest path from (g;, i) to (g2, ¢ + h) never moves the input head more
than M2 w-blocks to the left of i, nor M2 w-blocks to the right of i+ h. Such

computation paths can be moved along the input tape by integer multiples
of d = |w| O

I w w | ow W w | w | W w | w W w | ow |
Y4, A R .
e ] ]
1
A"]qz i ﬂ?qz
—me——le—r —
W h W h
blocks blocks
i J
Figure 5

In the same spirit, we can generalize Theorems 1 and 2 in [8] from tally
inputs to the periodic binary inputs, i.e., traversals on the strings w™ and
w™ ™! begin and end in the same memory states, for each sufficiently
large m and each ¢ > 0.

TueoreM 1: Let § > 1, d > 1,4 > 0, and let w™, w™t"™" be inputs
for the machine A such that |w| = d and m > (c5)6 = MS. Then, for
any memory states q, qz satisfying /qi1/ < /q2/ < S, the machine A has a
computation path from the configuration {qi, 0) to {q2, m.d + 1) on the
input w™ if and only if A has a path from (g1, 0) to (g2, (m+im').d+1)

vol. 28, n° 5, 1994



478 V. GEFFERT

on the input w™™' (The margins of w™ and w™T™™' are crossed only in
the first and last computation steps.) A similar statement can be formulated
for traversals from right to left.

Proof: (m — m + im!) By (2), the number of different memory states
using at most S space is bounded by ¢° = M < M® < m, and hence
our machine A, traversing the input w™ from left to right, must enter some
memory state twice crossing the boundaries between adjacent w-blocks. That
is, A executes a loop that traverses h w-blocks, i.e., of length h.d, for some

m

h < M < m. This loop can be iterated F' = ’LH 4 more times, which

=1
1#h

gives a valid path traversing the input w™+"™! since h.d.F = i.m!.d.

(m + ¢m! — m) The converse is not so simple since A is far from
repeating regularly any loop it gets in. Still, using the Lemma 8, one can
show that, for each computation path traversing the input w™T¥™' with
m > MS, A has a path that begins and ends in the same configurations at
the margins of w™+"™' and that iterates regularly a “short” loop, of length
h < M < m w-blocks, such that the portions of the input tape traversed
before and after this iteration are also “short”, of lengths at most M 4 w-

m

blocks. But then this loop is iterated at least F' = zH 7 times on the

=1
1#hk

input w™ ™' if m > M6 = (¢5)® and ¢ > 6. Cutting the first F iterations
of this loop out of the computation path, we shall get a valid computation
traversing the input w™.

For a more detailed proof, the reader is referred to Theorems 1 and 2
in [8]. The only difference is that here we do not consider all input tape
positions on tally inputs, but rather positions at block boundaries on the
periodic binary inputs. The fact that our machine is not nondeterministic
but alternating does not play an important role in the above considerations,
we simply ignore the acceptance status of the whole computation tree and
concentrate on reachability along a single computation path only. [l

As a direct consequence of Lemma 7 and Theorem 1, we obtain:

LEmMMA 9: Ler S > 1, d > 1, and i > 0. Then the words w™ and w™tm!
are S-equivalent, for each m > (¢5)¢ = MS and |w| = d.

Proof: First, by Theorem 1, a configuration py leaving w™ to the right
is reachable from p; entering w™ from the left, /p1/ < /p2/ < S, if and

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 479

only if the corresponding traversal is possible on the input w™+™!' for
each 7 > 0 and each m > M?®. The same holds, by symmetry, for traversals
from right to left.

Second, for each computation path from p; to p2 not using more than S
space, beginning and ending at the left margin of w™T¥"' and never
crossing its right margin, there exists, by Lemma 7, a path from p; to p2
that never moves the input head farther than M? w-blocks to the right from
the left margin. Since M? < M® < m, we have enough room to run this
computation on both w™+"™' and w™. The same holds for computations
that begin and end at the right margins of w™ and w™"™! [

The strings w™ and w™+™', for m > (¢%)®, have some important
properties. By Lemma 3, « w™ 3 and a w™ "' § are also S-equivalent, for
any « and (. Moreover, by Lemma 4, no machine tries to use more than S
space on a w™ ™' 3 unless it tries to do so on aw™ . The next theorem
shows that configurations having their input head positions exactly m ! w-
blocks apart and sufficiently far from either margin must have an equal
acceptance status on the input w™ ',

TueoreM 2: Let S > 1, d > 1, i > 1, and let w™t*™" be an input for
the machine A such that |w| = d and m > (c°)° = MS. The alternating
machine A has an accepting computation tree with the root in a configuration
p = {q, j) if and only if A has an accepting tree with the root in
p; = (q, j+m!.d), for any ¥;/11;-configurations p;, p| that are S-bounded
on w™t™! and each j satisfying

(m+1. (m+m!).d <j<j+m!.d < (m+im!—(m+l (m+m!))).d+1.

(I.e., p, p} of alternating level ;/II; are at least m.+1. (m +m!) w-blocks
away from either margin. This is possible, for example, if 7 = 41 4 3.)

Proof: The argument uses induction on the alternating level !. Because
no computation path beginning in p; or pj uses more than S space before
reaching the left/right margin of w™*"' we can use Theorem 1 and
Lemmas 7, 8, and 9.

First, suppose that the configuration p; = (¢;, j ) is 1I;-rejecting. We shall
show that then so is pj = (q;, j +m!.d). If p; is II;-rejecting, then at least
one computation path beginning in p; must reject the input. We have the
following cases to consider:

1) The rejecting computation path alternates, i.e., it enters a ¥;_1-rejecting
configuration p;—1 = (g1, k). There are now the following subcases:

vol. 28, n® 5, 1994



480 V. GEFFERT

la) The rejecting path alternates not moving the input head farther
than m + m! w-blocks away from the position j, and hence |h — j| <
(m + m!).d. Since both p; = (g, j) and p; = (g, j +m'Ld) are at
least m + l.(m + m!) w-blocks away from either margin of w™*™!
configurations p;_; = (q—1, h) and p;_, = (q—1, A+ m!.d) are at least
m + (I = 1). (m + m!) w-blocks away from the margins. (See fig. 6.)

IwIwi"l"IWE“lWl"IVKWIWIWI

pe. -reJ [ R
____9___ _

i Zp_yred Pp-1

l m! w-blocks

€ [] —
h m! w-blocks

Figure 6

Further, by Lemma 8, if p;_; is reachable from p; then pj_ 1 1s reachable
from pj, because positions 5, 5+ m!.d, h, and h + m!.d are all at least
m > M? +1 w-blocks away from either margin, for each [ > 1. Now, using
the induction hypothesis for I’ = [ — 1, we have that if the configuration
pi—1 is Xy_1-rejecting, then p)_, is also ¥;_j-rejecting. But then p) must be
II;-rejecting, because it has a computation path that enters a X;_; -rejecting
configuration.

1b) The rejecting computation path moves the input head farther than
m + m! w-blocks away from j.

(i) Suppose that the rejecting path gets too far to the left. Let pp =
(gB, 7 —m.d) be the first configuration with the input head positioned m
w-blocks to the left of j, and let pg = (g4, j ) be the last configuration along
the path from p; to pp with the input head position equal to j. (See fig. 7.)

w | ow |

“n w-blocks m! w-blocks

Figure 7

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 481

Clearly, pa and pp are II;-rejecting. By Lemma 8, p/y = (g4, j+m!.d) is
reachable from pj, since both j and j + m!.d are at least m > M 241 w-
blocks away from either margin. Moreover, pp is reachable from p', because,
by Theorem 1 and Lemma 9, the machine has a path traversing the tape
segment w™ if and only if it has a corresponding path traversing w™™!,
But then p; is also II;-rejecting, since some paths from p; and p; enter the
same 2;_1-rejecting configuration py_1.

(i1) The same holds if the rejecting path from p; gets too far to the
right; now some paths from p; and p) share a common configuration pg
lying m + m ! w-blocks to the right of j.

2) Suppose that p; is II;-rejecting because some computation path enters
an infinite cycle, making no alternation at all. By a reasoning very similar to
Case 1, we can show that (a) either the entire cycle is executed between the
positions j — (m +m!).d and j + (m + m!).d and then p] has a parallel
path with the same infinite cycle at the distance m! w-blocks apart; (b)
or at least a part of the infinite cycle lies farther then m + m! w-blocks
away from j. But then p; and p; share the common cycle. In both cases,
p; is II;-rejecting.

3) Finally, some alternation-free path beginning in p; may halt in a
configuration that rejects the input. Again, either this path does not move the
head “too far” and then we have a parallel path for pj, or else some paths
from p; and pj share the same halting and rejecting configuration.

Thus, we have shown that if p; = (¢, j) is II;-rejecting then so is
Py = (@, j+m!.d). It is not too hard to see that if p; is II;-rejecting then,
by symmetry, p; must also be II;-rejecting. Therefore, p; is II;-accepting if
and only if p] is II;-accepting.

By a very similar reasoning, we can show that p; is ¥j-accepting if
and only if p; is ¥j-accepting. The main difference is that, instead of
rejecting computation paths beginning in II;-rejecting configurations, we
analyze accepting paths beginning in 3);-accepting configurations. Further,
Case 2 need not be considered, since no accepting path beginning in the
3);-accepting p; or p; can be an alternation-free infinite cycle.

To complete the proof, we have to show that the induction hypothesis
holds for [ = 1, i.e., for ¥1/II;-configurations. However, the structure of
the proof for [ = 1 is exactly the same as for [ > 1, with Case 1 eliminated
(no more alternations ahead). Note that Case 1la was the only place where
the induction hypothesis was required. O

vol. 28, n® 5, 1994



482 V. GEFFERT

4. LOGIC BEHIND ALTERNATION

In this section we introduce the notion of a characteristic boolean
function fp ,, for a configuration p positioned on a substring w of
input oo w 3, which allows us to investigate the machine’s behavior inside w
and outside w separately. This notion is based on the fact that the computation
trees of alternating machines can be viewed as if they were the trees
representing ordinary boolean formulas composed of AND and OR operators
only. Then we shall present some properties of such functions.

DermiTion 7: Let p be a configuration with the input head positioned on
a substring w of input aw B3, or going to enter w in the next computation
step. A characteristic function fp o, is a boolean function that is obtained
as follows: Take the computation tree the branches of which represent all
possible computations beginning in the configuration p. (All input head
positions are relative to the left margin of w.)

(i) Then each branch of the tree is pruned as soon as it reaches a
configuration ¢ that is leaving w by crossing its left/right margin. The leaf
node now corresponding to ¢ is then assigned a boolean variable ;.

(11) Each branch that represents an infinite cycle never leaving w is pruned
as soon as it enters the same configuration for the second time. The resulting
leaf node is then assigned a boolean constant 0 (FALSE).

(iii) Each leaf node that represents a halting configuration reachable from
the root p by a path never leaving w is assigned a boolean constant O or 1
(FALSE or TRUE), depending on whether it rejects or accepts the input,
respectively.

(iv) Each internal node representing an existential/universal configuration
is assigned a boolean operator “V”’/“&” (OR/AND), respectively. An internal
node having exactly one son is ignored, i.e., it is assigned a unary operator
of identity.

(v) If p is S-bounded on w, for some S > 1, then the resulting tree is
finite and represents the evaluation order of operators for the boolean function
fp,w (%1, ..., T4, ), with the formal parameter list z¢,, ..., Z¢, corresponding
to Bxp w = {1, ..., ts }, the set of all configurations reachable from p on w
that are leaving w by crossing its margins (“‘exits” of w for p).

Figure 8 presents an example of the tree-to-function transformation that
is described above:

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 483

P
e | v | & | 4
& —-,[}-» & iv i{}_z-) - il 13
A
Hi% pl? P /"\&—’— r' F
Y v 0 Ut—‘i" - 1 lz i; 1‘4 t3 _%2
i p4,accept Py
cycte” \haltlng
Figure 8

For the configurations p, we obtain

fp,w (xtn Ttys Tty xt4) = (mh VO) & ((1 me) & (mta thz ))
= T, & (Sl,‘t2 1% $t3),

which reflects the fact that p is an accepting configuration (i.e., p has an
accepting tree on aw f3) if (i) ¢1 is accepting and (ii) at least one of 3, t3
is accepting. The acceptation status of p on w depends on the set of exit
configurations, i.e., on Exp ., = {t1, t2, t3, t4 }. Note that the result is
actually independent from ¢, € Ex « Decause the accept/reject status of 4
is overridden by another computatlon path.

If fp,w (s, ..., Zt,) is independent from each configuration ¢; € Exp, w
then it is a constant function returning always the same boolean value.
Similarly, if no computation path beginning in p leaves w, then f, o is
a constant function with the empty parameter list, i.e., with h = 0. Such
functions will be denoted by fp « ( ).

It is easy to see that boolean functions composed by OR/AND operators
only (no NOT’s) can be put into the conjunctive/disjunctive normal forms
so that no clause contains a negated variable, i.e., for the conjunctive normal
form we have either f(zi, ..., zp) = constant 0/1, or

[z, o, zp) = K1 & Ky & ... & Ky,
such that each of the clauses K, ..., K is of the form
Kj = (Ze, V Ze, V... V 2¢,),

where A; = {e,, ..., Te, } € {21, ..., @5 }. Similarly, for the disjunctive
normal form, we get either a constant or

f(.’l:l, ey :Uh) =K1 VKyV ..V Kf,

vol. 28, n° 5, 1994



484 V. GEFFERT

where
K] = (xel &x62 & ...&xeu)7

for each j. These normal forms are obtained by the use of the distributive
rules and some other simple transformations (like, for example, 1& o =
a, 0&a = 0, ...).

DermNiTION 8: Let C' = (Cf, ..., C}), C" = (Cf, ..., C})), h > 0, be
boolean vectors. We write C' < C”, if C; < C foreach j € {1, ..., h},
C'- < 0", if C) > C for some j € {1, .., h}. (Asisusual, 0 < 1) A
boolean function f (z1, ... ,xp) is monotone, if f(C') < f(C") for each
C' < C". We write f' < f” for two boolean functions f’ (z1, ..., z5) and
' (z1, ooy ), if f1(C) < f7(C) for each C.

It is easy to see that each characteristic boolean function f, ., is monotone,
since the operators AND, OR are monotone and the monotone compositions
of monotone functions must also be monotone. We shall now present some
properties of monotone functions that will be used later.

Lemma 10: Let f' (z1, ..., zp) and [ (z1, ..., 1) be monotone functions.

) If f' < f"and f' (C") > " (C"), for some C', C", then C' = < C".

b) If for each C', C" we have that f' (C") > f" (C") implies C' = < C",
then f' < f.

The next two lemmas show that the conjunctive/disjunctive normal forms
of the monotone functions f’ and f” are closely related, if f' < f”.

Lemma 11: Let f' (z1, ..., zp) and f" (z1, ..., zp) be monotone functions,
! < //. I
F=ry 11 g 1
f (xl, veey xh)—Kl &...&Kfu

f@, o, zh) =K1 & & K
are the conjunctive normal forms for f", f', then for each clause of f" there

exists a clause of ' composed of a subset of its variables only, i.e., for each
J" € {1, ..., §'} there exists 7' € {1, ..., f'} such that

11
g = (xe’l’ V...V .Z‘e;/“),

K;, = (:l;e/1 V..V :L‘e;,),
with

r 7
A]'/ = {l’ell, casy xe;I } (; Aj" = {.’Eelll, ey .’L'e;l” }

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE ALTERNATIONS IN LOW LEVEL SPACE 485

The proof is a straightforward contradiction. Supposing that f” has a
clause K7, such that each clause of f’ contains a variable outside A’,, we
can easﬂy find C satisfying 1 = f'(C) > f"(C) = 0. By a very snmlar
argument, we can show a corresponding property for the disjunctive normal
forms.

Lemma 12: Let f' (z1, ..., zp) and f" (z1, ...
fl S f”. lf

, Zr,) be monotone functions,

f” (.’171, . ﬂ';h) = K{, V ...V K},
fl (1111, vy Ih) = Ki V...V K’I:,

are the disjunctive normal forms for f", f', then for each clause of f' there
exists a clause of f" composed of a subset of its variables only, i.e., for each
7 e {1, ..., f'} there exists 7' € {1, ..., {'} such that

Y = (e & ez,

], = (ze, & ... &:1;631)7
with

1" 1
A]n = {.’Eellf, cevy .’L’e;l” } - A’, = {:Eefl, ceey xe;, }

The next two theorems state that even partial decompositions into
conjunctions/disjunctions are closely related for f' < f”.

Tueorem 3: Let f' (z1, ..., 1) and f" (z1, ..., x) be monotone, f' < f".
If1=f (C" > f"(C") = 0forsome C',C", and f" can be partitioned into
" (1, oy zn) = fa(Ze,, -\ Te,) & fB (T1, .., Th), for some monotone
fa, fB, with A = {ze,, ..., e, } C B = {z1,..., 1, }, such that

fa (C’é’l, ey Cg) = 0, then C' must differ from C" in a formal parameter
of fa, ie., there exists xo € A suchthat 1 = C, > Cl =

Proof: Since fa(Cy,, .., C¢) = 0 and f4(Cq,, ..., C¢) > f'(C) >
f(C") = 1, we have that fa is not a constant function, and hence its
transformation into the conjunctive normal form does not degenerate into
a single constant.

Thus f4 (Cq,, ..., Cq) =0 implies that f4 has a clause not satisfied for
C", i e, we have K = (zqy V...V z40) with {24, ..., 240} C A and
”,, = g,, =...=Cjl. =0 But we can find a conjunctive normal form for

f” f. 4& B contmmng all clauses for f4, and hence, by Lemma 11, f has
a clause Ky composed of a subset of {zqr, ..., 2.0 }. Since f'(C') =1,

vol. 28, n° 5, 1994



486 V. GEFFERT

K, is satisfied for C’, hence, there exists ze € {Zay, ..., Tar} € A such
that C, = 1 and C/ = 0. O
A similar theorem holds for decompositions of f’ into disjunctions. The

corresponding proof mirrors Theorem 3, using the disjunctive normal forms
and Lemma 12, instead of Lemma 11.

TueoreM 4: Let f'(zi1,...,zp) and f"(z1, ..., zn) be monotone,
<1 = f(C) > f'(C") = 0 for some C', C", and f' can
be partitioned into f' (z1, ..., zp) = fa (Tey, -, ZTe,) V fB (21, ..., Tp),
for some monotone fa, fp, with A = {x¢,, ..., xe,} € B={z1,..., 21},
such that fa(Cq,, ..., C¢)) =1, then C' must differ from C" in a formal
parameter of fa, i. €., there exists x. € A such that1 = C., > C! = 0.

5. ALTERNATION RESISTANCE

We are now ready to state and prove main theorems. First, we shall
introduce the notion of X /11, S-resistant words, which compensates us for
the defects of S-equivalence mentioned in Section 2.

DEFINTTION 9: An ordered pair of words (w', w”) is X, S-resistant (IIg,
S-resistant) for a machine A, if

a) w' and w" are S-equivalent,

b) for each configuration-p,

bl) going to enter w' and w” by crossing their left/right margins
in the next computation step,

b2) that is S-bounded on w' and on w”,

b3) of alternating level ¥ or less (IIp or less, respectively)
we have fp w < fp wr.

By (a), individual computation paths not using more than S space cannot
distinguish w’ from w” on inputs aw’ 8 and aw” 3. By Lemma 4b, it is
then sufficient to suppose that p is S-bounded on one of them only. Further,
by Lemma 5S¢, we have Exj . = Exp », i e., the functions f, . and
fp,w have the same formal parameter list and the accept/reject statuses of
p on the inputs aw’ 3 and aw” 3 depend on the accept/reject statuses of
the same configurations leaving w' and w” for the first time. The condition
fo,w < fp,we indicates that these statuses are closely related, unless the
machine A uses more space or a higher level of alternation. The next
theorem clarify the above idea.

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 487

THEOREM 5: Let (w', w') be a Ily, S-resistant pair. Then, for each o and 3,
a) aw' B and aw'" B are S-equivalent,
b) for each configuration p,

bl) with the input head positioned outside w' and w'", i. e., on o or
on (3 (the input head positions are relative to the left margins
of a or 3),

b2) that is S-bounded on aw' 3 and on aw" f3,
b3) of alternating level 11j, or less
we have f, qw g < fp aw 8-

The same holds for the Xy, S-resistant (w', w") and each p of alternating
level ¥, or less.

As a special case, for p entering o w’ 3 and aw” 3 in the next computation
step, we get immediately that (aw’ 3, aw” 3) is again a 1l /3, S-resistant
pair, respectively.

Proof: (a) follows easily from Lemma 3. Now, let p be any configuration
satisfying (b1), (b2), and (b3). Because p is S-bounded on aw’ 3 and on
aw” B, and w', w" are S-equivalent, o w’ 8 and @ w” 3 have the same set of

exit configurations for p, i. e., Exp 0w g = Exp qw g = {p1, --., pa} for
some pi, ..., pp leaving aw' B and aw” B. Thus, fp aw g and fp o w8
have the same formal parameter list zp,, ..., Tp,.

We have to show that f, 4w g < fp,aw” g- By Lemma 10b, it is sufficient
to show, for each C' = (G, ..., Cp, ) and C" = (Cy , ..., Cp,), that if
1= fpawg(C) > fpaw g (C") =0, then C'-~ < C”, i. e., there exists
pe € {p1,...,pr} with 1 = G, > C = 0. In other words, we shall

interrupt all computation paths beginning in p on aw' 3 and aw” 3 as
soon as they are leaving aw’ 8 and aw” 8 (aw'B and aw” B may be
substrings of some longer inputs) and assign some accept/reject statuses

¢ = (Cp,,...,Cp,) and C" = (Cy, ..., Cp,) to the configurations
p1, ..., pp leaving aw’ B and aw” 3, respectively. We show that if this

assignment causes that p is accepting on aw’ 3 but rejecting on aw” S,
then, for some p. leaving aw’ 8 and aw” 3, we had to assign the accept
status on aw’ 3, but reject status on o w” 3.

Before proving this, we shall show two slightly weaker claims for
configurations reachable from p on aw' 8 and aw" .

CLam 1: Let r be a configuration
— with the input head positioned outside w’ and w”,

vol. 28, n® 5, 1994



488 V. GEFFERT

~ reachable from p by a path never leaving aw’ 8 or aw” 3, (hence,
S-bounded on avw’ B and o w” B3, and of alternating level II; or less),

— II;-accepting on o w’ 3, but I1;-rejecting on o w'” 3, for some [ < k, then

(@) either 1 = C}, > Cy =0, for some pe € Ex;, o g = Exp o wr g,

(ii) or there exists a configuration 7/

— with the input head positioned outside w’ and w”,

— reachable from r by a path never leaving aow' 8 or aw” 3,

— Xy /Iy, -accepting on aw' B, but ¥y /I, -rejecting on aw’ B, for
some I < | < k (i. e., of alternating level at most $;_1).

Proof of Claim 1: Because r is II;-rejecting for acw” 3, there must be

a rejecting computation path beginning in 7 on aw” 3. We now have the
following cases:

0) The rejecting path reaches the margin making no alternation and leaves
aw” (B in a configuration p, that is II;-rejecting. (See fig. 9).

" o W' B
I — — |
1 e {) r.1,-re) gEh———<—~———Dr,l}e—acc
L R I S A A 1
pe,‘ﬂz-re‘j

Figure 9

Because w', w” are S-equivalent and r is S-bounded on a w3 and
aw” B, pe is also reachable from r at the corresponding margin of aw' 3.
Since r is Il;-accepting on o w' 3, all alternation-free paths from r must
be accepting. Therefore, p. is II;-accepting on aw' 3. Thus we have
Pe € Exp ow g = Exp qwrp with Cp =1 and C) = 0.

la) The rejecting path from the II;-rejecting r alternates outside w” on
aw” (3, i. e., it enters a ¥;_;-rejecting configuration ' with the input head
positioned on « or (3. (See fig. 10)

W' B ! ! « W ] B %
ﬂr'?e'rej r_)[?(—-———'(-——— r,?e-acc

Figure 10

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 489

But then the ¥;_;-configuration 7/ is also reachable from the II;-accepting
ron aw' 3. Since all computation paths from 7 on e w' 8 must be accepting,
we have that 7' is ¥;_1-accepting on o w’ 3, but ¥;_;-rejecting on aw” S.

15) The rejecting path from r alternates inside w” on aw” g, i e., it
enters a %;_j-rejecting r” with the head on w'.

Let 7’ be the last configuration crossing the border of w" along the path
from r to r”. v’ is a II;-configuration, moreover, it is rejecting, since we
have a path from 7’ to 7”’. (See fig. 11).

o w" B l o W’ B8 i
e ﬂr.{le—rej <—-—<——-—[]rn -acc

LU—¢ « 5 s v :} - — 5 ??
’ l \‘ r’ 7 \'[] ¢
llc—r‘e\j : / m,~acc —'/ l J
r",z —reJ H

-1 H

N i

{1\,5 .

J
Figure 11

All branches are universal along the path from 7’ to 7"’ and hence f,/,
can be expressed in the form

fr’,w” (xrl, ceey -'L'rf) = fr”,w” (xtn ceey xtg) & f(xrl, ceey xr;),
7 branch to " T all other branches

where Expv o = {ti1, ..A,tg} - Exrlswu = {r1, ..., r¢} denote the
sets of exit configurations of w” for " and 7/, respectlvely Let ¢ =
(C',’fl, .o ) denote the accept/reject statuses for the ex1t configurations

1, ... rf on the string o w” 3. Because both 7’ and 7 are rejecting on
aw”ﬁ, we have

Cuv;"l' = frr wr (CV’;’I, R CV’;IF) = fro,wr (.)& JF( )=
with
Clo = frrw (Cr,, ..., Gy =

On the other hand, 7/ is also reachable from the II;-accepting r on aw’ S3.
Because 7/ is reachable from p via r, it is S-bounded on aww' 8 and aw” f3
(hence, S-bounded on w' and w") and of alternating level II;, or less. (It is of

vol. 28, n° 5, 1994



490 V. GEFFERT
level I1;, with [ < k.) Further, (w', w") is a [I, S-resistant pair and hence

f’l", w! S f,,./7 w'’ .

fri,w has the same formal parameter list, corresponding to Ex; . =
Exypi = {r1, ..., rj}. Since all alternation-free paths from r on aw’ 3
must be successful, 7 must be II;-accepting on aw'3 and hence the
accept/reject statuses C' = (CV',’.I, ce CV’,’,f) of exists on azw’ 3 must satisfy

v v v
v = frow (Cry oo, Cp) =1

But then, by Theorem 3, C’ must differ from C" in a formal parameter
of frv wr, i e, 1= é’{J > CU’Z = 0, for some t; € Expr o C Expr o =
Exp w = {71, ..., ri}. In other words, there exists a configuration t;
reachable from 7' on both aw’ 8 and o w” 3, having just left w’ and w” by
crossing their margins, that is accepting on aw' 3, but rejecting on aw” (.
Moreover, t; is reachable from the ¥;_;-rejecting r"" and therefore it is of
alternating level 3;_1 or less.

All cases above were confirming the hypothesis of the Claim 1. We shall

now show that all cases that remain to consider lead to contradictions and
hence cannot happen.

2a) Suppose that the IT;-rejecting 7 on o w” 3 has an infinite cycle, making
no alternation at all, and that at least a part of this cycle lies outside w”.
(See fig. 12.)

' o w" B ]_ l o W l B

'

|
+
{]l",l{le-re,j - — - — € — — = r.M,-acc
M E——— E[E'*] o

r’ r

Figure 12

Thus, we can find a configuration 7' positioned outside w" such that (a)
r’ is reachable from 7 on aw” B, (b) r' is reachable from ' on aw” B.
But then 7’ is also reachable from r on aw'f, similarly, r' is reachable
from 7 on aw’ 3. This gives an alternation-free cycle reachable from the
IT;-acceptating r ori aww’ 3, which is a contradiction.

2b) Suppose that the entire cycle is executed within w”. (See fig. 13.)

Let 7’ be the last configuration along the path from r to the cycle crossing
the border of w”. By a reasoning very similar to Case 1b, 7’ is II;-rejecting

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 491

o W Bl 1 W

-
e \' {1 r,l:le—re\j e r.?z—acc
‘ o ?7?
&7 a4 e — - 3 ?7
r' & Z—) & Z) r’ /1 N

% r ¢ _'/ AN !
) l IN & o & 1 I r,
N\ vl
: "'/l 2
Figure 13

on aow” B but II;-accepting on e w' 3. Because we have an alternation-free
path from the universal 7' into the cycle on w”, f. .~ can be-expressed
in the form

fro,wr (Trys o, 20) =0 & flzry, -0, Tr),
branch for cycle T 1 other branches

i. e, fr v is a constant function returmng always zero and overriding the
accept/reject statuses C" = (C,’.’ .., O ') of exit configurations. Because
' is S-bounded on w’ and w”, of altematmg level I1;, { < k, and (w', w')
is a II, S-resistant pair, we have friow < frr,we and therefore fr/ . is
also a constant function retuming always zero.

On the other hand, r' is II;- -accepting on orw "B and hence é‘;,, =
forw (Chy o, Cﬁf) = 1 for some ¢’ = (C!, ..., (Z‘Li) which is a
contradiction.

3) Finally, suppose that the II;-rejecting r has an alternation-free path
that halts in a rejecting configuration on o w” 3. There are two subcases
again, corresponding to Case 2a and 2b: Either the machine halts outside

" on aw” B, and then the same halting and rejecting configuration is also
reachable from the Il;-accepting r on aw' 3, or it halts inside w''. But
then we can find a configuration 7' crossing the border of w’/w” such that
frow (..)=0& f (-..) due to a halting path that rejects, Jrow < for e,
but fp/, 4 (C') = 1 for some C’. In either case, this is a contradiction.

This completes the proof of the Claim 1. A very similar claim can be
formulated for existential configurations.

CrAam 2: Let 7 be a configuration
— with the input head positioned outside w’ and w"”,

— reachable from p by a path never leaving aw’ 8 or aw” 3, (hence,
S-bounded on v w' 3 and avw” B, and of alternating level II; or less),

vol. 28, n® 5, 1994



492 V. GEFFERT

— Yj-accepting on « w' 3, but X;-rejecting on e w” 3, for some | < k, then
(i) either 1 = C,,_ > C, =0, for some p. € Ex, qw g = EXp qw s
(ii) or there exists a configuration 7’

— with the input head positioned outside w’ and w”,

— reachable from 7 by a path never leaving aw' 3 or aw” (3,

— ¥y /T1;i-accepting on aw' (3, but 3y /I -rejecting on aw” 3, for some
I <1<k (i e, of alternating level at most I;_1).

Proof of Claim 2: The argument mirrors the proof of Claim 1 but,
instead of the rejecting paths beginning in the II;-rejecting r on aw” 3,
we analyze accepting paths beginning in the ¥j-accepting 7 on aw’ 3. The
only exceptions are Cases 2a and 2b that correspond to nothing in Claim 2,
because no accepting path can be an infinite cycle. To illustrate what Alice
can see through the looking glass, we shall review Case 15 (alternation
inside).

Suppose that the existential configuration r is ¥;-rejecting on o w” 3, but
¥-accepting on aw' 3, because it has a successful computation path that
enters a II;_j-accepting 7"’ positioned inside w'.

Then 7/, the last configuration crossing the border of w’ along the path

from 7 to 7" is X;-accepting on aw’ 3. All branches are existential along
the path from 7’ to 7", and hence

f’r’$'u_x’ (.’L'rl, ey .’L'rf) = fr""w’ (xtl, ceey .'L'tg) \Y f(.'ﬂfrl, ceey xr'),
T branch to r” T other branches

with Expr o = {t1,..., tg} € Expr o+ = {r1,..., r§}. For the accept/
reject statuses of exit configurations on aw' 8 we then get
Crr = friw (Cryy ooy Cr) = frmwr () V fl.)=1,
with
v = ferw (G, o0, GL) = L

On the other hand, 7' is reachable from the ¥;-rejecting 7 on o w' 3. No
path beginning in the 3;-rejecting 7 can be successful and therefore 7/ is
¥;-rejecting on aw” . For the exits on aw” 3 this gives

A1 A1 A
O’l" = fr’,’ w'! (C’l‘17 ey C,,.f) = 0.

Since Exyr o = Expr o and frr o < frr o (by the same argument
as in Case 1b of Claim 1), using Theorem 4 instead of Theorem 3, we get

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 493

1= Cv'éj > CV’Z = 0, for some t; € Ex,» o, i. e., there is a configuration that
is accepting on aw’ 8 but rejecting on o w” 3, positioned outside w’, w'”,
and of alternating level at most II;_;, because it is reachable from the
II;_;-configuration 7”’. This proves the Claim 2.

Proof of Theorem 5, continued: Recall that if the configuration p satisfies
1), (#2), and (b3), then Exp aw p = Expaws = {p1, ..., pu} It
remains to show that if 1 = f; 4w g (C) > fpaw s (C") = 0, for
some C' = (Cy,, ..., Cp,) and C" = (Cy,, ..., Cp,) representing the
accept/reject statuses of exit configurations py, ..., pp on the margins of
ow' B and aw” B, respectively, then 1 = C), > Cj = 0, for some
pe € {p1, ..., Pn}-

Suppose that p is IIg-accepting on aw’ (8 but II;-rejecting on o w” §; for
some C’ and C”. Then, by Claim 1, for r = p, we get

(i) either 1 = C,,_ > C, = 0 for some p, and we are done,

(i1) or there must exist (1) with the input head positioned outside w’ and
w”, reachable from p by a path never leaving aw’ 8 or aw” (3, of alternating
g
level I < k, that is Xy /II;-accepting on aw' 8 but 3 /Il -rejecting on
aw” B.
If, for example, r(1) is an existential configuration, then we can use
Claim 2 and get

(i) either 1 = Czlre > C’I’,’e = 0 for some p. and we are done,

(ii) or there must exist 7(2) with the input head positioned outside w’ and
w", reachable from (1) by a path never leaving aw' 8 or aw” 3 (hence,
reachable from p), of alternating level " < I' < k, Xy /IIj.-accepting
on aw' B but By /Ij-rejecting on aw” B. (If #(V) is universal, we use
Claim 1 again.) . ...

This process cannot be repeated more than % times and hence, sooner or
later, we must get 1 = C), > C) = 0.

This completes the proof of the theorem. The argument for the X,

S-resistant (w’, w") is the same, but the starting alternation level is
existential. [

Before passing further, we shall review the problems that we are going to
tackle on the way from the resistant words to resistant languages. Suppose
that, for some language L', we have w/, € L' and w__ ¢ L’ such that a
¥/ — SPACE (s (n)) machine A’ cannot distinguish w/, from w’ . But
w', and w’_ are quite long and the space of size s (|w/ |) or s(|wl |)
might be sufficient for A’ to distinguish them. Therefore, we provide also

vol. 28, n® 5, 1994



494 V. GEFFERT

a third example wj (we do not care whether wj € L'), that restrains A’
from using too much space, i. e., A’ cannot use more space on the inputs
w!y or w’_ than on wj. (Still, A’ can use substantially more space on other
inputs of equal lengths.)

In addition, for each G > 0, we claim that no Xy ¢ /Ilx+G-SPACE (s (n))
machine A can use any Y /II;-SPACE (s (n)) machine A’ as its subprogram
(roughly speaking, as its oracle) to distinguish w/, from w’ . (Now they
can be some substrings of longer inputs.) We shall call such languages
Yk /U-SPACE (s (n)) resistant. Having given a Xp-SPACE (s(n))
resistant language L', we shall design a Ilz,1-SPACE (s(n)) resistant
language L with counterexamples w4, w—, and wp, that are composed
of w/y, w_, and wy. But two problems arise here: First, A can use more
alternations than &, second, the worktape space limit has been increased from
s(wl])ors(fwl|)tos(|awlB])ors(|aw. B]), respectively.

Thus, to design counterexamples v/, , w’_, and wj, we need some a priori
information about the environment in which these counterexamples will be
used, among others, about w4, w—, and wg. This “a priori information”
allows us to fool any ¥y /Ilx41G-SPACE (s (n)) machine, for arbitrarily
large G > 0.

Languages separating X;-SPACE (s(n)) from II;-SPACE (s (n)), for
k > 2, have a simple block structure. The structure of the blocks can be
described by a sequence of regular languages Ry, R3, R4, ... defined as
follows:

DermviTioN 10: Let {a, b} denote a two-letter alphabet. Then
Ry =at,
Ry =b(Rp_1b)*, foreach k> 3.

It is easy to show, by induction on k, that w € Ry begins with
b =24 ..., ends by ...ab*2, and does not contain more than 2k — 5
consecutive b’s. This implies that it can be partitioned unambiguously
into w = buybuzb... bush, for some wy, ..., u; € Rg_1. That is, if
w = buj buhb... buyb, for some uy, ..., uy € Rp_y, then g = f and
uy = u’l, cee uf = u’. This partition is determined by the positions of
substrings ab* 3 bbF =3 = ab?*~% 4 in w.

The next definition will be used to generate the counterexamples “wg”
that restrains 3G /Ilx4+G-SPACE (s (n)) machines from using too much
space, provided that we are given wy, restraining £y /IIx-SPACE (s (n))
machines, and G > 0, the rank of environment.

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 495

DEerINITION 11: Let G > 0 and w € {a, b}*, |w| > 2. We define E (G, w),
the environment of rank G for w, by

E(0, w) = w,
E(G+1,w)=E(G,b(wb)®!1), foreach G > 0.

For example, E (1, aaa) = E (0, b(aaab)* ') = baaabaaab. E (G, w) is
also a string composed of | w |—1 consecutive E (G — 1, w) blocks, enclosed
in b’s. It is easy to see, by induction on G, for each G > 0 and each w, that

|E(G, w)| = |w|*. 3)

Note also that if w € Ry, then E (G, w) € Rpyg. We are now ready to
present a formal definition of the ¥ /I1;-SPACE (s (n)) resistant language.

DeriNimioN  12: A language L is  Xp-SPACE (s(n)) resistant
(IIx-SPACE (s (n)) resistant), if , for each s (n) space bounded alternating
machine A, each G > 0, and each ## > 0,

a) there exist w+ € By N L, w_. € Ry — L, and wy € Ry, such that

b) |wo| > 7,

¢) wy, w—, and wy are Spacey (E (G, wp))-equivalent,

d)y (ws, w-) is a Xy, Spacey (E (G, wo))-resistant pair.

(Ilg, Spacey (E (G, wp))-resistant pair, respectively.)

Thus, we must fool each s(n) space bounded machine A making an
arbitrary number of alternations, however, (d) concerns configurations of
alternating level at most X /Il only. Such configurations may be viewed
as “oracle entry points” giving answers to some partial questions as the

computation demands. We claim that such entry points cannot be used to
distinguish w4 € L from w- ¢ L.

Second, the worktape space limit for such entry points is as much as
Spacey (E (G, wp)), i e., the worktape space used by A on the input
E (G, wy). (See also Def. 3 and Def. 11.) Note that A may potentially use
s (Jwo |2°) space on the input E (G, wp), by (3). Thus, for arbitrarily large G,
we should find w4, w—, and wy so that w4 and w_ cannot be distinguished
if they are inserted into inputs of length | wo |2G. However, the condition (c)
ensures that A does not try to use too much space on inputs c w4 G or c w—- 8
unless it tries to do so on o wg B, by Lemma 4a. The condition (») orders a
lower bound on the length of wyg and, indirectly, on the lengths of w4 and w_.

vol. 28, n° 5, 1994



496 V. GEFFERT

THEOREM 6: Let L' be a ¥y_1-SPACE (s (n)) resistant language, for some
k > 3, with sup s(n)/log (n) = 0. Then the language
n—0co .
L :{w € R, w= bwlbwgb...bwfb,
die{l, ..., f}: w c L/, w, ..., ws € Re_1}
is [Ix-SPACE (s (n)) resistant.

Proof: Let A be an s (n) space bounded machine and let ¢ be a constant
for A satisfying (2), i. e., the number of reachable memory states for each
input w is bounded by ¢*{/!) Let G > 0 and % > 0. Define G = G + 1
and take 7/ so that

7 > max {#, 2}, 4)
and
G+1
(cs("2 ))6 <n-—1, foreach n>#'. )
By Lemma 6, using H = 211, such #’ does exist. Because the language L/
is 3x_1-SPACE (s (n)) resistant, we have, for any given A, G/, and #', that
a') there exist w, € Rp_1NL, w_ € Re_1 — L', and wj € Ry_1,
such that
by |wy| > it
¢) wly, w', and wj are Space, (E (G, w))-equivalent,
d) (wly, wl) is a Bg_1, Spacey (E (G, wy))-resistant pair.

We have to find w4, w—, and wg with the corresponding properties for
the language L. Define

wo = b(wh b)™,
where 0 (, 0b) 6)
m= |wy| — 1L
Clearly, wy € Ry, since w, € Rp—1 and m > 1, by (d'), (¢), and (4).
Further, by (5') and (4), |wo| = |w)|* > #. Because
E(G, wo) = E(G, b(wyb)l®e =Yy = BE(G+1, w)) = E(G, wh), (7)

by Definition 11, we can modify (¢’) and (d') as follows:
"y wl, w', and wj are Spacey (E (G, wo))-equivalent,
d'’) (wly, w'_) is a ¥p_1, Spacey (E (G, wp))-resistant pair.

Now, define an extended version of wg by

wp = b (w6 b)m+(4 k+3)~m!‘

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE- ALTERNATIONS IN LOW LEVEL SPACE 497

Note that the length of wg depends on the alternating level k. First, we
shall prove that wy and wg are Spacey (E (G, wp))-equivalent: It is easy
to show that

|E(G, wo)| = |wh|*", (8)

using (7), (3), and G’ = G + 1. Because |w)| > #/, by (¥'), we can use
(5) and get

w1261
(C'S(l Ol

N < fwp| = 1. ©)
But then
(CSpaCeA(E(G,wo)) )6 <m, (10)

using (1), (8), (9), and (6). This implies, by Lemma 9 and 3, that
wo = b(whb)™ and wgp = b(whb)™ ™ (with ¢ = 4k + 3) are
Space4 (E (G, wo))-equivalent, because the number of (wpgb)-blocks in
wp is large enough, compared to the worktape space limit for the input
E (G, wp) = E(G’, wy). The design of inputs satisfying (9) and (6) plays
a dominant role here. Finally, define

w_ = b(w'_ b)m+(4k+3)~m!,

_ ! 2k-m! 1 ! 2:m!—1)+2 k-m! !
wy = b(wl b)FEEM () p)@mimD)F2kemitml

Clearly, wy, w— € Ry, since vy, w_ € Ry_1, by (d'). The strings wy
and w_ consist of the same number of blocks as wg, since replacing all
wy-blocks by the w’ -blocks transforms wg into w—. The string w. differs
from w_ in the block on the position m + 2k - m! + 1 only, where it has
wf‘_ instead of w’_. (See fig. 14 for the structure of w4 and 2 .)

we bl | | [ ! !
Pom o 2km! iomt i omt 2km! Pomt
blocks blocks, iblocks iblocks i blocks, iblocks |
i 2mkmizk. (mimt) i i 2kmizk. (m+m!) { mizm i
P T P SN - — i
m+k. {(m+m?} °F omt T m+k. (m+m?t) 7
blocks blocks blocks
wi bl Wi L
critical block, T T _critical block’s twin,
the only m! blocks to the right

w;—block in v,

Figure 14

vol. 28, n°® 5. 1994



498 V. GEFFERT

It is obvious that wy € L and w— ¢ L, because w4 contains one wf,_ el
while w_ is composed of the w’_ ¢ L' blocks only. (The partition of w4
and w_ into the strings in Rj_; is anambiguous, hence, for example, we
cannot get w_ = buj bug b...bu;b for some uy, ..., u; € Rg_1 so that
Ju; € L'. See also the remark below Def. 10.)

Because w!,, w’, and wj are Spacey (E (G, wo))-equivalent by ("),
we have, by Lemma 3, that wy and w_ are Spacey (E (G, wp))-equivalent
to wg. Since wg is Spacey (E (G, wp))-equivalent to wp, by (10) and
Lemma 9, we get that w4, w—, and wg are Space 4 (E (G, wp))-equivalent.

It only remains to prove that (w4, w_) is a Ilg, Spacey (E (G, wp))-
resistant pair, i. e., that f, o, < fp_ for each configuration p that
is (i) going to enter wy and w_ by crossing their boundaries, (ii)
Spacey (E (G1, wp))-bounded on w, and w—, (iii) of alternating level
II; or less.

Because wy differs from w_ in the single w/ -block only and w/,
w’_ are Spacey (E (G, wp))-equivalent by (c’’), we have, for each p
satisfying (i), (i), and (iii), that Exp o, = Exp w_ = {p1, ..., pa}, for
some configurations pi, ..., pp leaving wy and w—. By Lemma 105, it
is sufficient to show that if 1 = fp w, (C') > fpw_ (C") = 0, for
some C' = (Cp,,...,Cp, ) and C" = (Cp, ..., Cy,) representing the
accept/reject statuses of exit configurations, then 1 = C;, > Cp = 0 for
some exit configuration pe.

Suppose that p is II;-accepting on w4 but Ilx-rejecting on w_. Because
there must exist a rejecting computation path beginning in p on w_, we
have the following cases to consider:

0) The rejecting path leaves w_ making no alternation. Because w/,, w'

are Space, (E (G, wp))-equivalent and p is Spacey (F (G, wo))-bounded
on w4 and w_, we get, by the same reasoning as in Case 0 of Theorem 35,
that 1 = C;,e > C;,’e = 0 for some exit configuration p. € Exp, w, = Exp w_.

la) The rejecting path from the Ilj;-rejecting p alternates outside the
critical block on w_, entering a ¥;_1-rejecting p’. (See fig. 15.)

Since p’ is also reachable from the II;-accepting p on w4, we have that p’
is (i) positioned outside the critical block, (ii) Spacey (£ (G, wp))-bounded
on wy and w. (because it is reachable from p), (iii) ¥;_;-accepting on
w4 but X _;-rejecting on w_.

Because (w/,, w’) is a $x_1, Space 4 (E (G, wp))-resistant pair, by (d"),
we obtain that fp o, < fpr w_, using Theorem 5.

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 499

1 " | | " 1
P, L -Te] 1 p, I -acc T

o5 res b3, -ace

f | [

critical twin critical twin
block, w’ block, w’ block, w; block, w’
Figure-15
critical block 1 W_ I twin block
L 1 l 1
- — —.g.‘— —) —_— g H
Dip,nk—rej U L:_,Iigj |
’ P". %, _ Te) P
1
i m m!
blocks
T 7 Tmtk. (m*m!) m+k. (m+m?t)
blocks blocks
Figure 16
On the other hand, we also have 1 = [y, (C7,...,C1) >
1" "y —_ _ —
fpr’w_ (07'1’ ey CTf) = 0, where Exp’,’w+ = EXpI,,LU_ = {7‘1, RN Tf} (_:
Exp w, = Exp w_ = {p1, ..., pn} denote the sets of exits of w; and w_

for p' and p, respectively.
By Lemma 10a, this is possible only if 1 = C;_ > C/ = 0, for some
re € {r1, ..., 75} € {p1, ..., pn}, i. e., we have a configuration r, leaving

w4 and w—, reachable from p via p/, that is accepting for w. but rejecting
for w-—.

1b) The rejecting path from p alternates inside the critical block on w_,
where it enters a ¥j_;-rejecting p” = (g, j). (See fig. 16.)

Note that both the critical block and its twin, lying m! blocks to the right,
are at least m + k - (m + m!) blocks away from either margin of w_. (See
also fig. 14.) Among others, this implies that the computation path had to
traverse at least m blocks, for p at the left margin, or at least m + m! blocks,
for p placed at the right, along the way from p to p”.

Let p' be the configuration having the same memory state as p”, with
the input head positioned exactly m! blocks more to the right, i e.,
P =g, j+(|wy| —1)!- (|wl | +1)). Since m > (cSpacea (B (G, w0)))6 by
(10), and p is Space, (E (G, wp))-bounded on w_, we have that p' is also

vol. 28, n°® 5, 1994



500 V. GEFFERT

reachable from p, by the use of Theorem 1 and Lemma 8. Moreover, if p” is
Yx_1-rejecting, then p’ must also be ¥;_;-rejecting on w_, by Theorem 2,
because both p” and p’ are Spacey (E (G, wp))-bounded on w_ (they are
reachable from p) and sufficiently far from either margin.

Therefore, for each rejecting path from p that alternates inside the critical
block on w_, there exists another rejecting path that alternates outside the
critical block. This reduces Case 1o to Case la.

All remaining cases lead to contradictions and hence cannot happen:

2a) If an alternation-free path from p enters an infinite cycle and at least
a part of this cycle lies outside the critical block on w_, then we can find a
corresponding infinite cycle that is reachable from the IIx-accepting p on w4,
by the same argument as in Case 2a of Theorem 5, which is a contradiction.

2b) If the entire cycle is executed inside the critical block on w_, then
there exists at least one more infinite cycle, reachable from p inside the
twin block, by a reasoning very similar to Case 1, using Theorem 1 and
Lemma 8. This reduces Case 2b to Case 2a.

3) The argument for an alternation-free path beginning in the Il -rejecting
p on w— that halts and rejects the input is almost the same as for the infinite
cycle, giving a contradiction.

This shows fp 1w, < fp,w_ for each p of alternating level IIj and also of
II;_1. For the levels Xi_; or less, we obtain fp ., < fp w_ directly, by
Theorem 5 and (d'’). This completes the proof of the theorem, since we have
just shown that (w4, w_) is a Iy, Spacey (E (G, wp))-resistant pair. 0O

The above theorem has its counterpart describing the relationship between
II;—1- and 3-SPACE (s (n)) resistant languages.

TueoreM 7: Let L' be a Il _1-SPACE (s (n)) resistant language, for some
k > 3, with sup s(n)/log (n) = 0. Then the language
n—oo
L ={w e Ry; w=>bwi bwpb... bw;b,
Vie{l,...,f}: wy, €L, wi, ..., wj € Rp_1}
is X;-SPACE (s (n)) resistant.

Proof: The argument is very similar to the proof of Theorem 6, so we
point out the main differences only. First, w4 and w_ are defined by
wy = b(wf,_ b)m+(4k+3)~m!)
w_ =b (,w; b)m+2k-m! wl_ b(w’+ b)(Z-m!—l)+2k4n!+m!’

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 501

so here wy € L is homogeneous while w— ¢ L contains a single block
w_ ¢ L.

Second, we prove that (w4, w—) is a X, Spacey (E (G, wp))-resistant
pair and therefore we consider a configuration p crossing the boundaries of
w4 and w_ that is existential, i. e., Xi-accepting on w4 but ¥ -rejecting on
w-~. Our analysis begins with a successful path starting in the ¥;-accepting p
on the homogeneous w, using the fact that the machine cannot distinguish
the critical block from its twin, and that all paths starting in the ¥z -rejecting
p on w_ must be rejecting. (In Theorem 6, we considered a rejecting
path starting in the Ilg-rejecting p on the homogeneous w—_. Compare, for
example, Case 10 for Claim 1 and Claim 2 in Theorem 5.) O

It is easy to show that no Xj/Ilx-SPACE (s(n)) machine is able to
recognize a X /IIx-SPACE (s (n)) resistant language.

THeOREM 8: a) If L is a IIx-SPACE (s(n)) resistant language then
L ¢ T1;-SPACE (s (n)).

by If L is a Yg-SPACE (s(n)) resistant language then L & Xi-
SPACE (s (n)).

Proof: Let L be a I1;-SPACE (s (n)) resistant language. Then, for each
I1;-SPACE (s (n)) machine A, G = 0, and 7 = 2,

a) there exist wy € R, N L, w— € Ry — L, and wy € Ry, such that

b) |wo| > 2,

¢) w4, w—, and wy are Space, (wp)-equivalent (since E (0, wg) = wo,
by Definition 11),

d) (wy, w-) is a I, Space, (wp)-resistant pair.

By (d) and Theorem 5, for @ => and § =< (where “>” and
“%” denote the left and right endmarker, respectively), we obtain that
Ip,>wi< < fp,>w_« for each configuration p that is (i) positioned outside

wy and w—, i. e., on the left or right endmarker, (ii) Space 4 (wg)-bounded
on > wy < and on > w_ <, (iii) of alternating level Il or less.

The initial configuration p; of our IIx-SPACE (s(n)) machine satisfies
(1) and (iii) automatically. It is not very hard to show that it also satisfies
(ii). By Definition 3 and 4, p; is Space 4 (wp)-bounded on > wp <, since
Space4 (wp) is defined as the maximal amount of space used by any
configuration that is reachable from the initial p; on the string > wgp <. By
(¢), wy, w—, and wp are Space 4 (wp)-equivalent and hence, by Lemma 4a,
pr is Space 4 (wp)-bounded on > wy < and on > w_ <.

vol. 28, n° 5, 1994



502 V. GEFFERT

Thus, fp, >w,« < for,>w_«. We may assume, without loss of
generality, that our machine has been programmed correctly and never
tries to move its input head to the left/right from the Ileft/right
endmarker, respectively. This implies that fp, s, « and fp, sw_« are
constant functions with the empty formal parameter lists, i. e., we have
Jor,>wi < () < for.>w_« (). But for wy € L and w— ¢ L we need
Jor,>w,< () =1and fp, sw_« () = 0. Hence, the machine A does not
recognize L.

The same argument holds also for £;-SPACE (s(n)). O

6. THE HIERARCHY

In this section, we shall give an induction base for the mechanism described
in Section 5 by showing some 35 /II;-SPACE (s (n)) resistant languages,
which allows us to-present languages separating >;-SPACE (s (n)) from
[1;-SPACE (s (n)), for each s(n) below log (n) and k£ > 2. This yields
the infinite hierarchy. Finally, we shall show that ¥;-SPACE (s (n)) is not
closed under complement and intersection, similarly, II-SPACE (s (n)) is
not closed under complement and union. Before doing this, we need to
present some X1/II; and X3/II; resistant pairs of strings over a single
letter alphabet.

THEOREM 9: For each s(n) space bounded alternating machine A, each
G > 0, and each % > 0, there exists W > % such that, for each n > #/,

a) alV™1 and alVP 17! gre Space, (E (G, a'))-equivalent,

a™ and a™t™ are Space, (E (G, a™))-equivalent,
b) (alV?l, alVrl+nly gug (qIValtn! glvaT)

are 31, Space4 (F (G, a™))-resistant as well as 11,

Space4 (E (G, a™))-resistant pairs,
¢) (a™*t™ a™) is a I, Spacey (E (G, a™))-resistant pair,
d) (a", a"*™) is a ¥y, Spacey (E (G, a™))-resistant pair.
Proof: (a) Define R = [/n]. Using Lemma 6 for H = 2, find #' > #

so that
G
(PN < R < g <mn, an

for each n > #', where ¢ is a machine dependent constant satisfying (2).
But then, for each n > #/,

(SPacea(B(Gam)6 < (s (N6 o R o g <mn, (12)

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 503

using (1), 3), |a"| = n, and (11). By Lemma 9, this implies that
a®, a™*™ are Spacey (E (G, a™))-equivalent, and that a®, a®t"R' are
Space 4 (E (G, a™))-equivalent, for each i > 0. Because n! is an integer
multiple of R!, we have that ™, a®+"" are Space, (E (G, a™))-equivalent.

(b) Let w' = a™ and w"” = a™*™. We shall show that (w’, w") is a IIy,
Spacey (E (G, a™))-resistant pair. (All other cases are almost identical,
interchanging w’ with w” and/or analyzing existential paths instead of
universal.)

Because w', w” are Spacey (E (G, a™))-equivalent by (a), we have
Exp w = Exp «»~, for each configuration p that is (i) going to enter w
and w", (ii) Space4 (E (G, a™))-bounded on w' and w”, (iii) of alternating
level II;. It is not too hard to prove that f, v < fp . Again, it is
sufficient to show that if p is II;-accepting on w’, but Il;-rejecting on w'”,
then some configuration p. € Ex, « = Exp 4+ must be II;-accepting on
w', but II;-rejecting on w”.

b0) If p is II;-rejecting on w' because of a rejecting path that leaves w'”’
in a IIj-rejecting configuration p. € Ex; «, then we are done.

b1) The rejecting path started in the I1;-configuration has no alternations.

b2)-Suppose that some path from p enters an infinite cycle on w'” = o+,
where R = [y/n]. Using M® = (Spacea (B(G.a")6 « R < R + nl, by
(12), we shall find another cycle that never moves the input head farther than
M3 = (Spacea (E(G’an)))?’ positions away from p placed at the left/right
margin of w”. Since M3 < M® < R, we have enough room to enter this
cycle from the IT;-accepting p on w' = a’®, which is a contradiction.

The proof is based on the observation that each cycle beginning and
ending in the same configuration pc can be, by Lemma 7, replaced by a
cycle from pc to po never moving the head farther than M 2 positions away
from pc. Second, we may then assume that pc (reachable from p) is at most
§ < (M?+1)+(M + 1)+ M? positions away from p, for, if the computation
path from p to pc gets too far, then we can find two configurations
p1 = (g, 71) and py = (q, j2), having the same memory state ¢, such that
both j1 and j2 are at least M2 4 1 positions away from p. Using Lemma 8,
we can then cut the path from p; to pz out and shift the cycle from p¢ to
pc closer to p. This process can be repeated until we obtain a cycle never
moving the head farther than (M? + 1)+ (M + 1)+ M2 < M3 < M® <R
positions away from p. (For a more detailed proof, the reader is referred
to [9], Theorem 2.)

vol. 28, n° 5, 1994



504 V. GEFFERT

b3) The argument for a path beginning in p on w" = a®*™ that
halts and rejects the input is very similar to Case b2. Again, we can
find another path that halts never moving the input head farther than
M3 = (Spacea(B(G.a™))3 < MO < R positions away from p, so we
have enough room to run this rejecting path from the Ilj-accepting p on
w' = a*, which is a contradiction.

This completes the proof of (b).

(c) We shall show that (™™, a™) is a IIz, Space4 (E (G, a™))-resistant
pair. Cases c0, c2, and c3, i. e.,, moving out, cycle, and halting parallel
Cases b0, b2, and b3, respectively. Therefore, they are omitted. We shall
now concentrate on Case cl, i. e., on alternation.

cla) Suppose that p is ITy-accepting on a”+"'. Further, suppose that p is
II3-rejecting on o™ because some path enters a 3;-rejecting p/, positioned
at least R = [y/n ] positions away from the left margin of a”".

Then a"t™ and a” can be expressed in the form a"t" = qa®™t™ 3,
a™ = aa® 3, where @ = ¢ and 8 = a" *. (See fig. 17.)

aﬁR g = an-?
I 1
p,I,-rej 0 , i
T ] P ,Zl-reJ

afR#-n! [: D
1 i
p,HZ—accD————»—-——»~~_:?—j R .

! (- - ——]

Figure 17

But then 7' is (i) positioned on £, i. e., outside o™+ and a® on a a®*+™ 3
and o a® 3, respectively, (i) Space 4 (E (G, a™))-bounded on a a®*+™ 3 and
aa™ [ (because it is reachable from p), (iii) £;-accepting on o a=*+™ 3 but
¥ -rejecting on o a”™ 3. (The head positions are relative to the left margin
of 3.

Because (a a’™) is a X1, Spacey (E (G, a™))-resistant pair, by (b),
this is possible only if there exists p. leaving aa®t 8 and aa®® B that
is 2i-accepting for ara®T™ 8 but ;-rejecting for aa™ 3, by the use of
Theorem 5 and Lemma 10a. (Cf. also Case la in Theorem 6.)

clb) If the rejecting path from the Ilp-rejecting p on o™ alternates closer
than R = [y/n] positions to the left margin, then it alternates farther than R
positions away from the right margin, since R < n/2, by (12). Then the same

R4n! 'R)
3

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 505

argument can be used for a™*™ and ™ partitioned into o"t" = oo™+ g,
o™ = aa® B, with @ = ™, 8 = ¢, and p’ positioned on «.

This completes the proof of (¢). The converse does not hold, i e.,
(a™, a™*™) is not necessarily a Iy, Spacey (E (G, a™))-resistant pair,
since a rejecting path from the Ilp-rejecting p on a”™™ may alternate in p’
positioned in the middle of a™*™ so the segment of length n! is neither to the
left, nor the right of p’. However, the converse does hold for 3s-resistance:

(d) The proof that (a™, a™t™) is a ¥, Spacey (E (G, a™))-resistant
pair is very similar to (c). Here we suppose that p is Yg-accepting on o™
but Y-rejecting on a"t™'. Hence, the analysis begins from the accepting
computation path started in p on a”, i. e., on the shorter string again. [

We are now ready to present the languages that separate ¥;-SPACE (s (n))
from Il;-SPACE (s (n)).
DerNITION 13: Let
f(n) = the first number that does not divide n.

Then
Sy = {a" f(n) < max{f (1), ..., f(n=1)}, n > 1},

Py ={a" f(n)>max{f(1),..., f(n—1)}, n>1},

Sk ={w € Ry; w=bwibwab...bw;b,
dje{l, ..., f}: wj € Pp_q, wy, ..‘,'waRk_l},

P ={w € Ry; w=bwy bwa b...bwsb,
Vie{l, ..., f}: wy € Sp_1, W1, ..., ‘waRk__l},

for each £ > 3.

Lemma 13: f(n) is unbounded, i. e., for each h > 0 there exists n > 0
such that f (n) > h, and f (n) = f (n+nl), for each n > 2.

Proof: Since h! is divisible by each 7 < h, we have f (h!) > h. Clearly,
f(2) = f(2+2!). For each n > 3, n — 1 does not divide n. Thus, the first
“nondivisor” of n is at most n — 1, i. e., f (n) € {1, ..., n — 1}. Therefore,
it is sufficient to show that j € {1, ..., n — 1} divides n if and only if
it divides n + n!

vol. 28, n° 5, 1994



506 V. GEFFERT

@) If j divides n, then it divides also n + n!, since n + n! is an integer
multiple of n.

(ii) Suppose that j divides n + nl, i. e., n + n! = j - 1, for some integer
[y > 1. But j < n—1 must also divide n!, i. e., n! = j-la, for some [y < [;.
This gives n = (n+n!) —nl =35 - (l1 — l2), i. e, j divides n. 0

Sy and P, are simplified versions of the languages that were used to
separate X3-SPACE (s (n)) from II3-SPACE (s(n)) in [9]. We shall now
prove a stronger statement, namely, their space resistance.

TuEOREM 10: For each k > 2 and each s (n) with sup s(n)/log (n) =0,
n—0o0
Py is X-SPACE (s (n)) resistant and S, is I1x-SPACE (s (n)) resistant.

Proof: First, we shall show that Py is 9-SPACE (s (n)) resistant. Let
A be an s(n) space bounded alternating machine, G > 0, and # > 0.
By Theorem 9 and Lemma 13, we can find %' > max {#, 2} so that, for
each n > #/,

a) o™ and o™*™ are Space, (E (G, a™))-equivalent,

b) (a™, a™t™) is a X, Spacey (E (G, a™))-resistant pair,

¢) (@™ a") is a IIy, Spacey (E (G, a™))-resistant pair,

d) f(n) = f(n+n).

We need to find n > %/ so that a™ € P, but a"t™ ¢ P». By Lemma 13,
we can find minimal N satisfying f (n) > max {f (1), ..., f(#)}, i e,

F ) > max{f (1), ..., £ ()}, but
f(n) <max{f(1),..., f(#)}, foreach n < N.

This gives f(N) > f(n), for each n < N, and therefore f(N) >
max {f (1), ..., f(N—=1)}, i.e, o € P,. Note that we have also
N > % >, since f(j) < max{f(1), ..., f(4), ..., f(®)}, for each
j < #'. On the other hand, f (N + N!) = f(N), and hence f (N + N!) <

max {f (1), ..., f(N),..., f(N+N! =1}, i e, aV ¢ P,. Now, it

is easy to see that wy = a?¥, w_ = o™Vt and wy = o? satisfy

(1) wy € RoN Py, w- € Ry — P3, and wy € Ry,

(i) |wo| > #,

(iii) w4, w—, and wq are Spacey (E (G, wp))-equivalent, by (a),

(iv) (w4, w—_) is a Xa, Spacey (F (G, wo))-resistant pair, by (b),
i. e., the language P, is X3-SPACE (s(n)) resistant.

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 507

We also get that the language S is II3-SPACE (s (n)) resistant, since
aVtN ¢ 8y, alV ¢ S,, and (6N, &) is a IIy, Spacey (E (G, aV))-
resistant pair, by (c), using the same argument for wy. = o™tV w_ = o,
and wy = oV,

By a straightforward induction on k, using Theorems 6 and 7, we obtain
that Py, is X-SPACE (s (n)) resistant and Sy, is II-SPACE (s (n)) resistant,
for each k£ > 2. O

The above result implies immediately, by Theorem 8, that P, ¢ -
SPACE (s (n)) and Si ¢ II;-SPACE (s (n)), for no s(n) below log (n).
Changing the initial alternation level, using a method described by
Szepietowski in [23], we can easily design O (log log (n)) space bounded
machines for P, and Sg.

Tueorem 11: P, € IIx-SPACE (log log (n)) and Sp € Xx-SPACE
(log log (n)), for each k > 2.

Proof: First, we shall show that P, € II3-SPACE (log log (n)). Our
machine first deterministically computes f(n), checking if n is divisible
by 7, for 5 = 2, 3, 4... until it finds the first nondivisor of n. Then,
branching universally, the machine moves along the input tape and, at each
position h < n, verifies if f(h) < f(n). We do not have to compute the
first nondivisor of A exactly, it is sufficient, branching existentially, to find
g€ {l, ..., f(n)— 1} and verify that this g does not divide h.

Note that we store j, f(n), and g on the worktape, but not h. Since
log (f (n)) € O (log log (n)), this much space is sufficient. (For proof, see
e. g [18].)

The ¥2-SPACE (log log (n)) machine for Sz is very similar. Having
computed f (n), find existentially » < n with f (k) > f(n) and, branching
universally, verify that each g € {1, ..., f(n) — 1} divides h.

Now we can show that P, € II;-SPACE (log log (n)), for each
k > 2. The machine first checks if the input w € Rg. If yes, then
w = bwy bwy b...bwsb, for some wi, ..., w; € Rg_1. In addition, this
partition is unique and determined by the positions of substrings ab®*~5 a
in w. Thus, branching universally at each ab?*~5 a, verify if w; € Sk—1,
for each j € {1, ..., f}. This is done as follows. Each w; € Ry_1 can be
uniquely partitioned into the strings in Rj_5, their boundaries are determined
by the positions of substrings ab? (k=1)=5 g Thus, branching existentially at
each ab?(*~1)=5 4 find a segment that is in Pj_5 ... Finally, at the lowest

vol. 28, n° 5, 1994



508 V. GBFFERT

level, check if the tape segment u € Ry = a™, enclosed in b’s, is in P (for
k even), or in Sy (for k odd), using the algorithm described above.

The initial checking for w € Ry as well as searching for the segment
boundaries, level by level, can be done in constant space, using the finite
state control. The worktape is needed at the lowest level only, to check if
some u € P»/Sy. The space used is then bounded by O (log log (|« |)), for
some |u| < m, i e, by O (log log (n)).

Similarly, S; € Xi-SPACE (log log (n)), for each k > 2. The only
difference is that the topmost level branching is existential. [

CoroLLARY 1: For each k > 2 and each s (n) with sup s(n)/log (n) =0,
Yx-SPACE (log log (n)) — - SPACE( ( ) # 9,
and also,
II;-SPACE (log log (n)) — £;-SPACE (s (n)) # <.

Moreover, it is obvious that ¥;/II;-SPACE (s(n)) C 3,41 /Ilit1-
SPACE (s (n)), for each 4 > 1. From this we have:

CorOLLARY 2: For each k> 2 and each s (n) with sup s(n)/log (n)=0,

n—00

S%-SPACE (log log (n)) — S¢_1-SPACE (s (n)) # 2,
Y,-SPACE (log log (n)) — IIx—1-SPACE (s (n)) # <,
I1I;-SPACE (log log (n)) — Xx—1-SPACE (s (n)) # @,

1I;-SPACE (log log (n)) — II;_1-SPACE (s (n)) # &.

That is, the alternating space hierarchy does not collapse between
log log (n) and log (n):

CorOLLARY 3: For each k > 2 and s(n) > loglog (n) with
sup s(n)/log (n) = 0,
n—o0

S4_1-SPACE (s (1)) G Sx-SPACE (s (n)),
Yr_1-SPACE (s (n)) & T-SPACE (s (n)),

II;_;-SPACE (s n)ng SPACE (s (n)),
II;_-SPACE (s (n)) & TIt-SPACE (s (n)).

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE: ALTERNATIONS IN LOW LEVEL SPACE 509

CoroLLARY 4: For each k > 2 and s (n) > log log (n) with sup s(n)/

log (n) = 0, X4-SPACE (s (n)) and I1;,-SPACE (s (n)) are not closed under
complement.

Proof: 1t is easy to show, by induction on k, that Sy = Ry — P and
P, = Ry — S, for each k > 2. Should ¥;-SPACE (s(n)) be closed
under complement for some & > 2 and some s(n) above log log (n),
we have Sf = Rj U P, € %;-SPACE (s (n)). Since $;-SPACE (s (n)) is
closed under intersection with regular sets, (R U Px) N Ry = P, € X-
SPACE (s (n)), using Pr C Ry. But this is a contradiction for space bounds
below log (n). The argument for IIx-SPACE (s (n)) is almost the same. [

The tools presented above allow us to draw some further consequences:

THeOREM 12: For each k > 2 and s (n) > log log (n) with sup s(n)/
n—0o0

log (n) = 0, ¥x-SPACE (s (n)) is not closed under intersection and Il-
SPACE (s (n)) is not closed under union.

Proof: Suppose that II-SPACE (s (n)) is closed under union, for some
k > 2 and some s(n) > log log (n). Since Pj € II;-SPACE (log log (n))
and Ry is regular, Py8Ry, R8P, € 1I;-SPACE (log log (n)), where
$ denotes a new symbol. Using the union hypothesis, we have a IIg-
SPACE (s (n)) machine A recognizing L = {wi1Sws € RySRy; w1 € P
or wy € Pr}. We can now easily replace A by a new II;-SPACE (s (n))
machine A’ recognizing L' = P; U L, not using the union hypothesis: First,
A’ checks whether the symbol $ is present on the input tape. If yes, use A to
determine if the input w € L. If no, then simulate A imitating that the input
string is w$w. The only thing we have to remember, within the finite state
control, is whether the input head is positioned on the first or on the second
copy of w. If A reaches the right endmarker (on the first copy of w), interrupt
the simulation, move the head to the left endmarker, and pretend that § has
been crossed from left to right. Then carry on the second (nonexistent) copy
of w. If A moves back to the left endmarker, imitate crossing $ from right
to left. Clearly, A’ uses exactly the same amount of space on the inputs w
and wSw, for each w € {a, b}", i. e, Spacey (w) = Spacey (ww).

Because Py is a X-SPACE (s(n)) resistant language for each s(n)
below log (n), we have, using A', G = 0, and # = 2, some strings
wy € Py, w- & Py, and wy € Ry such that wy, w—, and wy are Spacey4,
(wo)-equivalent and (w4, w—) is a X, Spacey, (wp)-resistant pair. Now,
consider the inputs wo$wg, w-_$w—_, w_%wy, and wySw_. They are all

vol. 28, n°® 5, 1994



510 V. GEFFERT

Spacey, (wp)-equivalent, by Lemma 3. Since the initial configuration p; is
trivially Space,, (wp)-bounded on the string > wy <, we have also that
pr is Spacey, (wp)-bounded on > woSwy <. This follows from Space 4
(wo) = Spacey, (wodwp). By Lemma 4, pr is then Space 4. (wp)-bounded
on > w_%w_ <, >w_%wy K, and > wduw_ K.

Since w_ ¢ Py, the input w_$w_ must be rejected by the IIj-
SPACE (s(n)) machine A’ and therefore there must exist a rejecting
computation path beginning in p;r on > w_$w_ <. Suppose, for example,
that this computation path alternates outside the first w_.

Then we have a Y, __; -rejecting configuration p that is (i) placed outside the
first w— on > w_$w_ <. But p is also reachable from p; on > w4 Sw_ <K,
where it is placed outside wy, since w4, w— are Spacey: (wp)-equivalent
and py is Space 4. (wo)-bounded on >w_$w_ < and on > wySw_ K.

Clearly, (ii) p is Spacey. (wg)-bounded on > w_$w_ <« and on
> w4 $w_ < (it is reachable from py), and (iii) it is of alternating level ¥z_;.

Because (w4, w—) is a Xg, Spacey (wp)-resistant pair, we get,
using Theorem 5 for a = and § = $w_ <, that f, s, $u_« () <
fp,>w_$w_<« (). On the other hand, p is ¥j_;-rejecting on > w_$w- <,
by assumption, but ¥;_1-accepting on > w4 $w_ <, since w4 € Py (hence,
w4 8w_ € L), p is reachable from p; on > w4 $w_ <, and all alternation-
free paths from the IT;-accepting pr on > w4 $w_ < must be successful.

This gives fp s, $w <« () = 1 and f s sw_« () = 0, which is a
contradiction.

If the rejecting path beginning in py on > w_$w_ <K alternates inside the
first w—, then it alternates outside the second w_ and we can use almost the
same argument for > w_$w; <. All other cases, i. e., an infinite cycle or
halting are also very similar and therefore they are omitted.

The corresponding proof showing that ¥;-SPACE (s (n)) is not closed
under intersection uses the language Si U S8S;x. O

In general, though P € IIx-SPACE (log log (n)), we cannot check
the input $w;$w$...$w;s$ for any logical relation other than w; €
Py & ... &w; € P, not using a different alternation level or at least
log (n) space. However, if f is a fixed constant, then Ygio/Ilkio-
SPACE (log log (n)) is sufficient, because any relation can be put into
the disjunctive/conjuctive normal form and the complement of P is in Y-
SPACE (log log (n)). The same holds for Si € ¥;-SPACE (log log (n))
and the relation w1 € Sp V...V w; € S.

Informatique théorique et Applications/Theoretical Informatics and Applications



A HIERARCHY THAT DOES NOT COLLAPSE- ALTERNATIONS IN LOW LEVEL SPACE 511

Some important problems remain open, namely, the relations
among DSPACE (s(n)) = Xo-SPACE(s(n)) = IIp-SPACE (s(n)),
NSPACE (s(n)) = %;-NSPACE (s(n)), and II;-SPACE (s(n)).
The partial answer for the tally sets has been achieved, i. e, Xj-
SPACE (s(n)) N a* = II;-SPACE (s (n)) N a* for each s (n), independent
of whether s(n) is above log (n) or space constructible [10]. Quite
surprisingly, this does not imply that the hierarchy collapses to ¥; on the
tally sets, since £2-SPACE (s (n)) N a* # II3-SPACE (s (n)) Na* ([9] or
[this paper]). The problem DSPACE (s (n)) versus NSPACE (s (n)) is also
open for the superlogarithmic case.

ACKNOWLEDGEMENTS

The author thanks Branislav Rovan and Robert Szelepcsényr for several helpful remarks
concerning this work.

REFERENCES

1. L. Bagar and S. Moran, Arthur-Merlin games: A randomized proof-system, and a
hierarchy of complexity classes, J. Comput. Syst. Sciences, 1988, 36, pp. 254-276.

2. T. Baker, J. Gur and R. Sorovay, Relativizations of the P =7NP question, SIAM
J. Comput., 1975, 4(4), pp. 431-442,

3. B. von BraunmunL, Alternation for two-way machines with sublogarithmic space,
to appear in Proc. of STACS’93.

4. B. von Braunmunt, R. Gencier and R. Rerringer, The alternation hierarchy for
machines with sublogarithmic space is infinite, Research Report 8589-CS, University
of Bonn, 1993.

5. A. K. Cuanora, D. Kozen and L. J. StockmEeYer, Alternation, J. Assoc. Comput.
Mach., 1981, 28, pp. 114-133.

6.J. H. Cuang, O. H. Isarra, B. Ravikumar and L. Berman, Some observations
concerning alternating Turing machines using small space, Inform. Process. Lett.,
1987, 25, pp. 1-9 (Erratum: 27, 1988, 53).

7. A. R. Freepman and R. E. Lapner, Space bounds for processing contentless inputs,
J. Comput. Syst. Sciences, 1975, 11, pp. 118-128.

8. V. Gerrert, Nondeterministic computations in sublogarithmic space and space
constructibility, SIAM J. Comput., 1991, 20(3), pp. 484-498.

9. V. Gerrert, Sublogarithmic ¥3-SPACE is not closed under complement and other
separation results, RAIRO Theoretical Informatics and Applications, 1993, 27(4),
pp- 349-366.

10. V. Gerrerr, Tally versions of the Savitch and Immerman-Szelepcsényi theorems for
sublogarithmic space, SIAM J. Comput., 1993, 22(1), pp. 102-113.

11. J. Hartmanis, The collapsing hierarchies, EATCS Bulletin, 1987, 33, pp. 26-39.

12. L. A. HemacHanDra, The strong exponential hierarchy collapses, Proc. of 19th ACM
STOC Conference, 1987, pp. 110-122.

vol. 28, n° 5, 1994



512 V. GEFFERT

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

N. Immerman, Nondeterministic space is closed under complement, SIAM J. Comput.,
1988, 17, pp. 935-938.

K. Iwama, ASPACE ( o (log log)) is regular, SIAM J. Comput., 1983, 22(1), pp. 136-
146.

B. Jenner, B. Kirsic and K. Lance, The logarithmic alternation hierarchy collapses:
AT = ATIL, Information and Computation, 1989, 80, pp. 269-288.

M. Liskiewicz and R. REeiscHuk, Separating the lower levels of the sublogarithmic
space hierarchy, to appear in Proc. of STACS’93.

M. Liskiewicz and R. Reschuk, The sublogarithmic space hierarchy is infinite,
Technical Report, Technical University of Darmstadt, 1993.

D. Ranian, R. Cuang and J. Harrvanis, Space bounded computations: Review and
new separation results, Theoret. Comp. Sci., 1991, 80, pp. 289-302.

U. Scuonmg and K. Wacner, Collapsing oracle hierarchies, census functions, and
logarithmically many queries, Proc. of STACS’88, Springer-Verlag, LNCS, 294,
1988, pp. 91-97.

J. Seireras, A note on notions of tape constructibility, Technical Report CSD-TR-187,
Pennsylvania State University, 1976.

R. E. Stearns, J. Hartmants and P. M. Lewis II, Hierarchies of memory limited
computations, Proc. of 1965 IEEE Conference Record on Switching Circuit Theory
and Logical Design, 1965, pp. 179-190.

R. Szerepcsenyi, The method of forced enumeration for nondeterministic automata,
Acta Informatica, 1988, 26, pp. 279-284.

A. Szerrowski, Some remarks on the alternating hierarchy and closure under
complement for sublogarithmic space, Information Processing Letters, 1989, 33,
pp. 73-78.

S. Toba, £2-SPACE (n) is closed under complement, J. Comput. Syst. Sciences,
1987, 35, pp. 145-152. i

A. Yao, Separating the polynomial time hierarchy by oracles, Proc. of 26th FOCS,
1985, pp. 1-10.

Informatique théorique et Applications/Theoretical Informatics and Applications



