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MULTIDIMENSIONAL LINEAR CONGRUENTIAL GRAPHS

by C. C. KOUNG C1) and J. OPATRNY (l)

Abstract. - Let à be an integer, F be a finite set of d-dimensional linear fonctions and
s — (s\, S2,. - . , Sd), bea d-dimensional vector of positive integers. We define graph G (F, s), called
a linear congruentiaî graph of dimension d as a graph on the vertex setV = ZSl xZS2 x • • • x ZSd,
in which any x € V is adjacent to the vertices }x (x) mod 5*, for any ft in F.

These graphs generalize several well known families ofgraphs, e.g. the de Bruijn graphs, chordal
graphs, and linear congruentiaî graphs. We show thait for a properly selected set of fonctions,
multidimensional linear congruentiaî graphs generate regular, highly connected graphs which are
substantially larger than linear congruentiaî graphs, or any other large family of graphs of the
same degree and diameter. Some theoretical and empirical properties of these graphs are given and
their structural properties are studied.

1. INTRODUCTION

In this paper we will consider undirected, simple graphs, see [3] for graph
terminology not defined hère. For a graph G with a vertex set V and an edge
set E, the diameter is defined as the maximum distance d (x, y) over all pairs
of vertices x, y of V. The problem of constructing large graphs of a given
degree d and diameter k, called (d, k) graph problem, and the related problem
of constructing a graph of given size n and degree d of smallest possible
diameter, proposed first in [7], has attracted attention of many researchers {see
[4] for surveys), since this problem has practical applications in the design
of interconnection network of processors in massively parallel computers.

An interconnection network can be represented as a graph in which the
vertices correspond to the processors and the edges to the communication
links. In an interconnection network which uses the store and forward mode
of communication, the time needed for sending a message from one node
to another is proportional to the distance of the nodes. Thus, to minimize
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the communication delays in a netword it is important to have a network
of low diameter. To simplify the construction of a network, it is désirable
to use an interconnection network in which each node is connected to the
same number of nodes. Another important considération for a network is the
possibility to increased the size of network. In graph-theoretical terms we
can state the désirable properties of a network as follows:

A network should correspond to a regular graph of low diameter, and for
a fixed degree there should be a possibility to multiply the size of the graph
without making substantial changes to the structure of the graph.

For a graph of degree d > 2 and diameter k there is the following upper
bound on the size n of the graph, called the Moore bound:

n< (d(d~l)k ~2)/{d-2).

For k > 2, and d > 2, the Moore bound cannot be attained [4]. Hence the
main interest has been in constructing networks of degree d > 2 and diameter
k > 2 whose size approaches the Moore bound. See the tables in [4, 5] for
the largest known graph sizes for small values of d and fc. These largest
known graphs are constructed by different methods for different degrees and
diameters, these constructions are often applicable only for a small range of
parameters [1] and they are not suitable for network design.

The best gênerai constructions of large graphs of the given degree and
diameter that satisfy the communication network requirements are de Bruijn
graphs [15, 2] and their variations, such as Kautz graphs [9], generalized de
Bruijn graphs [6] and Imase-Itoh graphs [8].

Recently, Opatrny, Sotteau, Srinivasan, and Thulasiraman proposed in [14]
DCC Linear Congruential Graphs as a generalization of de Bruijn graphs.
These graphs are much larger than de Bruijn graphs for the same degree
and diameter. In this paper we present a generalization of linear congruential
graphs, called d-dimensional Linear Congruential Graphs. Informally, in a
d-dimensional linear congruential graph, the vertices are a subset of vectors
of a d-dimensional space and the edge set is defined by a finite set of
functions of type ƒ (x) — x A + 6 where A is a d x d matrix of integers
and b is a d-dimensional vector of integers. We will call these functions the
generators of the graph.

In Section 2 of this paper we give a définition of d-dimensional linear
congruential graphs.

In Section 3 and 4 we discuss two subfamilies of d-dimensional linear
congruential graphs. For each subfamily sufficient conditions on generators
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to generate regular, maximally connected graphs are given. We also give
tables of their diameters for various vertex set sizes and degrees. These
graphs contain more vertices than DCC Linear Congruential Graphs or de
Bruijn graphs of the same degree and diameter.

2. D-DEVfENSIONAL LINEAR CONGRUENTIAL GRAPHS

We will use N to dénote the set of nonnegative integers, and Zp to dénote
the set {0, 1 , . . . , p - 1}.

DÉFINITION 2.1 : For a positive integer d we defined a linear function of
dimensional d as ƒ (x) = x A + b where A is a d x d matrix of integers, b is
a vector of integers of length d, and x is a vector of variables of length d.

DÉFINITION 2.2: Let d be a positive integer. Let s b e a constant vector of
length d, s = (si, S2,. . . , Sd)9 Si G N - {0} for 1 < i ^ d, and F be a set of
linear functions of dimension d, F = { ff(x) \ f% (x) = x Ai + b{, 1 ^ i ^ k
for some k}. We define graph G (F, s), called a linear congruential graph
of dimension d as a graph on the vertex set V" — ZSl x Z52 x • • • x ZSd, in
which any x G F is adjacent to the vertices fc (x) mod s", for 1 ^ i < A:.

For a subset Vï of V and a linear function g, we define a graph
G (F, s, g, V\) of dimension d as a graph on vertex set V, in which any
f E F i s adjacent to the vertices f% (x) mod s, 1 £ i < k and any x G V\
is also adjacent to the vertex g (x) mod s.

We use G (F, s) to generate large regular graphs on even degrees, while
G (F, s, g, V\) is used to generate large regular graphs of odd degrees. The
size of the above graphs is determined by s and is equal to s\ -k s<i * • * • * Sd-
See figure 1 for an example of a 2-dimensional linear congruential graph.

We call the linear functions in F and FUg, the generators of G (F, s) and
G (F, 5*, p, Vi), respectively. For any generator ƒ, the graph G ({ ƒ }, s) is
called the graph generated by ƒ on £

Clearly, Linear Congruential Graphs [131 and DCC Linear Congruential
Graphs [14] are 1-dimensional linear congruential graphs. Since de Bruijn
graphs are a special case of linear congruential graphs, de Bruijn graphs are
also a special case of 1-dimensional linear congruential graphs.

DÉFINITION 2.3: We say that a generator ƒ is of cycle type k% on s if the
graph generated by ƒ on ZSl x Z&2 x * • * x ZSd consists of k1 vertex-disjoint
cycles of the same length.
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190 C. C. KOUNG, J. OPATRNY

When studying the linear congruential graphs, the best results with respect
to the diameter of linear congruential graphs of size n — k% m and degree
t generated by linear fonctions / i , ƒ2,. . . were obtained in [14] when the
generator fi is of cycle type kl~l on n for 1 < i £ \t/2] and all cycles are
edge disjoint. Such a set of generators is called Disjoint Consécutive Cycles
(DCC for short) set of generators. Any DCC set of generators générâtes
regular, maximally connected graphs [14].

We will now state the theorem which is used to obtain DCC sets
of generators in the 1-dimensional case as it will be also used in the
multidimensional case

THEOREM 2.1: [14, 10] Let n be a positive integer such that n — k% m
for some integers k > 1, i > 2, and m. Let c\ be an integer such that
gcd(c\, n) = 1, and let b\ be a product of all prime factors of n; b\ also
has A as a factor if n is divisible by 4. Let gj (X) = {k? b\ + 1) x + k? c\.
For every j , 0 ^ j ' ̂  i the function gj is of cycle type kK Furthermore, the
cycles generated by ^ 1 , Qj2 are edge disjoint if j \ ^ J2-

We say that integers a, b satisfy Theorem 2.1 with respect to n if the
function ax + b corresponds to one of the fonctions gj from the theorem.

NOTATION 2.1: We will assume in the sequel that in a generator fi (x) =
x Ai + bi,

i,21 • • • a>i,2d

\a>i,di * * * a>i,dd J

i = ( & » , ! , . . . , 6 j ,d ) -

In the multidimensional linear congruential graphs, we will distinguish the
foliowing two cases of generators.

DÉFINITION 2.4: Let fi (x) = x Ai + bi be a d-dimensional linear
congruential function. We say that ƒ if of Type 1 if a^ j = 0 for i ^ j , and
we say that ƒ is of Type 2 if there exists i / j such that aij ^ 0. We say
that a d-dimensional congruential graph is of Type 1 if all generators are of
type 1, and is of Type 2 otherwise.

Our intention is to generalize DCC linear congruential graphs to the d-
dimensional case, since we expected that this might improve the number of
nodes in a graph of a given degree and diameter. Thus one of the generators
should générâtes a Hamiltonian cycle. It follows from the result in [10] that
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this is possible only when the value in s are relative primes. Thus we will
restrict our attention only to this case.

3. D-DÏMENSIONAL LINEAR CONGRUENTIAL GRAPHS OF TYPE 1

LEMMA 3.1: A d-dimensionallinearcongruentialgraph G(F, ( s i , . . . , sd))
of type 1 can be obtained as a "product" G\ oG2 o • • -oGd of d 1 -dimensional
graphs Gi = G ( F i , s i ) , G2 = G(F2 , «2),.--, Gd = G(Fd, sd) where

L Fj = {oijj x + bij \l<,i<k},l<j<:d,and
2. the opération o is defined as follows:

G\ o G2 o • •. o Gd is a graph with the vertex set V (Gi) x V (G2) x • • • x
V(Gd) and the edge set {((uu u 2 , . . . , ud), (vu v2,..., vd))\(ui, vi) E
E(G!), (U2,v2) eE(G2)..., (ud,vd) eE(Gd)}

Proof: For any generator fi = x% Ai + bi of type 1, all entries in A outside
of the main diagonal are equal to 0. Thus the value of the jth component
of fi (x) dépends only on the value of the jth component of x, ai jfrand
bij. This implies that the values of fi can be calculated using d ordinary
linear fonctions, which allows the above décomposition of the graph into
d 1-dimensional graphs. D

This décomposition allows us to find d-dimensional generators of spécifie
cycle type by using the known results for DCC graphs.

LEMMA 3.2: Let fi = x Ai +bi be a type 1 generator. If for 1 ^ j ^ d,
fij (x) — aijj x + bij is of cycle type Cj on Sj and SJ, 3% are relative primes

d

forl*£j<k^d, then fi is of cycle type J J Cj on (si , . . . , sd).
3=1

Proof: It follows immediately from Lemma 3.1.

THEOREM 3.1: Let r be an integer, s be ad dimensional vector ofsizes such
that 5i = kl m and si, 52,. • •, $d be pairwise relatively prime numbers. Let
ai^ H and bi^ \ be integers so that ai^ nx + 6i; 1 is of cycle type k1"1 on kl m
according to Theorem 2.1, and let aijj x + bij generate a Hamiltonian cycle
on SJ for2<:j<d and 1 < i <; r. Then the graph G ({/i , f 2 i . . . , f r ) , s)
is a graph such that

L fi, is of cycle type kl~1for 1 < % ^ r, and all the cycles are edge-disjoint,
i. e. the cycle structure is identical to the cycle structure of DCC graphs,

2. the graph is regular of degree 2 r,
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0,0

4,4

0.2

5,0

6,4

7,0

Figure 1.

3. the graph is maximally connected,

4. furthermore, the graph G ( { / i , ƒ 2 , . . . , / r } , ( F m , S 2 , . . . , s^)) has the
3 above properties for any p > L

Proof: It folio ws directly from the properties of DCC graphs [14].

We could not obtain any good bound on the diameter of d-dimensional
linear congruential graphs. We have therefore calculated the diameters of
Type 1 graphs by computer. So far, we mostly investigated 2-dimensional
linear congruential graphs.
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The best values for the diameter of Type 1 graphs are summarized in
Tables 1 and 2.

Table 1 a

Degree

4

4

6

6

Diameter

8

9

5

6

32*

32

8

16

Size

9*5 = 1440

* 81 = 2592

* 81 = 648

* 81 = 1296

Generators
5 0 0
0 2 0
0 0 2
9 0 0
040
0 0 1
50
02
90
04
50
0 1
90
04
17 0
0 10
50
0 1
90
04
17 0
0 10

1 1 1

2 1 1

1 2

4 1

2 3

3 2

1 3

2 3

3 2

1 3

NOTE 3.1: In Tables lb, 2, and 3, each row is labeled by a degree and
each column by the size of the graph. Each entry spécifies the matrix and the
constant vector of generators, and the upper right corner gives the diameter
of the graph

Type 1 graphs gave us many improvements on the size of a graph of a
given degree and diameter in comparisons to DCC graphs and de Bruijn
graphs [14].

4. D-DEMENSIONAL LINEAR CONGRUENTIAL GRAPHS OF TYPE 2

For type 2 multidimensional graphs, we do not have a simple
décomposition of multidimensional linear congruential graphs into
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Table 1 b

3

4

5

6

9216

1024 * 9

5 0
0 1 3 5

9 0
0 4 2 :

10

0 1 6 i L î
9 0
0 1 5 2

17 0
0 1 6 4

5 0
0 1 7 1

^ 0
0 1 7 2

17 0
0 1 4 3

7

18432

2048*9

5 0 | i l
0 l 3 5Lu
9 0
0 4 2 2

5 0
0 1 7 1

9 0
0 1 7 2

17 0
0 1 4 3

9

36864

4096 * 9

5 0 1 -p
oi 2i Lir:
9 0
0 5 1 1

0 1 9 l l i
9 0
0 l S 2
17 0
0 1 9 i

73728

8192*9
5 0 | 1 9

0 1 3 4i_±:
9 0
0 2 2 2

5 0 1 10
o i 7 LLÜ:
9 0
0 1 7 2
17 0
0 1 4 3

147456

16384 * 9
5 0
0 1 3 4

9 0
0 2 2 1

5 0
0 1 3 4

9 0
0 2 2 1

20

50 ! 11
0 1 7 1Lu.
9 0
0 1 7 2
17 0
0 1 4 3
5 0
0 1 7 1

9 0
0 1 7 2

17 0
0 L 4 3

9

1-dimensional linear congruential graphs, and thus we cannot use the known
results from the 1-dimensional linear congruential graphs in a straigh-forward
manner. At the beginning of our investigations we had to obtain an insight on
type 2 generators using computers. To simplify the problem, we considered
only the case of two dimensions and s\ = 2l since this case gave us many
different graphs whose size is within reasonable computational limits. For
that reason we have so far results on the cycle structure of type 2 generators
when we have 2 dimensions, and s\ = 2l for some positive integer i, which
will be assume in this section.

THEOREM 4.1: Let ƒ (x) = xA + bbe a 2-dimensional generator, and
s — (2% 4fc + 1). Ifa\\ — 1 contains 4 as a factor, an — 0, 0,22 = 1, &i is
oddy and &2> 4 k + 1 are relative primes, then ƒ (x) générâtes a Hamiltonian
cycle on (2\ 4 A; + 1) for any i j> 0.

Proof: We will use induction on i. If i = 0 then we have again a
1-dimensional case and the theorem is true by Theorem 2.1.

Assume that the theorem is true for some i — n. Let si = ( 2 \ 4 k + 1),
S2 - (2*+\4fc + l ) . Let Gi - G ( { / } , S i ) , G2 - G({f},s2). For
any vertex x — {x\, x2) of G\ there are two possibilities for the value
ƒ (x) mod S2 :

Informatique théorique et Applications/Theoretical Informaties and Applications
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r-

73
72

8
36

86
4

18
43

2

S

46
08

23
04

11
52

57
6

•

| 
81

92
*9

40
96

 •
 9

20
48

 *
 9

•

i

25
6*

9
12

8*
9

1 
64

*9

*° * CM fS

O — O — ^ _ O _

=- =- ̂ Z oZ

o - o - o - o -

v-> C O C — O S <?

— r>* e-i f

o - o - <=- o -

v>e ovc - o ^o

- - ~ -

«= S.O 2 c Se

— C* <•"» 0#

»n *o r* <**

OO
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«rt o o — £ *"

o — c— - - - — *=-
f-» "n «^

V%C ^ C — C « C « C

—HI

MO « O —O wO « O

tel . . . .
f* »n f» — —

tft -»C — C S e « C

-
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1. ƒ (x) mod S2 — f (x) mod s\.
2. ƒ (x) mod S2 = f {x) mod Si + 2\ In this case ƒ (x + (2\ 0)) mod S2 =

ƒ (2?) mod 5*1, and we will say that there is an edge change at the pair x,
x + (2',a?2).
Thus, G<i can be constructed from two copies of G\ by modifying the edges
for all the pairs having the edge change, similarly as it can be done for linear
congruential graphs [13]. Since ƒ générâtes a Hamiltonian cycle on si by
the inductive hypothesis, then if the number of pairs of vertices having an
edge change is odd, then ƒ will also generate a Hamiltonian cycle on §2.
For every j , 0 < j ^ 4k consider the linear fonction p (x) obtained from
ƒ (x, y) by fixing the value of y = j .

If a2i is even then p générâtes a Hamiltonian cycle on 2Î+1 for any j ,
0 ^ 3 = 4 k and each fonction contributes an odd number of edge changes,
and thus the total number of edge changes is odd.

If <22i is odd then p générâtes a Hamiltonian cycle on 22+1 for any
j = 0, 2 , . . . , and it générâtes two disjoint cycles otherwise, see Theorem 2.1.
Thus, 2 k + 1 of the fonctions p contribute odd number of edge changes,
and 2 k of them contribute an even number of edge changes, which gives
an odd number of edge changes in total.

Thus, in either case, since the total of pairs having edge changes is odd,
ƒ générâtes a Hamiltonian cycle on 52. D

THEOREM 4.2: Let G({ / i , ƒ2}, (2*, 52)) be a two-dimensional linear
congruential graph, f\ (x) — x A\ +61, ƒ2 (x) = x A2 +62- Generators
h (£)> H (#) witt create edge-disjoint cycles on (2l, 52) if Q>\,\\ x + b\^\,
^2,11^ + 62,1 satisfy Theorem 2.1, bi^i, 62,1 are of different parities, and
ai,2i> ^2,21 cire of the same parity.

Proof: It is easy to show that in this case the values of the first dimension
of / i (x) and ƒ2 (x) will be of different parities and, therefore, the cycles
generated by the two generators are disjoint. •

When analysing 2-dimensional linear congruential graphs of type 2, we
usually selected one generator according to Theorem 4.1 and the remaining
generators were selected using Theorem 4.2. This ensures that the graphs
are connected.

Notice that in the above theorems, the constants in the generators which
generate Hamiltonian cycles or edge-disjoint cycles are independant of the
value of i in the size vector s = (2l, 52). Thus, type 2 graphs obtained with
generators satisfying the above theorems are extensible by any factor of 2.
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Table 3

197

3

4

5

6

640

128-5

50 U?
6 1 13 l
9 0
6 1 14 I

50 LL
II L I
9 0
5 1 8 1
5 0 [6_
4 1 5 1
9 0
4 1 2 1
17 0
0 1 4 1
5 0 |_5_
4 1 5 1
9 0
4 1 2 1
17 0
0 1 4 1

1230

256 *5

5 o Le
0 1 6 8
9 0
0 1 3 4
5 0 \±
i 1 l 1
9 0
5 1 4 1

5 o tij
0 1 3 1
9 0
0 1 2 1
17 0
0 t l l

2560

512*5

5 o Ll2
0 1 6 3
9 0
0 1 3 4
5 0 |9_
0 i 1 l
9 0
0 1 4 1
5 0 \l_
0 1 3 1
9 0
0 1 4 2
17 0
0 l l i

5120

1024*5

5 0 LH
10 1 5 l
9 0
10 1 6 l

10240

2048*5

20480

4096*5

5 0 JJ7
4 1 1 1
9 0
0 1 4 1

40960

8192*5

5 0 [vA
0 l 7 l |
9 0
0 1 12 1

5 0 [Uj5 0 \m
i 1 1 i l 1 l 1 i l
9 0
3 1 4 1

9 0
3 1 4 1

Table 3 summarizes the results that were obtained using type 2 generators.
Similarly as in the case of type 1 graphs, we do not have good estimate
on the diameter of type 2 graphs and, therefore, the values in Table 3 were
derived by a computer analysis. Type 2 graphs improve further the size of
graphs for many different values of degrees and diameters.

5. CONCLUSIONS

The d-dimensional linear congruential graphs presented in this paper form a
very interesting family graphs. Similarly as DCC linear congruential graphs,
they are defined for both, odd and even degrees, and can be defined for
many different graph sizes. They also satisfy the extensibility requirements
in network design. As seen from the tables, they are much larger, for the same
diameter and degree, than any other genera! construction. The improvement
in the graph size when compared to the family of linear congruential graphs

vol. 28, n° 3-4, 1994



1 9 8 C. C. KOUNG, J. OPATRNY

in more than 15%, and the size of de Bruijn graphs is a fraction of the size of
multidimensional linear congruential graphs of the same degree and diameter.

Further studies of higher dimensional linear congruential graphs could
give additional increase in the size of graphs than can be obtained for the
same degree and diameter.

The problem of obtaining a good upper bound on the diameter of
d-dimensional linear congruential graphs is a very interesting open problem
that requires further studies.
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