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A HIERARCHY THAT DOES NOT COLLAPSE:
ALTERNATIONS IN LOW LEVEL SPACE (*)

by Viliam GEFFERT (*)

Abstract. - The alternation hierarchy of s (n) space bounded machines does not collapse for
s(n) below log(n). That is, for each s(n) between log log (n) and\o§{n) and each k ^ 2, £fc_i-
SPACE(s(n)) and Iïfc_i-SPACE(s (n)) are proper subsets of Efc-SPACE (5 (n)) and also of
Ilfc-SPACE (5 (n)). Moreover, S^-SPACE (5 (n)) is not closed under complement and intersection,
similarly, 11 -̂SPACE (5 (n)) is not closed under complement and union.

Résumé. - La hiérarchie de machines bornées en espace par s (n) ne s'écroule pas en dessous
de log (ri). Plus précisément, pour tout s (n) compris entre log log (n) et log (n) et pour tout
k > 2, £fe_i-SPACE(s(n)) et nfc_!-SPACE(s (n)) sont des sous-ensembles propres de £fc-
SPACE(s(n)) et II*-SPACE (s ^n)). Déplus, Efc-SPACE(s (n)) n'est pas fermé par complément
ni par intersection, et de façon similaire, II^-SPACE (s (n)) n'est pas fermé par complément ni
par union.

1. INTRODUCTION

In the structural complexity theory, many hiérarchies have been studied
and various relations between them have been established. However, direct
proofs showing collapsing or noncollapsing hiérarchies are very rare.

For example, the strong exponential time hierarchy is finite, as has been
shown in [12], and so is the hierarchy of interactive proof Systems [1].
Infinité hiérarchies are even more rare. Most of the known results concern
classes relativized by oracles ([11, 2, 25]), giving both finite and infinité
hiérarchies.

During the last few years, very important results have been achieved for
the alternation hierarchy of space-bounded computations. First, some space
bounded hiérarchies were shown to be finite ([15, 24, 19]). These results were
then superseded by the resuit of Immerman and Szelepcsényi showing that the
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4 6 6 V. GEFFERT

nondeterministic space is closed under complement ([13, 22]). This implies
that the alternation hierarchy of s (n) space-bounded machines collapses to
NSPACE (s(n)) = Ei-SPACE (s(n)), Le.,

Efc-SPACE (5 (n)) = Ilfc-SPACE (s (n)) = Si-SPACE (s (n)),

for each k > 1 and each s (n) > log (n). Taking this fact into considération,
the question of whether there is an infinité hierarchy for sublogarithmic
space bounds naturally arises.

The first sign indicating that the alternation hierarchy behaves radically
different for space below log (n) was the proof [6] that Si-SPACE (s(n)) §
II2-SPACE (s (n)), for each s (n) between log log (n) and log (n). This result
was then slightly improved in [23] by showing that 5 (n) can be bounded
from below by any unbounded fully space constructible function l (n). There
exist sublogarithmic, unbounded, and fully space constructible functions,
but they are necessarily nonmonotone and hence the corresponding space
complexity classes do not contain DSPACE (log log (n)) ([7, 20, 8]).

The next step was the séparation of the first three levels of this hierarchy
[9], Le., Si-SPACE (s (n)) § S2-SPACE (5 (n)) % E3-SPACE (s (n)), sym-
metrically, Üi-SPACE (s(n)) § n2-SPACE(5 (n)) § n3-SPACE(5 (n)),
for space bounds between log log (n) and log (n). Then the third and fourth
levels were separated [16], Le., S3-SPACE (s (n)) ^ E4-SPACE(s (n)) and
II3-SPACE (s (n)) g II4-SPACE (5 (n)). Finally, it has been shown that the
hierarchy does not collapse below the level five [3]; E4-SPACE (5 (n)) ^
S5-SPACE (s (n)). Figure 1 summarizes the known results, arrows indicate
the proper inclusions.

s\f ^Sj s\i Nj

"l ~* n2 -> "3 ~* n4 n5
X ^ O *x O

Figure 1

We shall show that the alternation hierarchy of space bounded machines is
infinité, namely, that for each s (n) > log log (n) with sup s (n)/ log (n) =

0, and each k > 2, we have

(n)) ££ifc-SPACE(s(n)),
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£fc_i-SPACE(s(n)) § IIfc-SPACE(s (n)),

II*_i-SPACE($(n)) § S*-SPACE(s(n)).

Moreover, S&-SPACE(s (n)) and IIfc-SPACE(s (n)) are incomparable, Le.,

Sfc-SPACE (5 (n)) - n*-SPACE (5 (n)) / 0 ,

nfc-SPACE (s (n)) - Sfc-SPACE (5 (n)) ^ 0 .

Finally, we show that S&-SPACE (s (n)) is not closed under complement and
intersection, and that II^-SPACE (s (n)) is not closed under complement and
union. Since machines using less than log log (n) space can recognize the
regular languages only ([21, 14]), this settles the alternation space hierarchy
problem;

- the hierarchy collapses to Si-SPACE (5 (n)) for the superlogarithmic
case,

- the hierarchy is infinité for space bounds between log log (n) and log (n)
[this paper],

- the hierarchy collapses to the deterministic constant space for space
bounds below log log (n).

The open problems of this hierarchy are the exact relations
among S0-SPACE (5 (n)) = DSPACE (s (n)), Si-SPACE (s (n)) =
NSPACE (s (n)), and IIi-SPACE (s (n)).

The paper is organized as follows: we begin in Section 2 by giving some
basic définitions and lemmas that will be used later.

Section 3 discusses the so-called n —> n + n\ method which was used
first in [21] to show that the deterministic machines using less than log (n)
space cannot distinguish between inputs ln and ln+n\ This method has
been extended to the nondeterministic case [8]. We shall now generalize this
method simultaneously in two directions: first, it can be applied not only to
the tally inputs, but also to some binary inputs having a periodic structure.
Second, it can be used, in a modified form, for the Eju/n^-alternating
machines as welL

The key observation of the Section 4 is the fact that the computation trees
of the alternating machines can be viewed as if they were the trees describing
an évaluation order of operators in the ordinary boolean formulas, and hence
put into the conjunctive/disjunctive normal forms.

Section 5 brings another new proof technique - the notion of
Sfc/IIfc-SPACE(s(n)) résistant strings and languages. Roughly speaking,

vol. 28, n° 5, 1994



4 6 8 V. GEFFERT

a pair of strings tüj, W2 is Efc/II&-SPACE(s(n)) résistant if no machine
can use any E^/Ii^-alternating 5 (n) space bounded machine as its oracle
to distinguish between the substrings w% and 11/2 on the input tape.
We shall show that having given languages with Efc/IIfc-SPACE(s(n))
résistant words, we can design languages that are Sfc+i /n^+i-SPACE (s (n))
résistant.

Section 6 gives an induction base for this anti-oracle mechanism by
exhibiting some £2/112-SPACE (s (n)) résistant languages, for each s(n)
between log log (n) and log (n). Then the infinité space hierarchy is
established and some closure properties under booîean opérations are
shown.

Update
The existence of the infinité hierarchy have been proved independently

by two other groups of authors, namely, by M. Liskiewicz and R. Reischuk
[17], and also by B. von Braunmühl, R. Gengler, ând R. Rettinger [4], so
now there exist three independent solutions. The proof in [17] is also based
on the n —• n + n ! method, using a different argument, but the witness
languages are very similar. The proof in [4] is completely different, its
argument holds for the weakly space bounded machines as well, but requires
witness languages having a much higher information content.

2. PRELIMINAIRES

We shall consider the standard Turing machine having a fînite
control, a two-way reàd-only input tape with the input enclosed in two
endmarkers, and a separate semi-infinite two-way read-write worktape,
înitially empty.

The reader is assumed to be familiar with the notion of alternating Turing
machine, which is at the same time a generalization of nondeterminism
and parallelisrn. See [5] for a more exact définition and properties of
alternating machines. We shall now introducé this notion in a slightly
différent way.

DÉFINITION 1: A mernory state of a Turing machine is an ordered triple
q = (r, u, j), where r is a state of the machine's fînite control, u is a
string of worktape symbols written on the worktape (not including the left
endmarker or blank symbols), and j is a position of the worktape head.

Informatique théorique et Applications/Theoretical Informaties and Applications
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A configuration is an ordered pair p — {q, i), where q is a memory state
and i is a position of the input tape head.

The size of a memory state q = {r, u, j ) is the length of the worktape
space used, Le., \ u |. We shall dénote it by /q/. The size of a configuration
P — {3S 0 is> t>y définition, / p / = /g / . The size of the initial configuration
PI = <9/, 0) = ((rj, e, 0), 0) is zero.

We may assume, without loss of generality, that the machine is not allowed
to write the blank symbol on the worktape or reduce the size of its memory
state. Therefore, if a configuration p% can be reached from p\ by some
computation path, then jpij > /Pi/-

We also assume that the machine making a constant number of altemations
has its set of finite control states divided into pairwise disjoint sets
Sfc, II&_i, Sfc-2î II/c—3, ... (for Efc-alternating machines, k G N) or
II&j Sfc_i, llfc_2, S^_3, ... (for Ilfc-alternating machines) such that if the
machine can get, by a single computation step, from a finite control state
r G S/ to r', then rf G S/ or r' G TI/_i. Similarly, for r G 11/ we have
rf G 11/ or r1 G Ez_i.

The finite control states in E = M T>i are called existential, those in
l

II = ^J 11/ are universal. Each memory state or configuration inherits the
l

type of the finite control state included.
An alternation is a computation step changing the finite control state

r G S/ to r' G II/_i, or r G 11/ to rf G S/_i. Clearly, a computation path
beginning in any Ü&/II&-configuration can make at most k — 1 altemations,
for each k > 1.

DÉFINITION 2: a) A configuration p is Yii-accepting, if it is of type E/ and
there exists an alternation-free computation path from p to p1 such that

(i) either p1 is a halting configuration that accepts the input,
(ii) or the machine enters a II/_i-accepting configuration in the next

computation step fromp'.

b) A configuration p is Hi-accepting, if it is of type 11/ and each
alternation-free path from p

(i) either halts and accepts the input,
(ii) or enters a E/_i-accepting configuration.
The rejection is a little more complicated, since infinité cycles must also

be considered:
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c) p is Yii-rejecting, if it is a E/-configuration and all alternation-free paths
from p are

(i) either halted in configurations that reject the input,
(ii) entering II/_i-rejecting configurations,

(iii) or executing infinité cycles.

d) p is Ui-rejecüng, if it is a II/-configuration having an alternation-free
path from p that

(i) either halts and rejects the input,
(ii) enters a Ej_i-rejecting configuration,

(iii) or exécutes an infinité cycle.

• By définition, a S^/II^-machine accepts the input if the initial
configuration is determined .to be Eju/IT^-accepting, respectively.

DÉFINITION 3: Let A be an alternating Turing machine and w be its input.
We define Space^ (w) as the size of the maximal configuration that is
reachable by A from the initial configuration pi — (qj, 0) on the input w
(enclosed in the endmarkers "»" and "«"). The machine A is s (n) space
bounded, if for each input w

SpaceA (w) < s (| w |). (1)

The classes of languages recognizable by alternating O(s(n)) space
bounded machines making at most k - 1 alternations, with the initial finite
control state existential or universal, will be denoted by S&-SPACE(s (n))
or Ilfc-SPACE(5 (n)), respectively.

It is not too difficult to show that, for each machine A, there exists a
constant c such that the number of different memory states not using more
than S space on the worktape can be bounded by

number of memory states
of size at most S < cs, (2)

c > 6 ,

for each S > 1. The condition c > 6 is technical, it will be used later. It is
easy to bound c by any fixed constant from below. (This condition is used to
bound some polynomials of cs by a fixed power of cs', e.g., we shall need
((cs)2 + 1) + (cs + 1) + (c5)2 < (cs)\ for each S > 1.)

Before passing further, we shall put the machine A into the following
normal form:

Informatique théorique et Applications/Theoretical Informaties and Applications
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LEMMA 1: For each s{n) space bounded ü^j^l^-alternating Turing
machine A, there exists an equivalent T>jc/H]c-SPACE(s (n)) machine A'
such that for each input w, each i — 0, ..., | w | + 1, and each h — 0,
..., Space^ (w), there exists a configuration p having used exactly h space
on the worktape with the input head position equal to i that is reachable from
the initial configuration on w.

Proof: We can replace the original machine A by a new machine A! that
simulâtes A but that, each time A is going to extend the worktape space
(by rewriting the leftmost blank on the worktape by a nonblank symbol),
Al performs the foliowing actions:

a) If A is in an existential configuration, then Aï, branching existentially,
décides whether

al) to carry on the simulation of A,

al) or to move the input head to the left endmarker. Each time the input
head is moved one position to the left, A1 branches existentially again and

a2A) either moves more to the left (go to a2),

a2.2) or extends the worktape space, and then halts and rejects the input.

a3) The third computation branch does the same as the second (al), but
the input head is moved to the right endmarker.

b) The same actions are taken if A is in universal configuration, but
all branches are universal, and the space extension in b2.2 (cf. a2.2) is
terminated by accepting the input.

It is easy to see that for each i — 0, ..., | w | + 1 and each h — 0,
..., Space^ (w) there exists a configuration p = {q, i) of size jpj — h that
is reachable from the initial pi. The machine A! has more computation paths
than does the original machine A, but "new" computation paths have been
added so that they cannot affect the accept/reject status of the computation
tree, and hence both A and Af recognize the same language. Note that neither
the number of alternations nor the space used have been changed. •

DÉFINITION 4: Let S ^ 0 and let p be a configuration with the input head
positioned on a substring w of input aw f3, or going to enter w in the next
computation step. p is S-bounded on w, if no computation path beginning
in p uses more that S worktape space before it leaves w by crossing its
left/right margin for the first time. (But the space used can exceed S once
the left/right margin of w has been crossed.)

vol. 28, n° 5, 1994



472 V. GEFFERT

Clearly, if a configuration p' is reachable from p by a path never leaving w
and p is S-bounded on w, then p1 is also 5-bounded on w.

DÉFINITION 5: Let 5 ^ 0 . Strings w\ andw2 are S-equivalent for a
machine A, if A has a computation path from the configuration ( QA , &A )
entering wi to {qs-, Î>B) leaving w\ on the input aw\(3, for ZA, ÎB £
{ | a |, j a l + l wi 1 + 1}, if and only if A has a path from {#A5 &A ) entering W2
to {<?#, «# ) leaving IÜ2 on a W2 /?, for Z'A, Z'B G { | a |, | a | + | W2 | + 1 },
respectively. (The margins of w\ and ^2 are crossed only in the first and last
computation steps). This holds for any ÇA, qs such that /ÇA/ < /QB/ < S,
and each a, /?.

LEMMA 2: Le? aw\f3 and a W2 P be some inputs for a machine A such
that w\, W2 cire S-equivalent for some S > 0. Then A can get from a
configuration p to pf on the input awi/3 if and only if A can getfrom p to p1

on aw2f3, for any p, pf satisfying fpj < /p1j < S, with the input head
positioned on a or f3. (Since w\, W2 may be of different lengths, the input
head positions ofp andp* are relative hère, to the left margins of a or (3.)

Proof: The argument is a straightforward induction on the number of
times the input head crosses the margins of w\ and W2 on inputs awi(3
and aw2 (3, respectively, using the f act that no configuration can use more
than S space along the path from p to p'. Paths from p to p1 may be different
inside tui, W2, but they are equal outside tui, W2- (Seefig. 2.) •

cc

1 ,
^

-y

—41 _ _ _ > _ _ _ _

an

Figure 2

LEMMA 3: Ifw\, w% are S-equivalent, then ao w\ a.\ w\ a.2 ... otn-i
and ao VÔ2 OL\ W2 OL<I *.. otn-i W2 otn are S-equivalent, for any aoj a i ? * > n

Proof: As a special case of Lemma 2, for p entering a w\ (3/a W2 (3 and p1

leaving a w\ (3/a W2 P, we get that if w\, ^2 are S-equivalent, then so are
aw\ (3 and au>2 j9. The rest of the argument is a straightforward induction
on n, D
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Individual computation paths not using more than S space cannot
distinguish S-equivalent w\, W2 for inputs a w\ (3 and a W2 j3. But beware;
even within S space, an alternating machine may reject aw\f3 but accept
av)2/3- This can be achieved by a "coopération" of several computation
paths. Consider the situation shown by Figure 3. Symbols "&" and "V"
represent universal and existential décisions, respectively. The sets of
configurations reachable on the margins of w\ and W2 are the same. But
if pi, P2 are II/-rejecting and P3, p^ II/-accepting configurations, then p is

n o>wi{3 but II/+2-acceP ting on ozw2j3.

Figure 3

Therefore, the S-equivalence is "weak", it does not guarantee the equal
acceptance. However, it does guarantee the equal amount of worktape space
used.

LEMMA 4: Let w\, W2 be S-equivalent for some S > 0. Then

a) a configuration p is S-bounded on aw\ (3 if and only ifit is S-bounded
on a W2 (3, for any a, (3, and each p with the input headpositioned on a or f3.
(The input head positions are relative to the left margins of a or (3.)

b) p is S-bounded on w\ if and only if it is S-bounded on w<i, for each p
that is going to enter w\, WÏ by crossing their left/right margins in the next
computation step.

Proof: a) We shall show that if the configuration p is S-bounded on
aw\(3 then it is S-bounded on a W2 (3- The converse is also true, by a
very similar argument.

Suppose that p is S-bounded on a w\ /3, but not S-bounded on a w^ (3.
Then the machine must enter a configuration using more than S space on W2,
since the segments of computation paths taking place on a or f3 are exactly
the same for a w\ (3 and a W2 /?, unless the space used exceeds S. Therefore,
there exists a configuration pf on W2, reachable from p by a path ne ver
leaving a tt/2 ƒ?, such that the machine is going to extend the worktape space
from S to S + 1 in the next step,
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Before doing so, by Lemma 1, our machine in the normal form décides
whether to carry on or to move the input head to the left/right endmarker.
That is, we have computation paths that move the input head outside W2
and then extend the worktape space, f.e., we have a configuration pn of
size S, with the input head positioned on a (or ƒ3), reachable from p on
a W2 (3, that is going to use space S + 1 in the next step. By Lemma 2,
pn is also reachable from p on aw\ f3. But this is a contradiction, since p
is 5-bounded on a w\ f3.

b) The argument for (b) is a special case of (a), with a = f3 = e, for
paths that enter wi, W2 by the first computation steps. Here we analyze
configurations reachable from p that are leaving w\, W2 by crossing their
margins. D

DÉFINITION 6: Let p be a configuration with the input head positioned on a
substring w of input aw f3, or going to enter w in the next step. We define
Exp^Wi the exit set ofw for p, as the set of all configurations reachable
from p on w that are leaving w by crossing its margins.

LEMMA 5: a) If a configuration pf is reachable from p by a path never
leaving wy then Exp/ ;^ C Exp u ) .

b) If a configuration p is S-bounded on w, then /pn / < S for each
p" G ExPïlü.

c) If a configuration p is S-bounded on S-equivalent strings w\ and W2,
then ExP; Wl — Exp. W2,for each p going to enter w\, W2 in the next step. (By
Lemma 4b, it is sufficient to suppose that p is S-bounded on w\ or W2 J

The following technical lemma shows an important property of
sublogarithmic functions. This lemma will be used later.

LEMMA 6: For eachfunction s (n) satisfying lim s (n)l log (n) = 0, each

c > 6, and each H > 1, there exists n > 2 such that

cs{-n >\ < Vn < \Vn] < - < n - l < n , for each n > n.

Proof: If lim s{n)/\og{n) = 0, then for each e > 0 there exists
n—>oo

n > 2 such that s(n) / log(n) < e, for each n > n. Among others,
nH > n > n, if H > 1 and n > n. Hence, for each H > 1 and each
e > 0, we have h > 2 such that 5 {nH)j log (nH) < e, for each n > h. But

Informatique théorique et Applications/Theoretical Informaties and Applications
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e = 1/2.Ü.6. log (c) > 0, for H > 1 and c > 6. Thus, for each c > 6 and
each H > 1, we have n > 2 such that

s (n H ) 1 ^
and nence alsolog(nH) 2.H.6. log(c) '

Tl

for each n > n. Since -y/n < \y/n'\ < — < n — 1 < n, for each n > 7,
this complètes the proof of the lemma. •

The condition lim s (n)/ log (n) = 0 is equal to sup 5 (n)/ log (n) = 0,

for each s (n) : N —» N.

3. THE iV -> JV + N ! METHOD

It was shown in [8] that a nondeterministic machine using less than log (n)
space cannot distinguish between inputs ln and i n + m !

) for each i > 0. In
this section, we shall extend this resuit from the tally inputs to binary inputs
with a periodic structure. Namely, Lemma 3, Lemma 4, and Theorems 1/2
in [8] are actually special cases of Lemma 7, Lemma 8, and Theorem 1 of
this section, respectively. Simultaneously, the "n —> n + n\" method will be
generalized to the altemating machines with a constant number of altérations.

LEMMA 7: Let S > 1 and d > 1. Then, for each input oftheform wm such
that \w\ — d and m > (cs)6 — M6, we have that ifthere exists a computation
pathfrom a configuration pi = {q\, i) to p2 = {<?2, i), M / < / W < S,
such that the input head never visits the right (left) margin ofwm, then the
shortest computation pathfrom p\ to p2 never moves the input head farther
than M2 , d = (cs)2. d positions to the right (left, respectively) ofi.

That is, each S space bounded computation path beginning and ending at
the same input position has a "short-cut" not wider than M2 blocks of w.

Proof: The argument is very similar to the proof of Lemma 3 in [8] but,
instead of all input tape positions on a tally input, we shall rather consider
memory states at block boundaries between adjacent wf s.

Suppose that the furthest configuration along the computation path from p\
to p2 is pp = (QF, h), with h — i > M2. d. Let q3 be the last memory state
along the path from p\ to PF such that the input head was at the left margin
of the j-th block w to the left of the position i, for j — 1, ..., M2 + 1, and
let t3 be the first memory state along the path from PF to p2 with the input
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head back at the left margin of the same w-block. (See fig. 4, where the q3 's
and tj's have been represented by rectangles.)

Since, by (2), there are at most M2 different pairs of memory states not
using more than 5 space, there must be at least one pair of memory states
in the séquence (ci, £i), (</2, £2), —, (<7M2+i, tu2+i) which is repeated.
Thus we have ƒ < j " such that (gy, tj>) = (#ƒ", ij») = (g,

Figure 4

But then we can remove the computation paths from q^ to qj" and
from ij** to tj/, and we have again a valid computation path from p\ to p%.
The path from qj» to *ƒ» via p^ is shifted more to the left, by an integer
multiple of d — \w\. This is possible even for w over the binary tape
alphabet, because wm has the periodic structure and the input head scans
identical symbols on the tape positions that are equal modulo d = \w\.
This process can be repeated until we obtain the shortest computation path
from pi top2-

The argument holds not only for nondeterministic machines, but also
for the alternating machines. However, it is possible that the configuration
VF = <<7F, M is E//II/-accepting while pf

F - {qF, h - d.(f -f)}
is E//II/-rejecting, or vice versa. For example, there may exist another
computation path from pjr that is not reachable from pf

F. D

The next lemma shows that each computation path on the periodic
input wm is independent from block positions, Le., it can be "moved"
freely along the input tape, by integer multiples of the block length |iu |,
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provided that it does not consume more than S space and begins/ends at
least M2 + 1 = (cs)2 + 1 w-blocks away from either margin.

LEMMA 8: Let S > 1, d > 1, and let wm be an input for the machine A
such that \ w | — d and m > (c^)6 — M6. Then, if there exists a computation
pathfrom a configuration {q\, i) to (g2, i + h}> /q\j < jqij < S, such
that the input head never visits either of the margins, there exists a pathfrom
( Qi, 3 ) t0 ( Q2, j + h}, for each j satisfying

(M2 + 1). d < j < (m - (M2 + ï)).d + 1,

(M2 + 1). d < j + h < (m - (M2 + 1)). d + 1,

j mod d — i mod d.

Proof: The argument is obvious; since, by Lemma 7 (see fig. 5), the
shortest path from (q\, i) to ( qi, i + h) never moves the input head more
than M2 w-blocks to the left of i, nor M2 w-blocks to the right of z-f h. Such
computation paths can be moved along the input tape by integer multiples
of d = [tut. D

W Vf | W [ W W W w [ w

blocks

Figure 5

In the same spirit, we can generalize Theorems 1 and 2 in [8] from tally
inputs to the periodic binary inputs, Le., traversais on the strings wm and
wm+im,

encj m the s a m e memory states, for each sufficiently
large m and each i > 0.

THEOREM 1: Let S > 1, d > 1, i > 0, and let wm, w
m+irnl be inputs

for the machine A such that \w j — d and m > {cs)6 = M6 . Then> for
any memory states ci, q<i satisfying /q\f < fqij < S, the machine A has a
computation path from the configuration (gi, 0) to (^2) m.d + 1) on the
input wm ifandonly if A has a path from (ci, 0} to (^2? (m + im\).d+ 1}
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on the input u,m+™!
> (jne margins ofwm and tym+2mï are crossed only in

the first and last computation steps.) A similar statement can be formulated
for traversals from right to left

Proof: (m —> m + im\) By (2), the number of different memory states
using at most 5 space is bounded by cs — M < M6 < m, and hence
our machine A, traversing the input wm from left to right, must enter some
memory state twice crossing the boundaries between adjacent lu-blocks. That
is, A exécutes a loop that traverses h w-blocks, Le., of length h.d, for some

m
h < M < m. This loop can be iterated F = i. TT j more times, which

gives a valid path traversing the input w
m+im^ since h.d.F = i.m !. d.

(m + ira ! —> m) The converse is not so simple since A is far from
repeating regularly any loop it gets in. Still, using the Lemma 8, one can
show that, for each computation path traversing the input w

m+im\ with
m > M 6 , A has a path that begins and ends in the same configurations at
the margins of w

rn+imX- and that itérâtes regularly a "short" loop, of length
h < M < m w-blocks, such that the portions of the input tape traversed
before and after this itération are also "short", of lengths at most M 4 w-

m
blocks. But then this loop is iterated at least F = i. TT j times on the

input w
m+im\ if m > M 6 = (c5)6 and c > 6. Cutting the first F itérations

of this loop out of the computation path, we shall get a valid computation
traversing the input wm.

For a more detailed proof, the reader is referred to Theorems 1 and 2
in [8]. The only différence is that here we do not consider all input tape
positions on tally inputs, but rather positions at block boundaries on the
periodic binary inputs. The f act that our machine is not nondeterministic
but alternating does not play an important role in the above considérations,
we simply ignore the acceptance status of the whole computation tree and
concentrate on reachability along a single computation path only. D

As a direct conséquence of Lemma 7 and Theorem 1, we obtain:

LEMMA 9: Let S > 1, d > 1, and i > 0. Then the words wm and w
mJr%m-

are S-equivalent, for each m > (c^)6 = M6 and \ w \ = d.

Proof: First, by Theorem 1, a configuration p2 leaving wm to the right
is reachable from p\ entering w171 from the left, jp\j < jp2J <! S, if and
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only if the corresponding traversai is possible on the input ^ m + î m " , for
each i > 0 and each m > M6 . The same holds, by symmetry, for traversais
from right to left.

Second, for each computation path from p\ to p2 not using more than 5
space, beginning and ending at the left margin of w

m+lrn\ and never
crossing its right margin, there exists, by Lemma 7, a path from p\ to p2
that never moves the input head farther than M2 w-blocks to the right from
the left margin. Since M2 < M6 < m, we have enough room to run this
computation on both w

m+'tm]- and wm. The same holds for computations
that begin and end at the right margins of wm and <wm+un !. •

The strings wm and w
m+im\ for m > (c5)6, have some important

properties. By Lemma 3, a wm (3 and a yjm+îm ! f3 are also 5-equivalent, for
any a and j3. Moreover, by Lemma 4, no machine tries to use more than S
space on a w

m+%m ! fi unless it tries to do so on a wm (3. The next theorem
shows that configurations having their input head positions exactly m ! w-
blocks apart and sufficiently far from either margin must have an equal
acceptance status on the input w

m+m\

THEOREM 2: Let S > 1, d > 1, i > 1, and let ™m+*m! be an input for
the machine A such that \ w \ = d and m > (c5)6 — M6 . The alternating
machine A has an accepting computation tree with the root in a configuration
pi = {qi, j) if and only if A has an accepting tree with the root in
pf

t — {q^ j + m\.d),forany S/ /Hi-configurations p/, p\ that are S-bounded
on w

m+irn\ and each j satisfying

(m+l. {m+m !)). d < j < j+m !. d < (m+i.m\~(m-\-L (m+m !))) .

(ƒ. e.,p/,pj of alternating level S//Et/ are at least m-\-L (m + m !) w-blocks
away from either margin. This is possible, for example, if i ^ 4/ + 3.)

Proof: The argument uses induction on the alternating level l. Because
no computation path beginning in pi or p\ uses more than S space before
reaching the left/right margin of <w

m+trn\ w e can use Theorem 1 and
Lemmas 7, 8, and 9.

First, suppose that the configuration pi = {qi, j) is XI/-rejecting. We shall
show that then so is p\ = {ç/, j + m\.d). If pi is II/-rejecting, then at least
one computation path beginning in p\ must reject the input. We have the
following cases to consider:

1) The rejecting computation path alternâtes, Le., it enters a Ej_i-rejecting
configuration p/_i = (ç; - i , h). There are now the following subcases:
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la) The rejecting path alternâtes not moving the input head farther
than m + m ! tü-blocks away from the position j , and hence \h — j \ <
(m + m\).± Since both pi — {qh j) and p\ = (qh j -f m\.d) are at
least m + L{m + m\) w-blocks away from either margin of w

m+îrn\
configurations pi_i = (<?/_i, h) and p{_j = (g/_i, /i + m!.d) are at least
m + (Z - 1). (m + m !) w-blocks away from the margins. (See fig. 6.)

m! w-blocks

Figure 6

Further, by Lemma 8, if pi_1 is reachable from p\ then p\_x is reachable
from p\, because positions j , j + m ld, h, and h + m ld are all at least
m > M2 -h 1 w-blocks away from either margin, for each / > 1. Now, using
the induction hypothesis for V = l - 1, we have that if the configuration
p/_i is £/_i-rejecting, then pj_1 is also £/_!-rejecting. But then p\ must be
11/-rejecting, because it has a computation path that enters a S/_i-reJecting
configuration.

\b) The rejecting computation path moves the input head farther than
m + m ! w-blocks away from j \

(i) Suppose that the rejecting path gets too far to the left. Let PB =
(QB> 3 ~ m -d) be the first configuration with the input head positioned m
w-blocks to the left of j , and letp^ = {q^y j ) be the last configuration along
the path from pi to ps with the input head position equal to j . (See^g. 7.)

l w i w | w t w | w | w | w | w | w l w | w |

Figure 7
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Clearly, PA and ps are II/-rejecting. By Lemma 8, p'A — { ÇA, j + m !. d} is
reachable from p\, since both j and j + m !. d are at least 771 > M 2 + 1 u>-
blocks away from either margin. Moreover, PB is reachable from p'A because,
by Theorem 1 and Lemma 9, the machine has a path traversing the tape
segment w771 if and only if it has a corresponding path traversing wm+m !.
But then p\ is also II/-rejecting, since some paths from p\ and p\ enter the
same S/_i-rejecting configuration p\-\.

(ii) The same holds if the rejecting path from p\ gets too far to the
right; now some paths from p\ and p\ share a common configuration PB
lying m + m\ lu-blocks to the right of j ,

2) Suppose that p\ is 11/-rejecting because some computation path enters
an infinité cycle, making no alternation at ail. By a reasoning very similar to
Case 1, we can show that (a) either the entire cycle is executed between the
positions j — (m + m !). d and j + (m + m !). d and then p\ has a parallel
path with the same infinité cycle at the distance m ! w-blocks apart; (b)
or at least a part of the infinité cycle lies farther then m + m ! u>-blocks
away from j . But then pi and p\ share the common cycle. In both cases,
p\ is 11/ -rejecting.

3) Finally, some alternation-free path beginning in p\ may hait in a
configuration that rejects the input. Again, either this path does not move the
head "too far" and then we have a parallel path for p\, or else some paths
from pi and p\ share the same halting and rejecting configuration.

Thus, we have shown that if p\ — (qi, j) is 11/-rejecting then so is
pl

} — {qu j + m !. d ). It is not too hard to see that if p\ is 11/-rejecting then,
by symmetry, p\ must also be 11/ -rejecting. Therefore, pi is II/-accepting if
and only if p\ is II/-accepting.

By a very similar reasoning, we can show thatp/ is E/-accepting if
and only ifpj is E/-accepting. The main différence is that, instead of
rejecting computation paths beginning in II/-rejecting configurations, we
analyze accepting paths beginning in E/-accepting configurations. Further,
Case 2 need not be considered, since no accepting path beginning in the
E/-accepting p\ or p\ can be an alternation-free infinité cycle.

To complete the proof, we have to show that the induction hypothesis
holds for l — 1, Le., for E1/II1-configurations. However, the structure of
the proof for / = 1 is exactly the same as for l > 1, with Case 1 eliminated
(no more alternations ahead). Note that Case la was the only place where
the induction hypothesis was required. D
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4. LOGIC BEHIND ALTERNATION

In this section we introducé the notion of a characteristic boolean
function fP: w for a configuration p positioned on a substring w of
input aw /?, which allows us to investigate the machine's behavior inside w
and outside w separately. This notion is based on the fact that the computation
trees of alternating machines can be viewed as if they were the trees
representing ordinary boolean formulas composed of AND and OR operators
only. Then we shall present some properties of such fonctions.

DÉFINITION 7: Let p be a configuration with the input head positioned on
a substring w of input aw/?, or going to enter w in the next computation
step. A characteristic function fp% w is a boolean function that is obtained
as follows: Take the computation tree the branches of which represent all
possible computations beginning in the configuration p. (All input head
positions are relative to the left margin of w.)

(i) Then each branch of the tree is pruned as soon as it reaches a
configuration t that is leaving w by crossing its left/right margin. The leaf
node now corresponding to t is then assigned a boolean variable Xt-

(ii) Each branch that represents an infinité cycle never leaving w is pruned
as soon as it enters the same configuration for the second time. The resulting
leaf node is then assigned a boolean constant 0 (FALSE).

(iii) Each leaf node that represents a halting configuration reachable from
the root p by a path never leaving w is assigned a boolean constant 0 or 1
(FALSE or TRUE), depending on whether it rejects or accepts the input,
respectively.

(iv) Each internai node representing an existential/universal configuration
is assigned a boolean operator "V'7"&" (OR/AND), respectively. An internai
node having exactly one son is ignored, Le., it is assigned a unary operator
of identity.

(v) If p is 5-bounded on w, for some S > 1, then the resulting tree is
finite and represents the évaluation order of operators for the boolean function
fp, zv {%tx, ..., xth), with the formai parameter list xt±, ..., xth corresponding
to ExP; w = {t\ , ..., th }, the set of all configurations reachable from p on w
that are leaving w by crossing its margins ("exits" of w for p).

Figure 8 présents an example of the tree-to-function transformation that
is described above:
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Figure 8

For the configurations p, we obtain

fP, w (xtl, x t2, x t3, xt4) = (xtl V 0) & ((1 y xt4) < xt2

which reflects the f act that p is an accepting configuration (Le., p has an
accepting tree on aw (3) if (i) t\ is accepting and (ii) at least one of t<i , £3
is accepting. The acceptation status of p on w dépends on the set of exit
configurations, Le., on ExPîWJ = {t\ , £2, £3, U}- Note that the resuit is
actually independent from t4 G Exp ^ because the accept/reject status of £4
is overridden by another computation path.

If fp,w (xtXi ..., Xth) is independent from each configuration tj G Ex w

then it is a constant fonction returning always the same boolean value.
Similarly, if no computation path beginning in p leaves w, then fp^w is
a constant function with the empty parameter list, Le., with h — 0. Such
functions will be denoted by fPiW( ).

It is easy to see that boolean functions composed by OR/AND operators
only (no NOT's) can be put into the conjunctive/disjunctive normal forms
so that no clause contains a negated variable, Le., for the conjunctive normal
form we have either ƒ (xi, ..., Xh) = constant 0/1, or

such that each of the clauses K\} ..., Kf is of the form

Kj = (xei V Xe2 V ... V Xe&),

where Aj — {x e i , ..., xeQ } Ç {x*i, ..., Xh}- Similarly, for the disjunctive
normal form, we get either a constant or

f(xu ..., xh) = ... V
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where

Kj = (xei hxe2 & ...&Xe|j),

for each j . These normal forms are obtained by the use of the distributive
rules and some other simple transformations (like, for example, 1 & a =>
a, O&a =>• 0, ...).

DÉFINITION 8: Let C" = (CJ, . . . , C'h), C" = {C!{, . . . , C£), h > 0, be

boolean vectors. We write C" < C", if Cj < C*' for each j e { l , . . . , / i } ,
C i < C", if Cj > Cj' for some j 6 { 1, ..., fc }. (As is usual, 0 < 1.) A
boolean function ƒ [x\, . . . , #&) w monotone, if ƒ (C) < ƒ (C/y) for each
C" < C". We write ƒ' < / / ; for two boolean functions ƒ' (xi, ..., xh) and
ƒ" (xi, ..., xfc), if ƒ' (C) < ƒ" (C) for each C.

It is easy to see that each characteristic boolean function fVj w is monotone,
since the operators AND, OR are monotone and the monotone compositions
of monotone functions must also be monotone. We shall now present some
properties of monotone functions that will be used later.

LEMMA 10: Let f (xi, ..., Xh) and f1 (xi, ..., x&) be monotone functions.
a) ïf f < f" and f {Cf) > f (C"), for some C', C", then Gf - < C".
b) Iffor each C', C" we have that f' (C) > / / ; (C") implies O -. < C",

then f < f".
The next two lemmas show that the conjunctive/disjunctive normal forms

of the monotone functions f and ƒ" are closely related, if f < f''.

LEMMA 11: Let f (xi, ..., Xh) and flf (xi, ..., x^) be monotone functions,
f < f. if

are the conjunctive normal forms for ƒ", f, then for each clause of f' there
exists a clause of f composed of a subset ofits variables only, Le., for each
f e { 1, ..., f" } there exists f G { 1, ..., f } such that

Kf;„=(xe>< V ... V v J ,

Kf
r=(xe[ V ... V s e ; /) ,

with

Aj, = {xe'i5 ..., xe*j } Ç Ajt, = {xe», ..., xe»;/ }.
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The proof is a straightforward contradiction. Supposing that ƒ" has a
clause K!L, such that each clause of f contains a variable outside A i , we
can easily find C satisfying 1 = ƒ' (C) > ƒ" (C) - 0. By a very similar
argument, we can show a corresponding property for the disjunctive normal
forms.

LEMMA 12: Let f (xi, ..., Xh) and ƒ" {x\, ..., x^) be monotone functions,
f < ƒ". If

f'(xu...,xh)=K[ V ... V K\,

are the disjunctive normal forms for ƒ", ƒ', thenfor each clause of f there
exists a clause of ƒ" composed ofa subset ofits variables only, Le.,/or each
ƒ G { 1, ..., f' } there exists ƒ ' G { 1, ..., f" } such that

with

AfL, = \xe", ..., xe»

The next two theorems state that even partial décompositions into
conjunctions/disjunctions are closely related for ƒ' < ƒ".

THEOREM 3: Let f (x\, ..., X&) and flt (x\, ..., x^) be monotone, f < fN.
ïfl = f(Cf) > f"{C") = OforsomeC\Ch\and fcan be partitioned into
f" {x\, ..., xh) = ÎA{%e1 , »., Xeg)&fB(xi, -» 5 %h)> far some monotone
f A, ÎB, with A = {a? e i ) ..., ^eg } Ç Ö = { x i , ..., ^ }, such that
f A (Cei ? ••• ) Ce ) = 0, ^Aen C' mü^r differ from Cn in a formai parameter
of f A , i-e., there exists xe G A such that 1 = C'e > C" = 0.

P r o ^ Since / A (C^, ..., C^) = 0 and fA (C^ ..., Cf
Bg) > f» {C) >

f (C1) — 1, we have that /A is not a constant function, and hence its
transformation into the conjunctive normal form does not degenerate into
a single constant.

Thus JA (C^, . . . , C" ) = 0 implies that /A has a clause not satisfied for
Cn', L e., we have üf̂  = (xa» V . . . V xa») with {^a", . . . , xa^} Ç A and
C",, = C /̂/ = . . . = C^n — 0. But we can find a conjunctive normal form for
ƒ" = JA&ÎB containing ail clauses for ƒ.4, and hence, by Lemma 11, f has
a clause K!

A composed of a subset of {xa", . . . , xa^}. Since ƒ' (C7) = 1,
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Kf
A is satisfied for C", hence, there exists xe G {xa^ . . . , xa»} Ç A such

that C£ = 1 and C£ = 0. D
A similar theorem holds for décompositions of ƒ' into disjunctions. The

corresponding proof mirrors Theorem 3, using the disjunctive normal forms
and Lemma 12, instead of Lemma 11.

THEOREM 4: Let f (xi, . . . , Xh) and ƒ" (#i, . . . , x/J £>£ monotone,
f < f"- lf 1 = ƒ'(<?') > ƒ"(<?") - 0 for some C1\ C", and f can
be partitioned into ƒ' O i , . . . , xh) = fA (xei> - . . , x e j V ƒ# (xi, . . . , xfc),
/or some monotone fA, ÎB> wüh A = {xei, . . . , xe&} Ç 5 = {xi, . . . , xh\,
such that f A (Cf

eii • • •, Cf
e ) = 1, ferc C7 must differ from C" m a formai

parameter of f A , i- e., r/z r̂e exists xe E A such that 1 = C'e > C" = 0.

5. ALTERNATION RESISTANCE

We are now ready to state and prove main theorems. First, we shall
introducé the notion of S^/üju, 5-resistant words, which compensâtes us for
the defects of 5-equivalence mentioned in Section 2.

DÉFINITION 9: An ordered pair of words (u/, wn) is £&, 5-resistant
5-resistant) for a machine A, if

a) wf and wn are 5-equivalent,

b) for each configuration-^,

b\) going to enter vJ and wff by crossing their left/right margins

in the next computation step,

bi) that is 5-bounded on vJ and on wn,
b3) of alternating level E^ or less (11^ or less, respectively)

we have /Pj w* < fPr w><.
By (a), individual computation paths not using more than S space cannot

distinguish vJ from wn on inputs awf /3 and a wu /3. By Lemma 4b, it is
then sufficient to suppose that p is 5-bounded on one of them only. Further,
by Lemma 5c, we have ExP;UI' = Expîiy», L e., the functions /p ; l ü ' and
fPtW" have the same formai parameter list and the accept/reject statuses of
p on the inputs awf j3 and a vJ1 f3 depend on the accept/reject statuses of
the same configurations leaving vJ and w" for the first time. The condition
fp,w' ^ fp,w" indicates that these statuses are closely related, unless the
machine A uses more space or a higher level of alternation. The next
theorem clarify the above idea.
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THEOREM 5: Let (K/, wn) be a Ü&, S-résistant pair. Then,for each a and p,

a) awf P and a wn P are S-equivalent,

b) for each configuration p,

b\) with the input headpositioned outside w1 and wff, i. e., on a or
on P (the input head positions are relative to the left margins
of a or P),

b2) that is S-bounded on awf P and on a wn j3,

b3) of alternating level Ü& or less

we have fPi0LW* p < fP,aw"p-

The same holdsfor the £&/ S-resistant {w1', tu") and each p of alternating
level EJU or less.

As a special case, for p entering awf j3 and a wlt P in the next computation
step, we get immediately that (awf ƒ?, awu P) is again a Ü&/E, *S-resistant
pair, respectively.

Proof: (a) follows easily from Lemma 3. Now, let p be any configuration
satisfying (bl), (b2), and (i>3). Because p is S'-bounded on OLVJ P and on
a wff P, and tu', tu" are 5-equivalent, a tu' /? and a tu" (3 have the same set of
exit configurations for p, L e., ExPiOtwip = ExP ; a w / / / 3 = {pi, . . . , ph} for
some p i , ...,ph leaving aw/P and aw"0. Thus, fPi<xw<p and fPiaw"p
have the same formai parameter list xPl, . . . , xPh.

We have to show that /p. aw> p < fp^a wn p. By Lemma 10b, it is sufficient
to show, for each C" = (C'Pl, . . . , C'Ph) and C" = (<?£, . . . , C!^h), that if
1 - fp,awp(C') > fp,aw»p(C") = 0, then C - . < C", i. e., there exists
Pe ^ {Pi, . . . , P/i} with 1 = Cf

Pe > CPe = 0. In other words, we shall
interrupt ail computation paths beginning in p on awf P and a w11 P as
soon as they are leaving awf (3 and a w!l P (awf P and a wf/ P may be
substrings of some longer inputs) and assign some accept/reject statuses
O = (C'Pl,...,C'Ph) and C}l - (C%1,...,C%h) to the configurations
Pi Î • • • Î Ph leaving a wf P and a wff P, respectively. We show that if this
assignment causes that p is accepting on avJP but rejecting on awf/P,
then, for some pe leaving aw' P and a wn /3, we had to assign the accept
status on a wf P, but reject status on a w" p.

Before proving this, we shall show two slightly weaker claims for
configurations reachable from p on a wf P and a w'f p.

CLAIM 1: Let r be a configuration
- with the input head positioned outside wf and w/f,
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- reachable from p by a path never leaving a wf f3 or a wff f3, (hence,
5-bounded on a wf f3 and a w/f f3, and of alternating level Uk or less),

- II/-accepting on a wf (3, but IT/-rejecting on a wn /?, for some l < k, then

(i) either 1 = C'Pe > C£ = 0, for some pe e Exp.aw,p = ExPfOlwu p,

(ii) or there exists a configuration r'

- with the input head positioned outside wf and w/f,

- reachable from r by a path never leaving a wf f3 ox a w" /?,

-S/ / / I I / / , -accepting on aw'09 but S///II//, -rejecting on aw"(3, for
some V < l < k (L e., of alternating level at most E/_i).

Proof of Claim 1: Because r is E*-rejecting for a tu" ƒ3, there must be
a rejecting computation path beginning in r on awff f3. We now have the
following cases:

0) The rejecting path reaches the margin making no altemation and leaves
aw" f3 in a configuration pe that is IT/-rejecting. (See fig. 9).

—[] r , TT--ace

Figure 9

Because w', tü/7 are 5-equivalent and r is 5-bounded on awf {3 and
a wn (3, pe is also reachable from r at the corresponding margin of a vJ f3.
Since r is II/-accepting on aw' (3, all alternation-free paths from r must
be accepting. Therefore, pe is üj-accepting on awf ft. Thus we have
pe G ExP ; a w / /3 = Exp^u,//^ with C'Pe = 1 and C£e = 0.

la) The rejecting path from the Et/-rejecting r alternâtes outside wf/ on
aw"P, L e., it enters a S/__i-rejecting configuration r' with the input head
positioned on a or /?. (See fig. 10)

-ür,n,-
4]

r '

—Q r , TT^-acc

Figure 10
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But then the S/_i-configuration rl is also reachable from the II/-accepting
r on a vJ /3. Since ail computation paths from r on a w! {3 must be accepting,
we have that r' is £/_!-accepting on awf p, but S/_i-rejecting on aw" (3.

\b) The rejecting path from r alternâtes inside wff on aw" (3, i. <?., it
enters a £/„!-rejecting r" with the head on w".

Let r' be the last configuration crossing the border of w!f along the path
from r to r"'. r' is a 11/-configuration, moreover, it is rejecting, since we
have a path from r' to r". (See fig. 11).

{]r,nrrej

w

: <

\
nracc , / ^

r,TT.-acc

Figure 11

Ail branches are universal along the path from r1 to r" and hence fr
f.W"

can be expressed in the form

fr', w"

where Ex

) & ƒ (arri, • - , Xrf),
| ail other branches

= { r i , . . . , 77} dénote the
sets of exit configurations of wn for r" and r', respectively. Let Cff =
(C^, . . . , C"f) dénote the accept/reject statuses for the exit configurations
ri , . . . , rf on the string a w/f /?. Because both rf and rn are rejecting on
awff /?, we have

r»tWn

î branch to r/f

= {ti , . . . , t f l} Ç

ƒ (-• •) = 0,

with

r t , • - • , C") = 0.

On the other hand, r' is also reachable from the II/-accepting r on awf (3.
Because r1 is reachable from p via r, it is 5-bounded on a wf f3 and a tu" (3
(hence, 5-bounded on wf and w") and of alternating level II*, or less. (It is of
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level Ui, with l < k.) Further, (V, wn) is a 11^, 5-resistant pair and hence

fr'yw
f < fr',w"•

fr'.w* has the same formai parameter list, corresponding to Exr/;W/ =
Exr'jW// = {ri, . . . , Tj}, Since all alternation-free paths from r on avJf3
must be successful, r' must be II/-accepting on avJf3 and hence the
accept/reject statuses & — (Cf

ri, . . . , C£f) of exists on a if//? must satisfy

But then, by Theorem 3, C7 must differ from Cn in a formai parameter
Of /r»,w", «'• «•» 1 = C ĵ > ^ = 0' f° r s o m e ^ € Exr//)tl,// Ç Exr')tü» —
Exr/jW;/ — {ri, . . . , rj}. In other words, there exists a configuration tj
reachable from rf on both awf f3 and a wf/ /?, having just left wf and it;77 by
crossing their margins, that is accepting on a w1 /3, but rejecting on a w11 f3.
Moreover, tj is reachable from the £/_i -rejecting rn and therefore it is of
alternating level E/_i or less.

All cases above were confirming the hypothesis of the Claim 1. We shall
now show that all cases that remain to consider lead to contradictions and
hence cannot happen.

2a) Suppose that the II/-rejecting r on a wff f3 has an infinité cycle, making
no alternation at all, and that at least a part of this cycle lies outside wn'.
(See fig. 12.)

-Or,ne-rej

w'

Figure 12

Thus, we can find a configuration r7 positioned outside wN such that (à)
rf is reachable from r on a wtf /?, (b) rf is reachable from r7 on a wn f3.
But then r1 is also reachable from r on awf f3, similarly, r7 is reachable
from r7 on a vJ f3. This gives an alternation-free cycle reachable from the
II/-acceptating r on awl f3, which is a contradiction.

2b) Suppose that the entire cycle is executed within wn. (Sezfig. 13.)
Let r7 be the last configuration along the path from r to the cycle crossing

the border of wf/. By a reasoning very similar to Case \b, r7 is II/-rejecting
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w'

ÎT. - ace

r , TT -ace

Figure 13

on avJ1 j3 but Ilf-accepting on awf (3. Because we haVe an alternation-free
path from the universal r' into the cycle on w/f, fr>,W" can be-expressed
in the form

fr',w" ( ^ r 1 ? • . . , Xrf) = 0 & ƒ ( x r i , . . . , Xrf),

branch for cycle | î other branches

*• e^ fr\w" is a constant function returning always zero and overriding the
accept/reject statuses C" = (#£ , ...,<%') of exit configurations. Because
r' is S-bounded on tu' and w'\ of alternating level IIj, l < k, and (w\ wu)
is a 31^, 5-resistant pair, we have fr^w* < fr>iW» and therefore fr^Wf is
also a constant function returning always zero.

On the other hand, r1 is II/-accepting on aw/ /3 and hence Cf
r, =

fr>,w>(Cf
ri, . . . , ÖJf) - 1 for some (77 - (C^, . , . , (7^), which is a

contradiction.

3) Finally, suppose that the 11/ -rejecting r has an alternation-free path
that halts in a rejecting configuration on awft (3. There are two subcases
again, corresponding to Case 2a and 2b: Either the machine halts outside
wf/ on a wn fi, and then the same halting and rejecting configuration is also
reachable from the Ilf-accepting r on awf /?, or it halts inside wn\ But
then we can find a configuration rf crossing the border of vJ/wn such that
ÎT*,W" (•••) = ° & ƒ (• • 0 d u e t 0 a halting path that rejects, frlyW* < /r/)W,",
but fr'iW' (C") = 1 for some (7'. In either case, this is a contradiction.

This complètes the proof of the Claim 1. A very similar claim can be
formulated for existential configurations.

CLAIM 2: Let r be a configuration

- with the input head positioned outside wf and wff,

- reachable from p by a path never leaving awf (3 or a wN ƒ?, (hence,
5-bounded on aw* fi- and a wff (3, and of alternating level II* or less),
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- Ef-accepting on a vJ f3, but £j-rejecting on a wn f3, for some l < k, then
(i) either 1 = C'Pe > Cpe = 0, for some pe E Exptawtp = ïïxPmaw<>p,

(ii) or there exists a configuration r'
- with the input head positioned outside w1 and wff,
- reachable from r by a path never leaving a vJ (3 or a wff f3,
- S///II/'-accepting on aw{ f3, but E;//lip-rejecting on aw/f (3, for some

lf < l < k (i. e., of alternating level at most ÏI/_i).

Proof of Claim 2: The argument mirrors the proof of Claim 1 but,
instead of the rejecting paths beginning in the IT/-rejecting r on awn (3,
we analyze accepting paths beginning in the S/-accepting r on aw* (3. The
only exceptions are Cases 2a and 2b that correspond to nothing in Claim 2,
because no accepting path can be an infinité cycle. To illustrate what Alice
can see through the looking glass, we shall review Case lb (alternation
inside).

Suppose that the existential configuration r is E/-rejecting on awf/ f3, but
£/ -accepting on awf f3, because it has a successful computation path that
enters a Hi~i-accepting r" positioned inside wf.

Then r1, the last configuration crossing the border of w! along the path
from r to r" is E/-accepting on aw! (3. All branches are existential along
the path from r' to rff, and hence

f r ' , w ' ( a V u • . - , X r i ) = fr",w> ( x t l , . . . , X t J V ƒ ( x T l i . . . , XTf),

| branch to rn | other branches

with Ex r» )UJ ' = { ^ i , . . . , ^ } Ç Ex r ' )U , ' = { r i , . . . , r f } . For the accept/
reject statuses of exit configurations on aw' f3 we then get

with

On the other hand, r' is reachable from the E/-rejecting r on awff f3. No
path beginning in the E/-rejecting r can be successful and therefore rf is
E/-rejecting on aw"f3. For the exits on awf/f3 this gives

= = 0.

Since Exr>.K/ = Exr')U;» and /r',^' < fr',iv" (by the same argument
as in Case lb of Claim 1), using Theorem 4 instead of Theorem 3, we get
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1 = G[, > C". — 0, for some tj G Exr»ïUJ', L e., there is a configuration that
is accepting on aw' (3 but rejecting on aw"/?, positioned outside tu7, tu",
and of alternating level at most II/_i, because it is reachable fromthe
H/_i-configuration r"'. This proves the Claim 2.

Proof of Theorem 5, continued: Recall that if the configuration p satisfies
(fel), (fe2), and (fe3), then Exp .a ï / / /3 = ExP;au,//0 = {pu . . . , ph}. It
remains to show that if 1 = fPraw' p{C) > fp aw" p(C") = 0' f° r

some C = (C^, . . . , C ; j and C" - (C£, ...,'c%h) representing the
accept/reject statuses of exit configurations pi, . • -, Ph o n the margins of
aw' P and aw"(3, respectively, then 1 = C'Pe > C'Pe = 0, for some
Pe S {Pi, .. . ,Pft}-

Suppose that p is 11^-accepting on a wf fi but 11^-rejecting on a wn f3; for
some C1 and Cn. Then, by Claim 1, for r = p, we get

(i) either 1 = Cf
Pe > Cpe — 0 for some pe and we are done,

(ii) or there must exist r^1) with the input head positioned outside vJ and
wn, reachable from p by a path never leaving a vJ j3 or a wf/ j3, of alternating
level lf < fc, that is E^ /II// -accepting on awf f3 but £///II//-rejecting on

If, for example, r^1) is an existential configuration, then we can use
Claim 2 and get

(i) either 1 — Cf
p& > Cp& — 0 for some pe and we are done,

(ii) or there must exist r(2) with the input head positioned outside wf and
w", reachable from rW by a path never leaving aw'(3 or aw"(3 (hence,
reachable from p), of alternating level ln < V < k, E////II///-accepting
on aw' P but S/// /II/// -rejecting on aw" fi. (If rW is universal, we use
Claim 1 again.) . . . .

This process cannot be repeated more than k times and hence, sooner or
later, we must get 1 = Cip& > C£ = 0.

This complètes the proof of the theorem. The argument for the S&,
5-resistant (tu7, w") is the same, but the starting alternation level is
existential. D

Before passing further, we shall review the problems that we are going to
tackle on the way from the résistant words to résistant languages. Suppose
that, for some language L', we have w+ G L' and w'_ 0 L' such that a
Sfc/IIfc — SPACE (s (n)) machine A' cannot distinguish w'+ from w'_. But
w+ and w'_ are quite long and the space of size s ( | w+ | ) or s ( | w'_ \ )
might be sufficient for A' to distinguish them. Therefore, we provide also
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a third example wf
0 (we do not care whether w*Q G Lf), that restrains Af

from using too much space, L e., A! cannot use more space on the inputs
w+ or wf_ than on w;

0. (Still, A! can use substantially more space on other
inputs of equal lengths.)

In addition, for each G > 0, we claim that no Efc+c/IIfc+G-SPACE (s (n))
machine A can use any S^/üfc-SPACE (5 (n)) machine A! as its subprogram
(roughly speaking, as its oracle) to distinguish wf+ from wf_. (Now they
can be some substrings of longer inputs.) We shall call such languages
Sfc/IIfc-SPACE (s(n)) résistant. Having given a E*-SPACE(s(n))
résistant language L', we shall design a n^+i-SPACE(5 (n)) résistant
language L with counterexamples «;+, w-, and wo, that are composed
of w+, K/_, and wf

0. But two problems arise here: First, A can use more
alternations than fc, second, the worktape space limit has been increased from
s ( I w'+ I ) or 5 ( I u?L I ) to s ( I a wf

+ (3 \ ) or 5 ( | a wf_ (3 \ ), respectively.

Thus, to design counterexamples w+9 w
(_, and W*Q, we need some a priori

information about the environment in which these counterexamples will be
used, among others, about «;+, w-, and WQ. This "a priori information"
allows us to fooi any £fc+<3/IIfc+<3-SPACE (5 (n)) machine, for arbitrarily
large G > 0.

Languages separating Sfc-SPACE (5 (n)) from IIfc-SPACE(s (n)), for
k > 2, have a simple block structure. The structure of the blocks can be
described by a séquence of regular languages R2, Ü3, i?4, . . . defined as
follows:

DÉFINITION 10: Let {a, b} dénote a two-letter alphabet. Then
R2 - a+ ,

! 6)+ , for each k > 3.

It is easy to show, by induction on k, that w E R^ begins with
bk~2a..., ends by ...abk~2, and does not contain more than 2k — 5
consécutive 6's. This implies that it can be partitioned unambiguously
into w = bu\bu2b.. .bufo, for some i t i , . . . , i t f G Rk-i- That is, if
tü — ftii'j 6^2 &... 6w'fl 6, for some u^, . . . , uf

g G Rk-\, then g = f and
u\ = u^, . . . , Wf = lij. This partition is determined by the positions of
substrings abk~~s bbk~3 a = a62 fc~5 a in w.

The next définition will be used to generate the counterexamples "u>o"
that restrains E^+G/IIfc+G-SPACE (s (n)) machines from using too much
space, provided that we are given wf

0, restraining E^/Ü^-SPACE (5 (n))
machines, and G > 0, the rank of environment.
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DÉFINITION 11: Let G > 0 and w G {a, b}*,\w\ > 2. We define E (G , w),

the environment of rank G for w, by

E(0, w) =w,

E(G + l,w) = E (G, b (wb)\w I - 1 ) , for each G > 0.

For example, E (1, aaa) = E1 (0, 6 (aaab) ~1) = baaabaaab. E (G, w) is
also a string composed of | w | — 1 consécutive E (G — 1, w) blocks, enclosed
in 6's. It is easy to see, by induction on G, for each G > 0 and each w, that

\E(G, w)\ = \w\2°. (3)

Note also that if w E Rk, then E (G, w) G Rk+G- We are now ready to
present a formai définition of the Sfc/II^-SPACE (s (ri)) résistant language.

DÉFINITION 12: A language L is Sfc-SPACE(s(n)) résistant
(Ilfc-SPACE (5 (ri)) résistant), if , for each s (n) space bounded alternating
machine A, each G > 0, and each n > 0,

à) there exist u>+ E R& D L, w- G i2& — L, and u>o E Rk> such that

&) 1̂ 0 | > n,

c) ty_|_, 7i;_, and IÜO are Space^ (E(G, WQ))-equivalent,

öO (w+, u?_) is a Sfc» Space^(£!(G, IL?O))-résistant pair.
(Ilfc, Space^ (i? (G, WQ))-résistant pair, respectively.)

Thus, we must fooi each s (n) space bounded machine A making an
arbitrary number of alternations, ho wever, (d) concerns configurations of
alternating level at most Sfc/IIfc only. Such configurations may be viewed
as "oracle entry points" giving answers to some partial questions as the
computation demands. We claim that such entry points cannot be used to
distinguish w+ G L from w- ^ L.

Second, the worktape space limit for such entry points is as much as
SpaceA(£r(G, wo)), L e., the worktape space used by A on the input
E (G, WQ). (See also Def. 3 and Def. 11.) Note that A may potentially use
s ( \wo \2°) space on the input E (G, tüo), by (3). Thus, for arbitrarily large G,
we should find w+y w-, and WQ SO that w+ and w- cannot be distinguished
if they are inserted into inputs of length | wo \2 . Ho wever, the condition (c)
ensures that A does not try to use too much space on inputs a w+ (3 or a iu_ {3
unless it tries to do so on a WQ j3, by Lemma 4a. The condition (b) orders a
lower bound on the length of WQ and, indirectly, on the lengths of w+ and W-.
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THEOREM 6: Let L! be a E/^i-SPACE (s (n)) résistant language, for some
k > 3, with sup s(n) / log (n) = 0. Then the language

n—>oo

L ={w G Rjç] w = bw\ bw2 b . . . bw^ 6,

33 G {1, . . . , f} : Wj G Lf, wu . . . , wf E #/e-i}

i> IIfc-SPACE(3 (n)) résistant

Proof: Let A be an s (n) space bounded machine and let c be a constant
for A satisfying (2), i. e., the number of reachable memory states for each
input w is bounded by cs ( I™ I ). Let G > 0 and n > 0. Define G' = G + 1
and take n' so that

n' > max{n, 2}, (4)

and

(c5 ( n 2 G + 1 ))6 < n - 1, for each n > n'. (5)

By Lemma 6, using H = 2^ + 1 , such n' does exist Because the language V
is Sfc_i-SPACE (s (n)) résistant, we have, for any given A, G', and n;, that

a') there exist W+ E Rk-i H L;, u?y_ G -Rjt-i ~~ &, and ICQ G Rk~\^
such that

c') w+1 wl_, and IÜQ are Space^ (E (GA, IÜQ))-equivalent,

<i;) (IÜ^, w7.) is a Sfc_i, SpaceA (E (G\ wf
0))-résistant pair.

We have to find w+, IÜ_, and WQ with the corresponding properties for
the language L. Define

where , (6)
m = \WQ\ — 1.

Clearly, WQ G R&, since IÜQ G Rk-i and m > 1, by (af), (bf), and (4).
Further, by (bf) and (4), \WQ\ = \w'0\

2 > n. Because

(7)

by Définition 11, we can modify (cf) and (d!) as follows:

e") 16?̂ , iü(_, and tt?Q are Space^ (E(G, WQ))-equivalent,

dn) (w+, wf_) is a Efc-i> Space>i(£I(G, tco))-résistant pair.

Now, define an extended version of WQ by
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Note that the length of WE dépends on the alternating le vel k. First, we
shall prove that WQ and WE are SpaceA (E (G, wo))-equivalent: It is easy
to show that

\E(G,wo)\ = \w'Q (8)

using (7), (3), and G' = G + 1. Because \w'0\ > h', by (&'), we can use
(5) and get

But then

m,

(9)

(10)

using (1), (8), (9), and (6). This implies, by Lemma 9 and 3, that
w0 = b(w'Qb)m and wE = b (w'o b)m+îml (with i = Ak + 3) are
Space^ (E (G, IÜO))-equivalent, because the number of (WQ 6)-blocks in
WQ is large enough, compared to the worktape space limit for the input
E (G, WQ) = E (G', wf

0). The design of inputs satisfying (9) and (6) plays
a dominant rôle hère. Finally, define

W+ =b(wL b)m+2k'ml V)'+b(wL

Clearly, w+, w- G Rk, since u/^, wf_ G Rk-i, by {a!), The strings w+
and u>_ consist of the same number of blocks as WE-, since replacing ail
t̂ Q-blocks by the wf_ -blocks transforms WE into ic_. The string IÜ+ differs
from w- in the block on the position m + 2 & * m! + 1 only, where it has
w+ instead of ?//_. (See fig. 14 for the structure of w+ and iv_ .)

'M-
m

blocks
2km!
blocks,

2km!>k.(m+m!)

! m+k.(m+m!)
blocks

m! i m!
[blocks

Jll

blocks
2km!
blocks,

2km!ïk. (m+m!)

m!
blocks
m! £m

: m+k.(m+m!)
blocks

critical block, J
the only

w' -block in wt

\ critical block's twin,
m! blocks to the right

Figure 14
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It is obvious that w+ G L and w- £ L, because IÜ+ contains one it/+ G V
while IÜ_ is composed of the w'_ $. L' blocks only. (The partition of w+
and w- into the strings in Rk-i is anambiguous, hence, for example, we
cannot get w~ = bu\ bu2 b... 6uf 6 for some ui, . . . , Wf G i?^_i so that
3uj G Z/. Se<? also the remark below Def. 10.)

Because w'+, vJ_, and wf
0 are Space^ (£7(G, wo))-equivalent by (c"),

we have, by Lemma 3, that IÜ+ and u>_ are Space^ (E (G, u>o))-equivalent
to WE- Since u ^ is Space^ (E (G, u?o))-equivalent to wo, by (10) and
Lemma 9, we get that u>+, w-, and WQ are Space^ (E (G, wo))-equivalent.

It only remains to prove that («/+, tü_) is a Ilfc, SpaceA(,B(G) tüo))-
resistant pair, i. e., that /P;W+ < fPiw- f° r e a c n configuration p that
is (i) going to enter w+ and ^_ by crossing their boundaries, (ii)
Space^ (JE (Gi, wo))-bounded on w+ and w-, (iii) of alternating level
ITfc or less.

Because w+ differs from w- in the single wf
+-b\ock only and w+,

vJ_ are Space^ (E (G, t^o))-equivalent by (c"), we have, for each p
satisfying (i), (ii), and (iii), that Exp_w+ =ExPylü_ = {pi, . . . , ph}9 for
some configurations pi, . . . , p^ leaving w+ and IÜ_. By Lemma 10̂ ?, it
is sufficient to show that if 1 = fp.w+(C/) > fv.W-{Cn) = 0, for
some C1 = (C'px, . . . , Cf

ph) and C" = (C^ . . . , C^) representing the
accept/reject statuses of exit configurations, then 1 = Cf

Pe > Cf
Pe = 0 for

some exit configuration pe.

Suppose that p is üfc-accepting on w+ but Il^-rejecting on W-. Because
there must exist a rejecting computation path beginning in p on IÜ_, we
have the following cases to consider:

0) The rejecting path leaves w- making no alternation. Because w+, wf_
are Space^ {E (G, wo))-equivalent and p is Space^ (E (G, 'a;o))-bounded
on w+ and IÜ_, we get, by the same reasoning as in Case 0 of Theorem 5,
that 1 = Cf

Pe > Cpe = 0 for some exit configuration pe G Exp. w+ = ExP; w_.

la) The rejecting path from the IÏ&-rejecting p alternâtes outside the
critical block on tc_, entering a Efc_i-rejecting j / . (See jïg. 15.)

Since p7 is also reachable from the IT^-accepting p on w+, we have that p'
is (i) positioned outside the critical block, (ii) Space^ (E (G, wo))-bounded
on w+ and IÜ„ (because it is reachable from p), (iii) Efc_i-accepting on
w+ but Sfc_i-rejecting on w-.

Because (w+, wl_) is a Efe_i, SpaceA (£ (G, u;o))-resistant pair, by (d;/),
we obtain that fp^w+ ^ fP',w-, using Theorem 5.
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4-

T
critical
block, w'

T
twin
block, w'

Figure 15

c r i t i c a l block -•
I I

twin block

m+k.(m+m! )
blocks blocks

Figure 16

On the other hand, we also have 1 = fP'iW+ ( C ^ , . . . , C*r ) >
£ , . . . , C'r

f
f) = 0, where = Exp>iW_ = {n , . . . , r f} C

Exp7UJ+ = ExP)UJ_ = {pi, . . . , ph} dénote the sets of exits of w+ and tu-
for p' and p, respectively.

By Lemma 10a, this is possible only if 1 = C^ > C," = 0, for some
f e £ {n, • • •, Vf} Ç {p1; . . . , ph], l e., we have a configuration re leaving
w+ and iy_, reachable from p via p', that is accepting for w+ but rejecting
for W—.

\b) The rejecting path from p alternâtes inside the critical block on w-,
where it enters a Sfc_!-rejecting p" = (ç, j ) . (See ƒ#. 16.)

Note that both the critical block and its twin, lying m! blocks to the right,
are at least m + k • (m + m!) blocks away from either margin of w-. (See
also fig. 14.) Among others, this implies that the computation path had to
traverse at least m blocks, for p at the left margin, or at least m + m\ blocks,
for p placed at the right, along the way from p to p"'.

Let p' be the configuration having the same memory state as p", with
the input head positioned exactly m! blocks more to the right, L e.,

w_ 1)). Since m > (c
s?aceA b y

(10), and p is SpaceA (E (G, w0))-bounded on w_, we have that p' is also
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reachable from p, by the use of Theorem 1 and Lemma 8. Moreover, if pn is
S&-i-rejecting, then pf must also be Efc_i-rejecting on u?_, by Theorem 2,
because both pf/ and pl are Space^ (E(G, iuo))-bounded on w- (they are
reachable from p) and sufficiently far from either margin.

Therefore, for each rejecting path from p that alternâtes inside the critical
block on W-, there exists another rejecting path that alternâtes outside the
critical block. This reduces Case \b to Case la.

All remaining cases lead to contradictions and hence cannot happen:
2a) If an alternation-free path from p enters an infinité cycle and at least

a part of this cycle lies outside the critical block on w-, then we can find a
corresponding infinité cycle that is reachable from the Ilfc-accepting p on u>+,
by the same argument as in Case 2a of Theorem 5, which is a contradiction.

2b) If the entire cycle is executed inside the critical block on w-, then
there exists at least one more infinité cycle, reachable from p inside the
twin block, by a reasoning very similar to Case lb, using Theorem 1 and
Lemma 8. This reduces Case 2b to Case 2a.

3) The argument for an alternation-free path beginning in the ü^-rejecting
p on w- that halts and rejects the input is almost the same as for the infinité
cycle, giving a contradiction.

This shows fp,w+ < fpyW^ for each p of alternating level IT^ and also of
n^_i . For the levels S&_i or less, we obtain fp,w+ < fp.to- directly, by
Theorem 5 and (dff). This complètes the proof of the theorem, since we have
just shown that (u>+, W-) is a 11^, Space^ (E (G} wo))-resistant pair. G

The above theorem has its counterpart describing the relationship between
IIfc_i- and E&-SPACE (s (n)) résistant languages.

THEOREM 7: Let L1 be a II^_i-SPACE (s (n)) résistant language, for some
k > 3, with sup s(n)/ log (n) — 0. Then the language

L — {w G Rk] w — bw\ bn)2 b... bw^ b1

Vj e {l, . . . , ƒ } : wj e L', lui, . . . , wf e Rk-i}

is Sfc-SPACE(s (n)) résistant.

Proof: The argument is very similar to the proof of Theorem 6, so we
point out the main différences only. First, w+ and w- are defined by

W- —
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so hère w+ G L is homogeneous while w- <£ L contains a single block

Second, we prove that (iu+, w-) is a E&, Space^ {E(G, WQ))-résistant
pair and therefore we consider a configuration p crossing the boundaries of
w+ and w- that is existential, L e.9 S^-accepting on w+ but S^-rejecting on
iu_. Our analysis begins with a successful path starting in the E&-accepting p
on the homogeneous w+, using the fact that the machine cannot distinguish
the critical block from its twin, and that all paths starting in the S&-rejecting
p on w- must be rejecting. (In Theorem 6, we considered a rejecting
path starting in the Ilfc-rejecting p on the homogeneous u>_. Compare, for
example, Case \b for Claim 1 and Claim 2 in Theorem 5.) D

It is easy to show that no £fc/IIfc-SPACE(s(n)) machine is able to
recognize a Efc/IIfc-SPACE(s(n)) résistant language.

THEOREM S: a) If L is a n&-SPACE(s (n)) résistant language then
L g nfc-SPACE(s(n)).

b) If L is a Ejfe-SPACE (5 (n)) résistant language then L g E&-
SPACE(s(n)).

Proof: Let L be a Ü&-SPACE (s (n)) résistant language. Then, for each
Ilfc-SPACE (5 {n)) machine A, G = 0, and n = 2,

a) there exist w+ G i?/c H L, w- G Rk — L, and WQ E Rf-, such that

b) \wo\ > 2,

c) W+, w-, and WQ are Space^ (u;o)-equivalent (since E (0, WQ) — WQ,
by Définition 11),

d) (u>+, iü_) is a Ilfe, SpaceA (^0)-résistant pair.

By (d) and Theorem 5, for a = > and /3 = < (where " > " and
"<C" dénote the left and right endmarker, respectively), we obtain that
/p,»u>+< < /p,>«;_< for each configuration p that is (i) positioned outside
u?-t_ and'tt;-, /. e., on the left or right endmarker, (ii) Space^ (tüo)-bounded
on ^> w+ <C and on ^> w- <C, (iii) of alternating level ÏÏ& or less.

The initial configuration pj of our n^-SPACE(5 (n)) machine satisfies
(i) and (iii) automatically. It is not very hard to show that it also satisfies
(ii). By Définition 3 and 4, pj is Space^ (wo)-bounded on ^> WQ < , since
Space^ (WQ) is defined as the maximal amount of space used by any
configuration that is reachable from the initial pj on the string > WQ < . By
(c), tu+, w-, and WQ are Space4 (u?o)-equivalent and hence, by Lemma 4a,
pj is SpaceA (u^-bounded on > w+ <C and on > w;_ < .
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Thus, /pJ ; >w+< < fPli >«;_<• We may assume, without loss of
generality, that our machine has been programmed correctly and never
tries to move its input head to the left/right from the left/right
endmarker, respectively. This implies that /p / ;>i lj+< and / P / , >^_< are
constant functions with the empty formai parameter lists, L e., we have
fPly»™+<g;() < /pj,>u;_<()- But for w+ E L and w„ g L we need
/p/,>w+< ( ) — 1 a nd /pjf,>u;_< ( ) = 0. Hence, the machine A does not
recognize L.

The same argument holds also for S&-SPACE (s (n)). D

6. THE HIERARCHY

In this section, we shall give an induction base for the mechanism described
in Section 5 by showing some E2/II2-SPACE (s (n)) résistant languages,
which allows us to present languages separating E&-SPACE (5 (n)) from
IVSPACEO(n)) , for each s (n) below log (n) and k > 2. This yields
the infinité hierarchy. Finally, we shall show that E&-SPACE (s (n)) is not
closed under complement and intersection, similarly, II^-SPACE (s (n)) is
not closed under complement and union. Before doing this, we need to
present some S1/II1 and S2/II2 résistant pairs of strings over a single
letter alphabet.

THEOREM 9: For each s (n) space bounded alternating machine A, each
G > 0, and each n > 0, there exists nf > h such that, for each n > nf,

a) J v ^ l and aï^+nl are SpaceA (E (G, an))-equivalent,
an and an+n[ are SpaceA (E(G, an))-equivalent,

b) (Jv^i, jv^i+n!) and ^lysi+n^ arv^i)

are Si, Space^ (E(G, an))-résistant as well as IIi,
Space^ (E (G, an))-résistant pairs,

c) (an+n\ an) is a n2 , SpaceA (E(G, an))-resistant pair,
d) {an, aÏI+u!) is a E2, Space^ (E (G\an))-résistant pair.

Proof: (a) Define 11 = \Vn], Using Lemma 6 for H = 2G, find n' > n
so that

(c5^2G))6 <TZ< J < n , (11)

for each n > n1', where c is a machine dependent constant satisfying (2).
But then, for each n > n',

(cSpaceA ^ «
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using (1), (3), \an\ — n, and (11). By Lemma 9, this implies that
an

ya
n+nl are SpaceA (E(G, a7*))-equivalent, and that an, a

n+i'ni are
Space^ (E(G, an))-equivalent, for each i > 0. Because n! is an integer
multiple of 72!, we have that an, an+nl are SpaceA (E (G, a71))-equivalent.

(b) Let w! = an and w" = an+n\ We shall show that (u/, w") is a Iii,
Space^ (E (G, an))-résistant pair. (Ail other cases are almost identical,
interchanging w1 with w" and/or analyzing existential paths instead of
universal.)

Because wf, wff are Space^ (E (G, an))-equivalent by (a), we have
ExPîîtJ' = ExPîtu», for each configuration p that is (i) going to enter vJ
and w", (ii) Space^ (E (G, a™))-bounded on wf and tu", (iii) of alternating
level Iii. It is not too hard to prove that fPiW* < fp.w"- Again, it is
sufficient to show that if p is Ili-accepting on wf, but Ili-rejecting on wn,
then some configuration pe E Ex P ) ^ = Exp^w» must be Ili-accepting on
wf, but Ili-rejecting on wn.

bO) If p is Ili-rejecting on wf/ because of a rejecting path that leaves wn

in a Ili-rejecting configuration pe G ExpjU/s then we are done.

b\) The rejecting path started in the ui-configuration has no alternations.

è2)-Suppose that some path from p enters an infinité cycle on wn = an~^n\
where U = [ ^ 1 - Using M 6 = (cSpaceA(£(G,a-)))6 < n < n + n ! ? b y

(12), we shall find another cycle that ne ver moves the input head farther than
M 3 = (cSpaceA(E(G>a")))3 positiOns away from p placed at the left/right
margin of wn'. Since M 3 < M6 < 72., we have enough room to enter this
cycle from the ITi-accepting p on vJ — a^, which is a contradiction.

The proof is based on the observation that each cycle beginning and
ending in the same configuration pc can be, by Lemma 7, replaced by a
cycle from pc to pc never moving the head farther than M 2 positions away
from pc- Second, we may then assume that pc (reachable from p) is at most
j < (M2 +1) + (M + 1) + M 2 positions away from p, for, if the computation
path from p to pc gets too far, then we can find two configurations
Pi — (<?> il) and V2 — {QI 32), having the same memory state q, such that
both ji and j'2 are at least M2 -j-1 positions away from p. Using Lemma 8,
we can then eut the path from p\ to P2 out and shift the cycle from pc to
PC closer to p. This process can be repeated until we obtain a cycle never
moving the head farther than (M2 + 1) + (M + 1) + M2 < M 3 < M 6 < U
positions away from p. (For a more detailed proof, the reader is referred
to [9], Theorem 2.)
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b3) The argument for a path beginning in p on wn = aJZ+nl that
halts and rejects the input is very similar to Case b2. Again, we can
find another path that halts never moving the input head farther than
M 3 = (csPaceA(£;(G,a")))3 < M6 < Tl positions away from p, so we
have enough room to run this rejecting path from the Ili-accepting p on
wf = a7^, which is a contradiction.

This complètes the proof of (b).

(c) We shall show that (an+n! , an) is a n 2 , SpaceA (E (G, an))-résistant
pair. Cases cO, c2, and c3, z. e,, moving out, cycle, and halting parallel
Cases bO, b% and £3, respectively. Therefore, they are omitted. We shall
now concentrate on Case cl, L e., on alternation.

cla) Suppose that p is Ii2-accepting on an+n! . Further, suppose that p is
n.2 -rejecting on an because some path enters a Si-rejecting p', positioned
at least 1Z — \-/n~\ positions away from the left margin of an.

Then an+n' and an can be expressed in the form an + n ! = a an^~n- /3,
an = aan f3, where a — e and f3 — a n " ^ . (S&e fig. 17.)

p,ïï -ace Q

But then p' is (i) positioned on ƒ?, /. e., outside a^+ n ! and a7^ on a a
and a an f3, respectively, (ii) Space^ (E (G, an))-bounded on a a^+n!^0 and
acJ^ f3 (because it is reachable from p), (iii) Si-accepting on a a^+ n î f3 but
Ei-rejecting on a a ^ f3, (The head positions are relative to the left margin
of f3.)

Because (a^ + n l , a7^) is a Si , Space^ (E(G, an))-résistant pair, by (è),
this is possible only if there exists pe leaving a a^+ n ! f3 and a an f3 that
is Si-accepting for aanJrn[ (3 but Si-rejecting for aan [3, by the use of
Theorem 5 and Lemma 10a. {Cf. also Case la in Theorem 6.)

clb) If the rejecting path from the II2-rejecting p on an alternâtes closer
than 1Z = \yjn\ positions to the left margin, then it alternâtes farther than Tl
positions away from the right margin, since 11 < n/2, by (12). Then the same
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argument can be used for an + n ! and an partitioned into an+nl = a a^+7î! /3,
an — acfî /?, with a = an~n, 0 = e, and p1 positioned on a.

This complètes the proof of (c). The converse does not hold, L e.,
(an,an+nl) is not necessarily a II2, Space^ (E (G, an))-résistant pair,
since a rejecting path from the II2 -rejecting p on an+n- may alternate in p1

positioned in the middle of an + n ! so the segment of length n! is neither to the
left, nor the right of pf. However, the converse does hold for £2 -résistance:

(d) The proof that (an, an+nl) is a £2 , SpaceA (E (G, an))-résistant
pair is very similar to (c). Hère we suppose that p is XVaccepting on an

but S2-rejecting on an+n\ Hence, the analysis begins from the accepting
computation path started in p on an, L e., on the shorter string again. D

We are now ready to present the languages that separate £&-SPACE (s (n))
from n

DÉFINITION 13: Let

ƒ (n) = the first number that does not divide n,

Then

S2 - K ; ƒ (n) < max{/ (1), . . . , ƒ (n - 1)}, n > 1},

. . . , / ( n - 1 ) } , n > 1},

G {1, . . . , ƒ} :

Pfc ={iu G Rk\t w — bw\ bw2 b... &u>f 6,

V i e {1, . . . , ƒ } : w3 eSk-U w1} . . . , u/f e l f c _ i } ,

for each fc > 3.

LEMMA 13: ƒ (n) w unbounded, i. e., / o r eac/z h > 0 ?^r^ ex^r,s n > 0
SMC/Ï r/zar ƒ (n) > /i, aftd ƒ (n) = f (n + n\), for each n > 2.

Proof: Since W is divisible by each j < h, we have ƒ (h\) > h. Clearly,
ƒ (2) = ƒ (2 + 2!). For each n > 3, n - 1 does not divide n. Thus, the first
"nondivisor" of n is at most n — 1, L e., ƒ (n) G {1, . . . , n — 1}. Therefore,
it is sufficient to show that j G {1, . . . , n — 1} divides n if and only if
it divides n -j- n!

vol. 28, n° 5, 1994



5 0 6 V. GEFFERT

(i) If j divides n, then it divides also n + n!, since n + n\ is an integer
multiple of n.

(ii) Suppose that j divides n + n!, i. e., n + ra! = j • /i, for some integer
l\ > 1. But j < n — 1 must also divide n!, Ï. e., n! = j • Z2, for some Z2 < /i-
This gives n = (n + n!) — n! = j * (/1 — Z2), z. e,, j divides ra. D

1S2 and P2 are simplified versions of the languages that were used to
separate S2-SPACE (s (n)) from n2-SPACE(s (n)) in [9]. We shall now
prove a stronger statement, namely, their space résistance.

THEOREM 10: For each k > 2 and each s (n) with sup s (n)/ log (n) = 0,
n —>oo

Pfc w S/c-SPACE (5 (n)) résistant and S& w IT^-SPACE (5 (n)) résistant

Proof: First, we shall show that P2 is E2-SPACE(s (n)) résistant. Let
A be an 5 (n) space bounded alternating machine, G > 0, and n > 0.
By Theorem 9 and Lemma 13, we can find nf > max {n, 2} so that, for
each n > n',

a) an and an + n ! are SpaceA (E (G, an))-equivalent,

b) (an, an+nl) is a E2, SpaceA (E{G, an))-résistant pair,

c) (an+nl
: an) is a n 2 , SpaceA (£(G, a^))-résistant pair,

d) f(n) = / ( n + n!).

We need to find ra > ny so that a71 G P2 but an + n ! ^ P2. By Lemma 13,
we can find minimal N satisfying ƒ (n) > max{/ (1), . . . ,

/ ( i V ) > m a x { / ( l ) , . . . , ƒ(%')} , but

ƒ (n) < max {ƒ (1), . . . , ƒ (n7)}, for each n < N.

This gives ƒ (iV) > / ( n ) , for each n < N, and therefore ƒ (JV) >
m a x { / (1), . . . , ƒ (TV- 1)}, i. e., aN G P2- Note that we have also
N > nf >n, since f (j) < m a x { / ( 1 ) , . . . , ƒ (j), . . . , ƒ ( # ) } , for each
j < n' . On the other hand, ƒ (iV + N\) = f (JV), and hence ƒ (JV + TV!) <
max {ƒ (1), . . , ƒ (N)} ...}f(N + Nl- 1)}, Î. e„ aN+m 0 P 2 . Now, it
is easy to see that w+ — aN, w_ = a7Y+iY!, and K;O = aN satisfy

(i) w+ e R2 n P 2 , w- e R2 ~ P 2 , and ̂ 0 G i?2,

(ii) I u>o I > n ,
(iii) iu+, tü_, and IÜO are Space^ {E(G, WQ))-equivalent, by (a),

(iv) (IÜ+, to_) is a E2, Space^ (E(G, WQ))-résistant pair, by (b),

L e., the language P2 is S2-SPACE(5 (n)) résistant.
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We also get that the language S2 is Il2-SPACE(s(n)) résistant, since
aN+M e g29 aN g g29 a n d (aN+Nl^ ̂ Y) i s a u^ SpaceA (£ (G, aN))-^ p A ( ( , ))

w+ = aN+Nl w_ = aN
g ( ) p

resistant pair, by (c), using the same argument for w+ = a
and WQ — aN.

By a straightforward induction on k, using Theorems 6 and 7, we obtain
that Pk is E&-SPACE (s (n)) résistant and S* is II^-SPACE (5 (n)) résistant,
for each k > 2. D

The above resuit implies immediately, by Theorem 8, that P& £ Efc-
SPACE(s(n)) and £& 0 IIfe-SPACE (s (ra)), for no 5 (n) below log (n).
Changing the initial alternation level, using a method described by
Szepietowski in [23], we can easily design O (log log (n)) space bounded
machines for P& and 5&.

THEOREM 11: Pk G IIfc-SPACE(log log (n)) and Sk G Efc-SPACE
(log log (n)), for each k > 2.

Proof: First, we shall show that P2 G n2-SPACE (log log (n)). Our
machine first deterministically computes ƒ (n), checking if n is divisible
by j9 for j — 2, 3, 4 . . . until it finds the first nondivisor of n. Then,
branching universally, the machine moves along the input tape and, at each
position h < n, vérifies if f (h) < f (n). We do not have to compute the
first nondivisor of h exactly, it is sufficient, branching existentially, to find
g G {1, . . . , ƒ (n) — 1} and verify that this g does not divide h.

Note that we store j , f (n), and g on the worktape, but not h. Since
log ( ƒ (n)) G O (log log (n)), this much space is sufficient. (For proof, see
e. g. [18].)

The S2-SPACE (log log (n)) machine for S2 is very similar. Having
computed ƒ (n), find existentially h < n with ƒ (h) > ƒ (n) and, branching
universally, verify that each g G {1, . . . , ƒ (n) — 1} divides h.

Now we can show that Pk G IIft-SPACE(log log (n)), for each
k > 2, The machine first checks if the input w G i?jt. If y es, then
w — bw\ bw2 b... bwj b, for some w\, . . . , Wj G Rk-i- In addition, this
partition is unique and determined by the positions of substrings ab2k~b a
in w. Thus, branching universally at each ab2k~b a, verify if Wj G 5fc_i,
for each j G {1, .. -, ƒ}. This is done as follows. Each WJ G Rk-i can be
uniquely partitioned into the strings in Rk-2> their boundaries are determined
by the positions of substrings aô 2 ^" 1 ) " 5 a. Thus, branching existentially at
each ab 2 ^" 1 )" 5 a, find a segment that is in P^-2 • • - Finally, at the lowest
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level, check if the tape segment u E R2 = a+ , enclosed in ö's, is in P2 (for
k even), or in S2 (for k odd), using the algorithm described above.

The initial checking for w E Rk as well as searching for the segment
boundaries, level by level, can be done in constant space, using the finite
state control. The worktape is needed at the lowest level only, to check if
some u E P2/S2. The space used is then bounded by O (log log ( | u | )), for

some u < n, i. e., by O (log log (n)).
Similarly, Sk G S*-SPACE (log log (n)), for each k > 2. The only

différence is that the topmost level branching is existential. D

CoROLLARY 1: For each k > 2 and each s (n) with sup s (n)/ log (n) = 0,
n—s-oo

Efc-SPACE (log log (n)) - n^-SPACE (s (n)) / 0,

and also,
n*-SPACE (log log (n)) - S^-SPACE (s (n)) / 0.

Moreover, it is obvious that Si/IIi-SPACE (s(n)) C E ï+i/IIi+i-
SPACE(5(n)), for each i > 1. From this we have:

COROLLARY 2'. For each k>2 and each s (n) with sup 5 (n)/log (n) = 0,
n—*oo

Sfc-SPACE (log log (n)) - Efe_i-SPACE (s (n)) # 0 ,

Sfc-SPACE (log log (n)) - nfe_!-SPACE (s (n)) ^ 0 ,

nfc-SPACE (log log (n)) - Efc_i-SPACE (s (n)) 7̂  0 ,

nfc-SPACE (log log (n)) - n f c_ rSPACE (s (n)) # 0 .

That is, the alternating space hierarchy does not collapse between
log log (n) and log (n):

COROLLARY 3: For eac/z fc > 2 and s (n) > log log (n) wjï/z
sup s(n)/ log (n) = 0,

n—j-oo

Sfc_i-SPACE(s (n)) § Efc-SPACE(5(n)),

Efc_!-SPACE(s (n)) § nfc-SPACE(s (n)),

nfc_!-SPACE(s (n)) § Efc-SPACE(s(n)),

nfc_i-SPACE(s (n)) § nfc-SPACE(5(n)).
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COROLLARY 4: For each k > 2 and s (n) > log log (n) with sup s (n)/
n—KX)

log (n) = 0, Efc-SPACE (s (n)) and IIfc-SPACE (s (n)) are nor closed under
complement.

Proof: It is easy to show, by induction on k, that Sj- ~ Rk — P& and
Pk = ijfe - % for each k > 2. Should Sfc-SPACE (5 (n)) be closed
under complement for some k > 2 and some s (n) above log log (n),
we have Sjg = R% U Pfc G S^-SPACE(s (n)). Since E*-SPACE (s {n)) is
closed under intersection with regular sets, (i2£ U P&) fl i2& = Pk G SA;-
SPACE (5 (n)), using P& Ç R^. But this is a contradiction for space bounds
below log (n). The argument for II^-SPACE (5 (n)) is almost the same. •

The tools presented above allow us to draw some further conséquences:

THEOREM 12: For each k > 2 and s (n) > log log (n) with sup 5 (n)/

log (n) = 0, £&-SPACE($ (n)) is not closed under intersection and IIfc-
SPACE (s (n)) is not closed under union.

Proof: Suppose that II^-SPACE (s (n)) is closed under union, for some
k > 2 and some 5 (n) > log log (n). Since Pk G IIfc-SPACE (log log (n))
and Rk is regular, Pk$Rk> Rk$Pk £ nfc-SPACE (log log (n)), where
$ dénotes a new symbol. Using the union hypothesis, we have a Ü&-
SPACE(s(n)) machine A recognizing L — {wi$W2 E Rjç$Rk] w\ G Pk
or W2 G Pk}- We can now easily replace A by a new IÏ^-SPACE (s (n))
machine A! recognizing 1/ = P& U L, not using the union hypothesis: First,
Ai checks whether the symbol $ is present on the input tape. If yes, use A to
détermine if the input tu G L. If no, then simulate A imitating that the input
string is w$w. The only thing we have to remember, within the finite state
control, is whether the input head is positioned on the first or on the second
copy of w. If A reaches the right endmarker (on the first copy of w), interrupt
the simulation, move the head to the left endmarker, and pretend that $ has
been crossed from left to right. Then carry on the second (nonexistent) copy
of w. If A moves back to the left endmarker, imitate crossing $ from right
to left. Clearly, A1 uses exactly the same amount of space on the inputs w
and w$w, for each w G {a, 6}*, L e., Space^/ (w) = Space^/ (w$w).

Because P/~ is a E^-SPACE(s(n)) résistant language for each s(n)
below log (n), we have, using A', G — 0, and n = 2, some strings
1U+ G Pk, w_ ^ Pk, and WQ G Rk such that IÜ+, iu_s and WQ are Space^/
(tüo)-equivalent and (w+, IÜ_) is a E^, Space^/ (WQ)-résistant pair. Now,
consider the inputs WQ$WQ, WSW-, iü_$it;_j_, and w+$w-. They are ail
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(tüo) -equivalent, by Lemma 3. Since the initial configuration pj is
trivially Space^, (u?o)-bounded on the string ^> WQ <C, we have also that
pj is SpaceA/ (xüo)-bounded on > WQ$WO <C. This follows from SpaceA/
(wo) = Space^/ (WQ$WQ). By Lemma 4, p/ is then Space^/ (wo)-bounded
on > u>_$w_ <C, » ™_$w+ <C, and > w+$w- < .

Since ur_ ^ P&> the input w- $w- must be rejected by the ITju-
SPACE(s(n)) machine Af and therefore there must exist a rejecting
computation path beginning in pj on ^w-$w^ <C. Suppose, for example,
that this computation path alternâtes outside the first w-.

Then we have a £&_i -rejecting configuration p that is (i) placed outside the
first w- on *^>w-$w- <C. But p is also reachable from pj on ^w+$w- <C,
where it is placed outside IÜ+, since w+, tu_ are Space^/ (it;o)-equivalent
and pj is SpaceA/ (^o)-bounded on ^w-$w- <C and on >tu+$w_ <C.

Clearly, (ii) p is Space^/ (wo)-bounded on ^ ^_$tü_ <C and on
^> w+$w- ^ (it is reachable from pj), and (iii) it is of alternating level Sfc_i.

Because (tu+, tt;_) is a E^, SpaceA, (WQ)-résistant pair, we get,
using Theorem 5 for a = ^> and /3 = $w- <C, that /p.>iü+$ti;_^; ( ) <
/^,>^_$u;_< ( )• On the other hand, p is £&_i-rejecting on >tü_$t(;_ <C,
by assumption, but S^-i-accepting on ^w+$u'_ <^, since tt;+ G Pk (hence,
w+$W-. G L7). V is reachable from p/ on ^>w+$w~ <C, and all alternation-
free paths from the n^-accepting pj on ^w+$w- <^ must be successful.
This gives ƒ„,»„,+$„,_<() - 1 and /p,»lt;_$U;_« ( ) = 0, which is a
contradiction.

If the rejecting path beginning in pj on >>u>_$u>_ <C alternâtes inside the
first u?_, then it alternâtes outside the second w- and we can use almost the
same argument for ;§>IÜ_$IÜ_|_ <C. All other cases, L e,, an infinité cycle or
halting are also very similar and therefore they are omitted.

The corresponding proof showing that S^-SPACE (5 (n)) is not closed
under intersection uses the language Sj- U Sk$Sk. D

In gênerai, though P& G IIfc-SPACE(log log (n)), we cannot check
the input $wi$W2$... $w$ for any logical relation other than w\ G
Pfe &;... & tuf G Pfc not using a different alternation level or at least
log (n) space. However, if f is a fixed constant, then Tffc+2/Tïk+2-
SPACE(log log (n)) is sufficient, because any relation can be put into
the disjunctive/conjuctive normal form and the complement of P& is in E&-
SPACE(log log (n)). The same holds for Sk G SA;-SPACE(log log (n))
and the relation w\ G S^ V . . . V wƒ G 5^.
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Some important problems remain open, namely, the relations
among DSPACE(s(n)) = £0-SPACE (s (n)) = no-SPACE (s (n)),
NSPACE (s (n)) = Si-NSPACE (s (n)), and ni-SPACE (s (n)).
The partial answer for the tally sets has been achieved, L e., E\-
SPACE (5 (n)) n a* = IIi-SPACE (s (n)) n a* for each s (n), independent
of whether s(n) is above log (n) or space constructible [10]. Quite
surprisingly, this does not imply that the hierarchy collapses to Ei on the
tally sets, since £2-SPACE (5 (n)) H a * / ÏI2-SPACE (s (n)) H a* ([9] or
[this paper]). The problem DSPACE (s (n)) versus NSPACE (s {n)) is also
open for the superlogarithmic case.
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