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ON THE AUTOMORPHISM GROUP OF A TOROIDAL
HYPERMAP (*)

by Leo CACCIARI (X)

Communicated by R. CORI

Abstract. - We prove that a finite group is (isomorphic to) an automorphism group of a toroidal
hypermap if and only if it is abelian of rank at most two or it can be decomposed as the semi-
direct product of a cyclic group of small order (namely 2, 3, 4 or 6) and such an abelian group.
Moreover for any group arising this way we construct a toroidal hypermap having it as Us full
automorphism group.

Résumé. - Nous démontrons qu'un groupe fini est {isomorphe à) un groupe d'automorphisme
d'une hyper car te toroïdaîe si et seulement si il est abelian de rang au plus deux ou bien il peut être
décomposé dans le produit semi-direct d'un groupe cyclique d'ordre 2, 3, 4 ou 6 et d'un groupe
abelian de rang au plus deux. De plus nous allons construire pour chacun de ces groupes une
hypercarte toroïdaîe dont il est le groupe d'automorphisme.

1. INTRODUCTION

In [4] it is proved that for any (finite) group G there exists a hypermap Jf
such that Aut(^) , the full automorphism group of Jf, is (isomorphic to) G.
It is then interestig to ask, for a given non-negative integer g which groups
can arise as the full automorphism group of a hypermap of genus g and,
more generaly, which groups can arise as automorphism group of some
hypermap of genus g.

The case g=Q has a complete answer: the groups that can arise as the full
automorphism group of a planar (z. e., having genus 0) hypermap are precisely
the polyhedral groups [5].

In the case g^2 an important resuit is the theorem of Hurwitz (see [11])
which states

(*) Received January 1991, accepted December 1991.
(*) L.I.T.A. Dép. Informatique, U.F.R. des Sciences et Techniques, Université de Pau et des
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524 L. CACCIARI

FACT 1: Let ffi be a hypermap of genus g ^ 2 then:

In then follows that it is possible at least in principle to find all the groups
that are the full automorphism group of some hypermap of genus g^2.

The case g= 1, Le. that of toroidal hypermaps, was settled by the author
in [2]. Here we present a condensed form of these results. We will show
that the groups that can be automorphism groups of a toroidal hypermap
are either fïnite abelian groups of rank at most two or are decomposable as
a semi-direct product of a cyclic group of smalt order (namely 2, 3, 4 or 6)
and such an abelian group. Moreover we will show that each of these groups
actually arise as the full automorphism group of some toroidal hypermap.

In proving our theorem we will use a technique introduced by Jones and
Singerman [10] and based on Fuchsian groups. The needed facts about those
groups will be recalled in the sequel but we will omit proofs.

2. HYPERMAPS AND AUTOMORPHISMS

A hypermap ^ is a triple (B, a, a) where B is a fïnite set of brins and a,
a are two permutations of B such that the groupe < a, a ) is transitive on B.
In the special case where a is a fixed point free involution then j f is a map.
From the geometrical viewpoint it can be shown that maps and hypermaps
give a représentation of graphs and hypergraphs, respectively, in an orientable
surface ([3], [6]).

This geometrical interprétation of hypermaps explains the reason for calling
the cycles of a, a and aot the edges, vertex and faces of ffl respectively.
Again from the geometrical interprétation of hypermaps we have the follow-
ing définition

DÉFINITION 1: Let 34? = (B, a, a) be a hypermap. The genus of Jf is given
by the following Euler 's formula:

g(^):=|£|-z(a)-z(a)-z(aa), (1)

where for any permutation y, z(y) dénotes the number of cycles ofy, including
the trivial ones.

In can be proved that g ( Jf7) is the genus of the surface in which Jf defines
a embedding; it then follows that g(J^) is a non-negative integer. This last
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AUTOMORPHISM GROUP OF A TOROIDAL HYPERMAP 525

result can also be proved by combinatorial means [9]. A hypermap is said to
be planar if g (JtT) = 0 and to be toroidal if g (jf) = 1.

Geometrically an automorphism of a hypermap Jtf? = (B, o, a) can be defïned
as an automorphism of the underlying hypergraph preserving the embedding
defined by 34f. This can be proved to be equivalent to the foliowing combina-
torial définition.

DÉFINITION 2: An automorphism of the hypermap 34? = (B, a, a) is a permut-
ation cp of B commuting with both a and o:

The full automorphism group of Jf, denoted by Aut (^f), is nothing else
than the centralizer of ( a, a ) in Sym (B), the symmetrie group over B.
The transitivity of < a, a ) implies that Aut (^f ) is semiregular. By an auto-
morphism group of Jf wemean a subgroup of

PROPOSITION 1: Let boeB be a brin of the hypermap Jf = (B, o, a) and let
= <a, a>. Then

where NG(Gbo) is the normalizer in G of the stabilizer GbQ ofb0eB.

Proof: As G is transitive over B, for each beB there exists ybeG such that
yb(t>o) = b. Let (p be in NG(Gbo). Then

gives a well-defined permutation of B. Moreover cp e Aut (Jtf) and q>\|/ = (p\j)
so that

defines a morphism. As Aut(Jf) is semi-regular the kernel of A is Gbo

Conversely let xeAut(Jf) and let cpeG be such that cp"1 (èo)
 = T(*o)

claim that cpeNG(G6o) and that (p = x. In fact if y is in Gbo we have

979 "X (*o) = 97 (x (ft0))
 = 9x (y (60)) = 9 (x (*o)) = 9 (9 " 1 (*o)) = h
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526 L. CACCIARI

proving that cpycp"1 eGbo and so that «peN^G^). Moreover for any brin b
we have

= Y> (9 " * <60)) = Jb (x (60)) = T (Y* (60)) = * (i0),

proving that (p = x.

COROLLARY: With the same notation as in Proposition 1 there is a bijection
between the automorphism groups of 3rif and the subgroups N of G such that
GbQ ^ N. Namely ifN^G is such that GbQ ̂  TV then N/Gbo is (isomorphic to) a

subgroup of Aut(Jf) and al! subgroups of Aut(3tf) arise this way.

Let us recall the following standard resuit of group theory

FACT 2: Let n : f ' —> G be a group homomorphism of a group Y onto a
group G, Let H be a subgroup of G and T=n~1(H) is inverse image. Then
there is a bijection between the subgroups of T containing T and those of G
containing H given by

K^n(K)

Moreover T *û K ifand only ifH *û % (K) and in this case

T H

Let now J^ = (B, o, oc) be a hypermap and let A be a subgroup of Aut(^f).
Clearly < er, a y acts transitively on the set B/A of all 4̂-class of brins (that is

= {[b]/beB}

where

[b] = {<p(b)/<peA}

is the set of all brins ^4-equivalent to b). This means that the triple
J#"—(B/A, a', a') (where a' and oc' are defmed by

for all [b] G B/A) is a hypermap. Jf7' is called the quotient hypermap of 34?
w. r. t. the automorphism group A and will the denoted by Jjf/A.

The following définition is a generalization of an idea of Jones and
Singerman [10].
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DÉFINITION 3: Let /, m and n by three integers such that the orders of a, a,
and aa divides I, m and n respectively. Then the group

(0; /, m, n):=(x,y9 z; x
l^ym = zn = x~ly~xz'^ = 1 > (2)

is a covering ofjtf*.

Let F = (0; /, m, n) be a covering of Jf. Then from the définition of
covering and from elementary properties of free groups (see [12], p. 15) it
follows that there exists a (unique) group homomorphism n of F onto < a, a )
defined by

n (x) = a. n (y) = a, n (z) = (aa) "x . (3)

The projection TC defined by (3) will be referred to as the natura! projection,
of the covering F.

Let now b be a brin of $? and let Gb be the stabilizer of b in { a, a )

G»-{ye<a, a>/Y(*>) = />}.

The subgroup H=n~1(Gb) will be called the group of jff w.r.t. the
covering F and the base point b, and denoted by H^T^ b or ^iinply by
H=Tb,

By Fact 2 and the proof of Proposition 1 we obtain the following result

PROPOSITION 2: Let ̂  be a hypermap, b one of its brins and F be a covering
of 3tf. Let A be an automorphism group of$f. Then there exists N^T such
thatYb <Nand

A N

A^

Moreover F is also a covering of ffi' = #?\A andN

As a special case of Proposition 2 we have:

3. FUCHSIAN GROUPS

A group like (0; /, m, n) is called a triangular group, It is a special case of
a Fuchsian group.
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528 L. CACCIARI

DÉFINITION 4: A Fuchsian group of genus g^O and of periods
m^ m2, . . ., mt 0 ^ 0 , m,^ 1 for /= 1, 2 0 is a group having a présentation
of the form

< * ! , . . . , xv aly bu . . ., ag9 bg;

x?i, . . ., x?\ xï1. . .*f'[«i, M- • -K> 6J> (4)

[a, b] is the commutator a~lb~lab.

Various facts are known about Fuchsian groups. We recall here the most
significant for our work. A nice combinatorial proof of Facts 3 to 5 below
can be found in ([7, 8]).

FACT 3: Any element of finite order in a Fuchsian group is conjugated to a
power of a generator of finite order.

FACT 4: Two Fuchsian groups are isomorphics if and only if they have the
same genus and the same periods.

Fact 4 allows us to write (g; mx, . . ., mt) to dénote the Fuchsian group of
genus g and periods mx to mv Moreover it tells us that the following defines
an invariant of a Fuchsian group.

DÉFINITION 5: Let F = (g; mu . . ., mt) be a Fuchsian group. The measure
of F is defined by:

mi

FACT 5: Let F be as above and let H be a subgroup ofT having finite index
in F. Then the following hold:

1. H is itselfa Fuchsian group (g';mlt ! , . . . , m1 S1, . . . , mt l 5 . . . , mus);

2. the Riemann-Hurwitz formula:

(5)

holds;

3. H as a présentation

O u ( z = l , . . . , f ,y=l , . . . . , s^,au bl9 , ag,9bgr9

^ xï\xl\.. .x~Jt[au bx]. . \a9., bg])
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where

Note that 2, implies that g'Sg-

The following result, which is due to Singerman [13], gives the relationship
between Fuchsian groups and permutation groups.

PROPOSITION 3: Let T be the Fuchsian group (g; ml9 . . ., mt). Then T has
the Fuchsian group H= (gf; mx l5 . . ., mx S1, . . ., mt l5 . . . mus) as a subgroup
offinite index if and only if(5) holds and there exists a transitive permutation
group G of degré n and a homomorphism n:T -+G such that the permutation
£>i = n(xi) nas exactly st non-trivial cycles of length less than mt, these lengths
being

mt mt mt
, , . . . j . •

mi, 1 mU 2 mi, si

Sketch of the proof (see [13] for details): If Y has a subgroup like H, Iet
act T on the set F/H of the coset modulo H. This give us the group we are
looking for in the form TjK (where K is the intersection of all subgroup of
F conjugate to H).

Conversely let H be the inverse image by % of Gx; one can then shown
that H has the prescribed présentation.

COROLLARY: A triangular group (0; /, m, n) has a subgroup of fïnite index
like (g; lu . . ., lp, mu . . ., mq, nu . . ., nr) if and only if there exists some
hypermap J? = (B, a, a) of genus g such that a(resp. a, aa) has p(resp. q, r)
cycles of length less than l {resp, less than m, less than n) these lengths being
l/Il9 . . ., l/lp (resp. mjml9 . . ., m/mq; n/nu . . ., n/nr).

Proof: The proof is an application of Proposition 3. A straightforward
calculation proves that g = g(^).

We shall examine now a special case of Proposition 3 which will be needed
in the sequel.

Let H ^ T. As T acts regularly on the quotient group T/H we have, for

Ï = 1 , 2, . . . ,* ,
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and, if 7c : F —• F/H is the natural projection, the order k( of ^ = n (xt) is given
by

ki~m[

Moreover, we have

"

With the above notations we obtain

»i(jï)=2g'-2-[r:Jï](5; f i - f V Z fi-

and substituting (6) in (5) we get

( i ( I ) ) (7,

As a final remark, if F and / / are as above then

F _ F'
H= H'

where F' is the Fuchsian group (g; fel5 . . ., kt) and H' has no éléments of
finite order [it then follows from Facts 3 and 5 that H is the surface group
te'; - ) ] .

4. THE MAIN THEOREM

Before stating and proving our theorem we need same more resuit about
the relationship between Fuchsian group and hypermaps.

THEOREM 1: Let 3^={B, a, a) be a hypermap and let ;4!gAutp^) be an
automorphism group of Jtf. If g(Jf) = g and g(J#?/A) = gf then A can be
expressed as a quotient T/H where

r = < x 1 , . . ., xt, al9 bu . . ., aQ.,bq.\

.x f ' ( i= l , . . ., r), x r 1 . • 'Xrx[au 6 J . . .[ag.9 bg])

and H is a (normal) subgroup ofT in theform

< cl9 dl9...9 cg9 dg\ [cl9 dt]. . . [cg9 dg] >.
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Moreover the foliowing holds

2g-2 = [r:H\^2g'-2+ £ ( l -^Y) (8)

It should be remarked that formula (8) looks like the formula given in [11],
This is not a coïncidence. It can be proved that formula (8) is nothing else
that the one in [11] obtained by other means.

Let now Jt? = (B, a, a) be toroidal so that in Theorem 1 we have g ~ 1 and
g'~0 or 1. From (8) we get that \i(T) must be 0. So the first step towards
the main theorem is to fmd all Fuchsian group F such that

PROPOSITION 4: Let F be a fuchsian group such that |i(F) = 0. Then F
is one of the foliowing fuchsian groups (see above for notation): (1; — ),
(0; 2, 2, 2, 2), (0; 2, 4, 4), (0; 2, 3, 6) or (0; 3, 3, 3).

Proof: Straightforward calculation.

THEOREM 2: If J^=^(B, o, ot) is a toroidal map and A an automorphism
group of ffl such that $?\A is still toroidal, then A is isomorphic to the
foliowing group

where h and q are integers ^ 1.

Proof: We known that A is isomorphic to a quotient of (1; - ) so that A
is a finite abelian group of rank at most two. The proposition then follows
from the structure theorem for finite abelian groups.

Let T^^a, b; [a, b]} be a présentation of (1; —) and let hly h2, k± and
k2 be integers. By basic properties of free abelian groups there is a unique
endomorphism % : I \ -• Fx induced by

Moreover £ is an automorphism if and only if

hi i = ± 1 .
h2k2

This means that we can identify Aut(F t) with GL(2, Z) (see [12], p. 169).
The next step is to prove that the groups (0; 2, 2, 2, 2), (0; 3, 3, 3),

(0; 2, 4, 4,) and (0; 2, 3, 6) can be written as a semi-direct product C x ^
where C is a cyclic group of order 2, 3, 4 and 6 respectively. It is well known
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that in AutOT-J the only éléments of finite order have order 2, 3, 4 or 6 so
these are the only semi-direct product whith cyclic finite group one can form.

Let
'-î o \ j - \ -r

-1 ƒ M 0 0
/0 -1

«•-(• o
It is immédiate to verify that under the identification given above £,n gives
an automorphisms of F\ of order n(n = 2, 3, 4, 6).

The following theorem can be found, in a slaightly different form, in the
classical work of Burnside ([1], p. 410 ff).

PROPOSITION 5: Let T2, T3, T4 and T6 the groups (0; 2, 2, 2, 2), (0; 3, 3, 3),
(0; 2, 4, 4) and (0; 2, 3, 6) respectively. Then

1 n — ^-n <P„ x 1 W

w/*£re Cn = <( x ; x" ) arcrf

i)

/or ,2 = 2, 3,4,6.

Proq/; Let us start with the case of T2. This group has a présentation of
the form

< v v y v * v^ ; = 1 4 v v v v \ M 0^

As all the relators in (10) have even length we may divide the éléments of F2

into two subset: those that can be write as the product of an even number
of generators and those which need an odd number of generators. The
éléments of even length form a subgroup we will dénote by E. As [F2 :E\ — 2,
E is characteristic in F2. It can be proved that E is generated by the products
x1x2 and x2x3 and that

gives an isomorphism of Fx onto E. To prove this it is enough to remark
that
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proving that E is an abelian Fuchsian group. As E is of infinité order it
must be isomorphic to Tx. It can then be proved that F2 splits in E and C,
where C is the cyclic group of order two generated by x2. Moreover as

X2 (*! X2) X2 = ! X2)- 1 . x2 (x2 x3) x2 — x3 x2 — (x2 x3)

we get (9) for w = 2. (We remark that E contains all the éléments of infinité
order of T2. In fact iff$E then f=x2h, some h e E, but then

and/has order 2).
Let us take for F3, F4 and F6 the présentation given by (2) and let

Tn{n~2, 3, 6) be the subgroup of F„ whose generators a and b are given in
Table I below. By a straightforward calculation it can be proved that Tn is
isomorphic to Tx under the obvious isomorphism.

TABLE I

n

3
4

6

a b

y*y
zy'1 z

To prove that Tn ^ F„ one can show that T„ is formed by all the éléments

of infinité order of F„ and so it is characteristic in F„. To finish the proof of
(9) one shows that Fn split in Tn and the cyclic group of order n generated
by y for n = 3, 4 and by z for n = 6.

Note that, as it follows from the proof of Proposition 5, an element y of
rM^Cnx a ) nF1 is of infinité order if and only if yeT1. As we are looking for
quotients of F„ by some normal subgroup H isomorphic to F1 ; and so having
only éléments of infinité order, we are led to look for the subgroups of Fx

that are
1. of finite index in F l 5

2. ^„-invariant
3. isomorphics to F^
If H^FX satisfies 1 to 3 above then we can form the quotient F„/H which

turns out to be

* H
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where cp is obtained from <D„ in the obvious way.

LEMMA 1: Let T be a subgroup of finite index in Tx = { a, b; [at b] ). Let n
be the least positive integer such that bneT and h be the least positive integer
such that ahbke T, some ksZ. Then T is generated by bn andahbk.

Proof: Let bmeT, then m — qn. Let m = qn + r, with 0^ r<« , we have

which is impossible by the choice of n unless r = 0.
Let now axbyeTand let x = qh + r with 0^r<h. Then

ar by-qk = (ax by)(ah bk)

which implies r = 0, so that we get by'qke Tand so y — qk = q'n which in turn
gives us

axby = (ahbkyq(bn)q'

proving that ahbk and b" generate T.

COROLLARY: If T is a finite index subgroup ofT1 then T is isomorphic to Tx,
This means that condition 3 above is redundant.

LEMMA 2: Let T be a subgroup of finite index ofT1, then T is ^-invariant.

Proof: This is straightforward as ^2 sends any element of I"\ into its
inverse.

LEMMA 3: Let T a subgroup of finite index ofT1 and let T be generated by
ahbk and bn as in Lemma 1. Let T be ^-invariant where % is one of £3, ^4 or
^6. Then there exist q, q'eZ. such that k~qh and n — q' h.

Proof: Let us prove the lemma for £ = ^3, the proof for the other cases
being similar.

Suppose that k = qh + r, where 0^r<h. As T is ^"invariant we have
^3 (a

h bk) e T which means that

This can only happen if r = 0, that is k~qh.
Let now n = q'h + r, Q^r<h. We have

which implies r = 0 and so n — qfh.

Informatique théorique et Applications/Theoretical Informaties and Applications
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By Lemma 1 we have that is T is of fïnite index in T1 = < a, b; [a, b] > then
G"=T1/Th2iS the following présentation

G=(a,b;ahb\b\ [a, b]}.

If now T is ̂ -invariant for Ç one of £3, £4 or £6 we have that

where c = abq. Now r i s ^-invariant (Ç = Ç3s £4 or ̂ 6) if and only if ̂  induces
the indentity on G. Table 2 gives the effect of £3, ^4 and ̂ 6 on the generators
c and è of G.

TABLE II

^-l è - ( 9 - l ) 2 - 9

cqb~iq2 + 1)

b

cb'q

cb~q

cb~ql

Then it is simply a matter of calculation to prove that:
T is ̂ -invariant if and only if q' \ (q2 + 1),
T is ̂ -invariant if and only if q' \ (q2 — q + 1),
'T is ̂ -invariant if and only if q' | (q2 + q+ 1),

Putting together the results obtained so far we have

THEOREM 3: Let T be a subgroup ofTn{n = 2, 3, 4 or 6) having fïnite index
in F„ and being isomorphic to r \ . Let G be the quotient group TJH. Then

1. Ifn = 2 then G is isomorphic to

generator of C2 into the isomorphism £2 ofwhere h, q ̂  1 a»rf (p2 senJls
Ch* Cqh definedby

2. Ifn = Z then G is isomorphic to

where q' \ (q2 + 1) and 93t q sends the generator of C3 into the automorphism of
CH x Cf h defined by first row of Table L

vol 26, n° 6, 1992



536 L. CACCIARI

3. If n = 4 G is isomorphic to

where q' \ (q2 — q+ 1) and cp4 q sends the generators oj'C4 z«to f/*e automorphism

of Ch x C9, ft defined by second row of Table L

4. Finally, ifn = 6 G is isomorphic to

G(6, h, q, q') = C6* ^ q(Ch* Cq.hl

where q' \ (q2 + q + 1) and cp6 q sends the generators ofC6 into the automorphism
of Ch x Cq. h defined by third row of Table L

THEOREM 4: Let 3tf be a toroidal hypermap and A^AutiJf). Then A is
{isomorphic to) one of G(h, q), G (2, h, q) G (3, h, q, q'\ G (4, h, q, q') or
G(6,h,q,q'\

Proof: This follows immediately from Theorems 1, 2 and 3 and
Proposition 2 above.

Notice that Theorem 4 only gives a necessary condition for a fmite group
to be the full automorphism group of a toroidal hypermap. We still have to
prove that these groups actually arise as the full automorphism group of
some toroidal hypermap. This will be done in the following section.

5. THE HYPERMAPS

In the present section we will show that for each of the groups of Theorem 4
it can be constructed a hypermap having it as its full automorphism group.
This will complete the proof of the following theorem:

THEOREM 5: Let A be a finite group. There exists a toroidal hypermap 3tf
such that A is (isomorphic to) a subgroup of Aut(Jf) if and only if A is
(isomorphic to) one of G (h, q), G (2, h, q), G:(3, A, q, q'), G (4, A, q, q') or
G (6, h, q, q'). Moreover is A is one of the groups listed above then there exists
a toroidal hypermap whose full automorphism group is (isomorphic to) A,

Proof: First of ail note that F3î F4 and F6 ail are triangular group and
that G (n, h, q, q') is obtained as a quotient of F„ by a normal subgroup H
of finite index isomorphic to F^ It follows from Proposition 2 and from the
corollary to Proposition 3 that setting B^TJH and letting a(resp. a) be the
permutation of B induced by the generator x (resp. y) of Fn gives us a

Informatique théorique et Applications/Theoretical Informaties and Applications
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hypermap Jf(ny h, q, q') such that

Aut(JT(/i, K q, q = § =G(n, h, q, q').
H

setting the problem for the last three groups.
The proof of the theorem for the remaining groups is a straigthforward

conséquence of Lemmas 5 and 6 below.

LEMMA 4: Let ffl = (B, a, a) be a hypermap and A an automorphism group
of 3^. The cardinality of B is a multiple of that of A.

Proof: This is obvious since A acts semi-regularly on B with orbit lenght | A |.

PROPOSITION 6: With the same notations as in Lemma 4 if the ratio \ B \ / \ A \
is a prime number then either A = Aut (J4?) or Aut (J4?) is transitive on B.

For any h, q^l define 34? (h, q) as follows: the set of brins is

B=;

the vertices are given by

and the edges by

1)

(ij,

(i+l
0,7-
0', -

1)
-1 ,
»7'.
- 1 ,

3)
4)
0)
,2)

if
if
if
if
if

k=0,
k=\,
k = 2,
k=3,
k = 4.

LEMMA 5; For any h, q^l we have

Proof: Let x and p be defined as follows for any (i, j9 k) e £;

OW, k)) = (i+ 1,;, *), x((i,y, k)) = (i,j+ 1, *:)x((i,y, k)) = (i,j+ 1, *:). (11)

It's easy to see that x, peAutpf (h, q)) and that [x, p] = idB. Moreover for
any x, y (O^xKh, 0^y<qh) we have

pxTy((hJ, k)) = (j + x,j+y, k)*(i9j, k),

proving that pxxy^idB. Also the order of p is h and that of x is qh so that
«-•p, Z>->x gives an isomorphism of G(h, q) = (a, b\ ah, bqh, [a, b]} into

/, q)). To prove that this isomorphism is onto let A be the subgroup
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538 L. CACCIARI

of Au t (^ ) generated by p and x. We have |5| / | ,4 | = 5 so that, by
Proposition 6 either A is all of Autpf (A, q)) or Autpf (h, q)) acts transi-
tively on B. Now Jf(h, q) has h2q edges of length 3 and the same number
of edges of length 2 and no automorphism can send a brin belonging
to an edge of length 2 into a brin belonging to an edge of length 3. So
Aut(J^(A, q)) can't be transitive on B and the lemma is proved.

Let A, q still dénote two positive integers. We can define a hypermap
J^(2, A, q), whose automorphism group will turn out to be G (2, A, q), as
follows: the brin set is

B=ZhxZqhxZ6;

the vertices are given by

a ( (U, *)) = (/,.ƒ, * + l )

and the edges by
(i,7,l) if * = 0,
(i ,7+l,3) if Jfc=l,
(/+1,7,5) if * = 2,

a «i , ; , * ) ) = •
(i,7,4) if * = 3,
( i ,7 - l ,0 ) if * = 4,
(i,7,2) if k = 5.

LEMMA 6; For any h, q^l we have

Autpf(2,/*,<?))£ G (2,/>,<?).

Proof: As in the proof of Lemma 5 the permutations of B defined by (11)
form a subgroup of Autp^(2, h, q)) isomorphic to G {h, q). Let now % be
defined by

Then £ is an automorphism of J<f (2, h, q) of order two. Moreover if x, y
are integers such that 0^x<h and O ^ ^ w e have

Finaly ^p^ = p~1 and ^T^ = T~1 proving that a->p, b^x and x->^ define
an isomorphism of G (2, A, q) = (x, a, b; x2, a\ éflh, [a, b], (xa)2, (xb)2) into
Aut (.^(2, A, #))... To. prove that this isomorphism is onto let A be the
subgroup of'Autpf"(2V A, ^)) generated by ^,-p and x, then |-i?|/|,4j = 3 iso
that we are left'with two possibility: either A is ail of Aut (if "(2, h, q)) or
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Aut(Jf(2, h, q)) is transitive on B. Now if h#2 there cannot exists an
automorphism carrying (i,jr Q)into £/,jV 2)̂ 8̂ 1116, edgeçontaining the formed
as length 4 and the one containing the latter has length 2 h #4. On the other
side if h = 2 then it is impossible to find an automorphism carrying (/, j , 0)
into (i, j , 1) as the face containing the former as length 4 and the one
containing the latter has length 2.

6. CONCLUSIONS

We have proved that the finite groups that can arise as the automorphism
group of some toroidal hypermap are of a really simple structure. Moreover
there exist infinitely many such groups, like in the planar case and unlike
the case of genus greater than 1 (see Fact 1).

Some work is left. For instance can it be proved that the five families of
groups described above are disjoint (exept for triviality like G (2, 1, 1) being
isomorphic to G(l, 2))?

Another interesting question is to find a proof of our theorem by elemen-
tary means, that is by arguments like the ones used in [5] to settle the planar
case.

ACKNOWLEDGEMENTS

This paper was partialy done as a part of collaboration program of the Mathematics dep. of
University of Rome "La Sapienza" and the Computer Sciences dep. of the University of
Bordeaux-I.

We also wish to thanks Professor A. Machi who sugested us this work and Professor Cori
who supervised our thesis [2].

REFERENCES

L W. BURNSIDE, Theory of Groups of Finite Order, 2nd Ed., 1911.
2. L. CACCIARI, Hypercartes Combinatoires : Automorphismes et Systèmes d'Équa-

tions Algébriques, Thèse de doctorat, Université Bordeaux-I, Bordeaux, 1989.
3. R. CORI, Un code pour les cartes planaires et ses applications, Astérisque, 1975,

27, Paris.
4. R. CORI and A. MACHÏ, Construction of Maps with Prescribed Automorphism

Group, T.C.S., 1982, 21, pp. 91-98.
5. R. CORI, A. MACHÏ, J. G. PENAUD and B. VAUQUELIN, On the Automorphism

Group of a Planar Hypermap, E. 7. Combinatorics, 1981, 2, pp. 331-334.
6. J. EDMONDS, A Combinatorial Représentation for Polyedral Surfaces, Notices

Amer. Math. Soc, 1960, 7, p. 646.

vol. 26, n° 6, 1992



540 L. CACCIARI

7. A. H. M. HOARE, A. KARRAS and D. SOLITAR, Subgroups of Finite Index of
Fuchsian Group, Math. Z., 1971, 120, pp. 289-298.

8. A. H. M. HOARE, A. KARRAS and D. SOLITAR, Subgroups of Infinité Index of
Fuchsian Group, Math. Z., 1972, 125, pp. 59-69.

9. A. JACQUES, Constellations et propriétés algébriques des graphes topologiques,
Ph. D. Thesis, 1969, Paris.

10. G. A. JONES and D. SINGERMAN, Theory of Maps on Orientable Surfaces, Proc.
London Math. Soc, (3), 1978, 37, pp. 273-307.

11. A. MACHÎ, The Riemann-Hurwitz formula for the centralizer of a pair of permuta-
tions, Arch. Math,, 1984, 42, pp. 280-288.

12. W. MAGNUS, A. KARRAS and D. SOLITAR, Combinatorial group Theory 2nd Ed.,
Dover Pub. Inc. New York, 1976.

13. D. SINGERMAN, Subgroups of Fuchsian Group and Finite Permutations Groups,
Bull Lond. Math. Soc, 1970, 2, pp. 319-323.

Informatique théorique et Applications/Theoretical Informaties and Applications


