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SEPARATING COMPLEXITY CLASSES RELATED TO CERTAIN
INPUT OBLIVIOUS LOGARITHMIC SPACE-BOUNDED TURING
MACHINES (*)

by M. Krausk (), Ch. MeINEL (%) and St. Waack (?)

Communicated by Jean BERSTEL

Abstract. — In the following we prove that input oblivious simultaneously linear access-time and
logarithmic space-bounded nondeterministic Turing machines are more powerful than deterministic
ones. Moreover, we separate all the corresponding complexity classes Ly yiq, NLg, 1iny €0-NLg g
and P= AL, . from each other.

Résumé. — Dans cet article, nous prouvons que les machines de Turing non déterministes a
lecture insensible a la donnée, a temps d'accés linéaire et en space borné logarithmiquement sont
plus puissantes que les machines de Turing déterministes de méme nature. De plus, nous séparons
les classes de complexité correspondantes les unes des autres.

INTRODUCTION

One of the most important problems in complexity theory is to separate
complexity classes (or to prove their coincidence). For example, in order to
separate the classes L, NL or P one has to prove that logarithmic space-
bounded nondeterministic or alternating Turing machines are more powerful
than deterministic ones. In the following we investigate this question and
give an affirmative answer to simultaneously linear access-time and logarith-
mic space-bounded input oblivious Turing machines (i.e., Turing machines
for which the order to read the input bits depends merely on the length of the
input and not on the input itself). Moreover, we establish strong differences in
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346 M. KRAUSE, CH. MEINEL, ST. WAACK

the computational power of such deterministic, nondeterministic, co-nondeter-
ministic, and alternating Turing machines. One of the interesting conse-
quences of these results is the proof that the technique of inductive counting
[Im87, Sz87] does not work under the mentioned constraints.

Whereas this fact shows that nondeterministic as well as co-nondeterminis-
tic input oblivious, simultaneously linear access-time and logarithmic space-
bounded Turing machines are less powerful than solely logarithmic space-
bounded ones, the question arises whether at least each problem of L can be
computed by one of these restricted machines. However, this question has to
be negated. We prove that the GRAPH ACCESSIBILITY PROBLEM for
graphs of outdegree 1 which, of course, belongs to L can be computed neither
by input oblivious nondeterministic nor by input oblivious co-nondeterminis-
tic logarithmic space-bounded Turing machines within linear access-time.
Since all problems belonging to L can be computed by input oblivious
simultaneously linear access-time and logarithmic space-bounded alternating
Turing machines, this shows in addition to the consequences mentioned
before that input oblivious simultaneously linear access-time and logarithmic
space-bounded nondeterministic and co-nondeterministic Turing machines
together are not able to solve all problems computable within linear access-
time and logarithmic space by input oblivious alternating Turing machines.
However, the GRAPH ACCESSIBILITY PROBLEM for monotone graphs
of outdegree 1 which is also p-projection complete in L [Me86] can be
computed within these access-time and space restrictions already by input
oblivious deterministic Turing machines [Kr91].

In order to prove these results we consider the corresponding nonuniform
complexity classes which can be described by means of certain Q-branching
programs [Me88]. In detail, nonuniform, input oblivious, simultaneously
linear access-time and logarithmic space-bounded deterministic, nondeter-
ministic, co-nondeterministic, and alternating Turing machines correspond
to oblivious ordinary, disjunctive, conjunctive, and alternating branching
programs of polynomial size and linear length, respectively. Investigating
such oblivious Q-branching programs instead of the corresponding nonuni-
form Turing machines we are able to establish exponential lower bounds as
well as polynomial upper bounds for the sizes of certain Q-branching pro-
grams which imply similar bounds for the Turing machine access-time and
space. The proof technique we apply to obtain our exponential lower bounds
for certain oblivious Q-branching programs of linear length generalizes that
for ordinary oblivious branching programs [AM86, Kr88, KW91]. In detail,
considering the SEQUENCE EQUALITY PROBLEM we prove exponential
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SEPARATING COMPLEXITY CLASSES 347

lower bounds and polynomial upper bounds for oblivious disjunctive and for
oblivious conjunctive branching programs of linear length which imply the
separation of all the nonuniform complexity classes under consideration.
However, since nonuniform lower bounds are stronger than uniform ones,
and since our upper bounds can be described uniformly we obtain similar
separation results for the corresponding uniform classes. Finally, we give some
exponential lower bounds for the GRAPH ACCESSIBILITY PROBLEM for
graphs of outdegree 1 which prove that neither input oblivious nondeterminis-
tic nor input oblivious co-nondeterministic logarithmic space-bounded Turing
machines are able to compute this problem within linear access-time.

The paper is organized as follows. In Section 1 we recall the definition of
an Q-branching program and review the relations between deterministic
(Q=), disjunctive (Q={ v }), conjunctive (Q={ A }), and alternating
(Q@={ v, A }) branching programs and logarithmic space-bounded deter-
ministic, nondeterministic, co-nondeterministic and alternating Turing mach-
ines (Theorem 1), respectively. Then we introduce the restricted model of
oblivious Q-branching programs which are related to the corresponding types
of input oblivious Turing machines (Theorem 2), respectively. In Section 2
we develop the technique for proving exponential lower bounds for oblivious
disjunctive branching programs of linear length. Then, in Section3 we con-
sider the SEQUENCE EQUALITY PROBLEM and prove an exponential
lower bound (Proposition2) for oblivious disjunctive branching programs
and a polynomial upper bound (Proposition 3) for conjunctive ones. Due to
these bounds we separate the corresponding Turing machine classes
(Theorem 4) in Section 4. The concluding Section 5 is devoted to the investiga-
tion of the GRAPH ACCESSIBILITY PROBLEM.

Generally, w.l.o.g. we assume A < {0, 1 }* for all languages A4 under consi-
deration. Throughout this paper we make no difference between 4 and its
characteristic furiction denoted by A4, too.

1. BRANCHING PROGRAM DESCRIPTIONS

Our investigation of restricted logarithmic space-bounded deterministic,
nondeterministic, co-nondeterministic, and alternating Turing machines are
based on descriptions by certain types of branching programs. Following
[Me88] we can relate these machines to polynomial size deterministic, disjunc-
tive, conjunctive, and alternating branching programs, respectively. Unifying
this approach we consider polynomial size Q-branching programs, Q < B,.

vol. 26, n° 4, 1992



348 M. KRAUSE, CH. MEINEL, ST. WAACK

In detail, a branching program is a directed acyclic graph where each node
has outdegree 2 or 0. Nodes with outdegree 0 are called sinks and are labelled
by Boolean constants. The remaining nodes are labelled by Boolean variables
taken from a set X={x,,...,x,}. There is a distinguished node, called the
source, which has indegree0. An Q-branching program P is a branching
program some of whose non-sink nodes are labelled by 2-argument Boolean
functions weQ < B, instead of Boolean variables. The Boolean values
assigned to the sinks of P extend to Boolean values associated with all nodes
of P in the following way: if both successor nodes v,, v, of a node v of P
carry the Boolean values d,, 8, and if v is labelled by a Boolean variable x;
we associate with v the value §, or 8, according to x;=0 or x;=1. If v is
labelled by a Boolean function ® then we associate with v the value ® (34, 8,).
P is said to accept (reject) an input we {0, 1}" if the source of P associates
with 1(0) underw. An Q-branching program P is called a disjunctive, a
conjunctive, or an alternating branching program if Q={v }, Q={ A}, or
Q={ v, A}, respectively. In the case Q={ v } acceptance reduces to the
existance of an accepting computation path. Ordinary branching programs
correspond to Q= .

The most important complexity measure of an Q-branching program P is
the number of its non-sink nodes, the size of P. By 2, _gzp, Q = B,, we
denote the set of all languages acceptable by sequences of polynomial size
Q-branching programs.

In order to relate Turing machine classes and Q-branching program classes,
Q < B,, we have to consider the nonuniform counterparts L/poly, NL/poly,
co-NL/poly, and AL/poly of the classes L, NL, co-NL, and AL consisting of
all languages 4 < {0, 1 }* for which there exists a polynomial length-restric-
ted advice a.: N - {0, 1 }* and a logn space-bounded deterministic, nondeter-
ministic, co-nondeterministic, or alternating Turing machine M such that A/
accepts w#a ((w|) iff we 4.

TheoreM 1 [Me88). It holds

Pp=Lipoly, . ,-pp=co-NL/poly,
2, y-pp=NL[poly, and P, . -pp=AL[poly. B

Now we introduce the restricted model of input oblivious Turing machines
which is the subject of this paper. A deterministic, non-deterministic, co-
nondeterministic, or alternating Turing machine is said to be input oblivious
if the order to read the input bits in the course of a computation depends
merely on the length of the input and not on the input itself. We shall use a
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random access input variation of Turing machines similar to that defined in
[Ru8l1]. In this model the Turing machine has no input head. Instead it has
a special index tape and a special read state. Whenever it enters the read
state with the natural number/ written on the index tape, the i-th input bit
is available. By Lg jn, NLg jin, €0-NLg iy, and AL, ;, we denote the classes
of all languages acceptable by input oblivious, simultaneously linear access-
time and logarithmic space-bounded deterministic, nondeterministic, co-non-
deterministic and alternating Turing machines, respectively, where the access-
time counts the number of entering the read state.

The notion of an input oblivious Turing machine is well-known: its input-
behaviour does not depend on the course of the computation.

Nonuniform input oblivious Turing machines are related to oblivious
Q-branching programs, Q@ £ B,. An Q-branching program is said to be
oblivious if it is leveled (i.e., all paths from the source of the program to any
one of its sink-nodes are of the same length) and if all nodes of any level are
labelled either by Boolean functions weQ or by one and the same input
variable. As usual, the width of an Q-branching program is the maximal size
of its levels. A level which contains an input variable is called an input level.
The length of an oblivious Q-branching program is the number of its input
levels. By 2y, o pp, We denote the class of all languages which are acceptable
by sequences of polynomial size and linear length oblivious Q-branching
programs.

THEOREM 2: It holds

L, 1in/POLY = Py BPg>
NL,, /POy =2 lin{ v }— PBg>
C0-NLg 1i5/POly = Py (  1-BPy>

and
ALy yo/poly= Py, {v, A}=BPo

The proof can be obtained by similar arguments as of [Me88]. H

Let us only remark that, because of the well-knowr: equality ALogSpace= P
due to Chandra, Kozen, and Stockmeyer, it is not difficult to show that the
class ALg yio/POly=Prin( v, ny-p, coincides with the class of languages
acceptable by nonuniform polynomial time-bounded (deterministic) Turing
machines.

vol. 26, n° 4, 1992



350 M. KRAUSE, CH. MEINEL, ST. WAACK

ProrosITION 1:

P/POI.V:g)lin( v, A )—BP0=AL0, un/poly. B

2. THE LOWER BOUND TECHNIQUE

We start with an observation made by Alon and Maass [AMB86].

Put [n]={1,2,...,n} and let i:=(iy,7,, . .. .,i) be a sequence of elements
of [n]. Let S; < [n], j=1,2, be two disjoint subsets of [n]. We say that an
{S1, S, }-alternation occurs at index j in the sequence i if i; belongs to S,
(S,) and if the minimal element i, k>j, which belongs to §;\U S, is an
element of S, (S;). The number of indices j at which there occurs an { S, S, }-
alternation is called the alternation length of i with respect to { S,, S, }.

The following lemma is a straightforward consequence of a Ramsey-
theoretic lemma given in [AM&6].

LEMMA 1: Assume that in the sequence i each i€[n] appears at most k times.
Then for any preassigned partition [n]=C,\J C, of [n] into two disjoint sets
there are two subsets S; < C;, j=1, 2, such that

— #8;2#C;.27%F D, j=1,2, and

— the alternation length of i with respect to {S,S,} is less than or equal
to2.k. 1

Now let us return to oblivious Q-branching programs. Let P be an oblivious
Q-branching program of length A which computes a set 4" < {0,1}". We
associate with P a sequence i= (i, i, . . ., #) of indices, where i; is the index
of that input variable the nodes of the j-th input level of P are labelled with.
The sequence i is called the index sequence of P. The alternation length of P
is defined as that of i.

The notion which plays the central role in our lower bound proofs is that
of a sheaf. Sheafs are projection reductions from palindrome-like sets into
the problem under consideration. Recall, a mapping

nm: {yl’y21 .. -ayn}_) {xl,)?l’xz’;z’ .. ~,xma~;m:0,l}

is a projection reduction [SV81] from a set M < {0,1}" to aset N< {0,1}"
iff

M(xlixZ’ . "xm)=N(7tm(y1)’1tm(y2)’ . "um(yn))'

Informatique théorique et Applications/Theoretical Informatics and Applications
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Equivalently, this means that M= ()~ ! (N), where
nk: {0, 1}~ {0,1}"
is the canonical map resulting from «,,.

DermiTION: Let S, and S, be two disjoint subsets of the set [#], and let
A= {0,1}".{S,,S,} is called a sheaf in A" of thickness © iff there is a
projection reduction n, .,

Mot { VsV o sVn} = { X0 X1, X0, X5+« 5 X0, X2, 0,11},
from the set QUA2":={ww|we{0,1}*} to 4" such that
et ((x,xp, XX D={0:]i€eS; },
and
T3 ({ Xt 1 Xet 15 - - o5 Xe Xoe ) ={1:]|i€ S, },

or vice versa.

The following lemma supplies a lower bound for oblivious disjunctive
branching programs in terms of sheaves of the problems under consideration.
Similar methods were developed for ordinary input oblivious branching
programs in [AMS86, Kr91, KW91].

LeEMMA 2: Let P, be an oblivious disjunctive branching program of width ®
and length A deciding a set A". Let o be the alternation length of P, with
respect to { Sy, S, }, where S, and S, are disjoint subsets of [n].

If {S1,S,} is a sheaf in A" of thickness T then

=2,

Proof: Let i=(i,, .. .,i,) be the index sequence of P, of alternation length
o with respect to {S,,S,}, let © be the projection reduction which ensures
{S,,S,} to be a sheaf in A", and let L, ...,L,, be those levels of P,
where an { S,, S, }-alternation occurs at index a (j), 1 <j<a, in the sequence i.

A set Hc {0,1} is said to satisfy the sheaf property with respect to a
node v of P, iff for all w, w' e H there is a computation path for n* (ww")
from the source v, via v to a sink of P, which is accepting just in case of
w=w'

vol. 26, n° 4, 1992



352 M. KRAUSE, CH. MEINEL, ST. WAACK

Now, the assertion is a consequence of the following three claims:

Claim (i): Hy={0,1}" satisfies the sheaf property with respect to the node
Vo-

Claim (ii): If H,< {0,1}" satisfies the sheaf property for some node
v;€L, ), 1=i<a, then there is a node v;,, €L, ;) and a subset H;,, € H,
such that H,;,, satisfies the sheaf property with respect to wv;,,, and
#H 2 #Hjo.

Claim (iil): If H,_, = {0,1}" satisfies the sheaf property for some node
Vy—1 €Ly - 1), then

(Dg #La(a)g #Ha—l'

Claim (i) is trivial. Since the proofs of claims (ii) and (iii) are similar, we
outline the proof of claim (iii) only. Assume, there are two different words
w, w' e H,_, such that there are accepting computation paths of n* (ww) and
of n* (w'w’) from v, via v,_, having a node v,€ L, in common. Since the
last { S}, S, }-alternation occurs at o (), the program would accept m* (ww')
as well as n* (w’ w). Contradiction!

From these 3 claims we obtain

O2 #L, 22" 02,

(@ =

and, consequently, ®=2"*. W

The following theorem claims that the complexity of a language is high if
it contains sheaves in rather general position.

THeoREM 3: Let s:N — N be a nondecreasing function, logn=o(s(n))<n,
and let A, A < {0,1}*, be a language. Assume that for all €, 0<e<1/2, there
is a 8, 0<d, such that for infinitely many natural numbers n the following
condition is fulfilled: There is a partition C,, C, of [n] with #C,, #C,=[n/2],
such that for any two (disjoint) subsets C; < C; with #C;=Zge.n, j=1, 2, there
is a sheaf {S,,S,} in A" of thickness greater than or equal to 3.s(n) with
S; & C;.

Then each sequence of oblivious disjunctive branching programs of length
O (n) which accepts A is of size 22 ™), In particular, it holds

A¢-@nn( v }-BPy:

Proof: Let (P,),.n be a sequence of oblivious disjunctive branching pro-
grams of width @ and length c.n, where c is fixed. Let us pick an »n for which
the assumptions are fulfilled. Let i be the index sequence of P,. Let C,, C,
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be the partition of [n] with #C;=[n/2]. Obviously, there are subsets
C;c C;, j=1, 2, #C;z[n/4], such that each ie C; U C; occurs in i at most
4.c times. Then by Lemma 1 there are disjoint subsets C; < Cj,
#C}'gn.Z'sc, j=1,2, such that the alternation length of i with respect to
{CY,Cy } is bounded by 8.c.

By the assumptions there is a >0 and a sheaf {S,,S,} in A" of thickness
greater than or equal to 3.s(n), where S; < C7, and S, € C,. Clearly, the
alternation length of i with respect to {.S;,S,} is also bounded by 8.c. By
Lemma 2 it follows that SIZE (P,)>2s®™-#¥8c=22¢m g

3. A LOWER AND AN UPPER BOUND FOR THE SEQUENCE EQUALITY PROBLEM

In the following section we give an exp (Q (1)) lower bound for the sizes of
oblivious disjunctive branching programs of linear length which solve the
SEQUENCE EQUALITY PROBLEM (Proposition 2). Additionally, we
give polynomial size oblivious conjunctive branching programs of linear
length (Proposition 3) which perform this task.

Let w=(xy,X,, ..., X;,)€{0,1}?>" By
red (W)= (z;, z;,, - - > 7Z;)
we denote the reduced sequence of w which is described by the sequence
iy, . . -, i, of those odd indices of [2n], where x;;+x; ., =1.z; is defined by
Zy =Xt X0

The SEQUENCE EQUALITY PROBLEM SEQ={SEQ, } is defined by
SEQ,(w,w")=1 iff red (w)=red (w").
for any w, w'e{0,1}*", neN.

PROPOSITION 2: Every oblivious disjunctive branching program of linear length
which computes SEQ, is of size 2*™. In particular,

SEQéglin( v }—BPg*

Proof: Let C,, C, be the partition of [4n] into C;=[2n] and
C, < [4n]—[2n]. For any g, 0<e<]1/2, let C}, j=1,2, be two (disjoint)
subsets C; < C; with #Cj;=¢.4n. Due to Theorem 3 we have to show that
there exists a sheaf {S;, S, }, S; € C}, j=1, 2, of thickness greater than or
equal to 8.n for some 6>0.
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354 M. KRAUSE, CH. MEINEL, ST. WAACK

A subset 4 < [4n] is called admissible if it contains at most one of the two
elements 2j—1 and 2 for each j, 1<j<2n. For j=1,2 let §; be a maximal
admissible subset of C;. Obviously, it holds

#8,2(1/2). #C;2¢.2n.
Wlo.g. we assume #S,=#S,. Letn':=#S,=2¢.2n.
Let S;={i,...,i,y} and S,={d},...,i.}. We consider the following
projection reduction n=mx, .,

[ 1 it {2[i/21-1,2[21} N (S, U S) =&,

) x if ieS, and i=i,
n(y)= P .
Xty if ieS, and i=j,
0 otherwise.

Then we have
red(n(yy), ..., (y; D= Xips o5 X0,
and
red(m(¥3p41)s - - 'sn(yatn)):(xi’p .. -,xi;:)-

Hence, it holds

SEQ,(m(¥1), - - s (Y2 TV pa1)s - s W(Yan)) =1
iff

(x5 - .,xin,)=(xi'1, .. .,xi;,)

iff

’

2n V=
QUA " (Xil, .. .,xin,, Xil, .. .,Xi", - l.

Sincen *({1,...,n" =S andn~ ' ({n'+1,...,2n' })=S,, nis a projec-
tion reduction which proves that { S, S, } is a sheaf of thickness n’. #

CoroOLLARY 1: (i) Every oblivious conjunctive branching program of linear
length which computes — SEQ,, is of size 2°®. In particular,

TV SEQ€¢ Py a)-8po

(ii) Every oblivious branching program of linear length which computes SEQ,
or 1 SEQ, is of size 2%®. In particular,

SEQ, 7 SEQ¢Pyinpp, M

Proof: (i) For every oblivious conjunctive branching program of linear
length computing —1 SEQ, we obtain an oblivious disjunctive one of equal
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size and length which computes —1 (4 SEQ,)=SEQ,, if we replace conjunctive
A -nodes by disjunctive v -nodes, 1-sinks by 0-sinks and 0-sinks by 1-sinks.
Hence, Proposition 2 implies the assertion.

Claim (ii) is an immediate consequence of Theorem 2, Proposition2 and
claim(i). W

Whereas oblivious disjunctive branching programs of polynomial size and
linear length do not possess enough computational power for computing
SEQ the corresponding conjunctive branching programs do.

ProrosiTioN 3: SEQ, can be computed by means of an oblivious conjunctive
branching program of linear length and polynomial size, i.e.

SEQGWH,,( A }~BPg*

Proof: 1t is easy to check that SEQ, can be written as

sEQ,= /\ s,

i j=1
where the value S;;(w,w') is defined, for all (i,j)e [7)* and each
W= (X1, Xp5 « - oy Xa )y W =(x1,X5, ..., Xx5,)€{0,1}*", by
Sy W, W)= (xy-1F X5, =2) v (x5 ;-1 X5 ;=2)
v (x2i—1+x2i=x'2j-1+x'2j)
v (#{k|lk<i,x_,1+x,,<2}

# #{l|l<j,x'2k_1+x'2k<2}).

It is not hard to verify that all the ingredients of these S;; can be computed

by means of input oblivious ordinary branching programs of linear length
and quadratic width testing the variables x; and x; in the same order. W

In analogy with the Corollary 1 we obtain

CoroLLARY 2: 71 SEQ, can be computed by means of an oblivious disjunctive
branching program of linear length and polynomial size, i.e.

T1SEQEPyn (v -pp, W
4. THE SEPARATION RESULT

Due to Theorem 2 and the lower and upper bounds given in Section 3 for
the SEQUENCE EQUALITY PROBLEM we can separate the oblivious,
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356 M. KRAUSE, CH. MEINEL, ST. WAACK

simultaneously linear access-time and logarithmic space-bounded Turing
machine classes Lg yq, NLg, j;0, €0-NLg y;, and AL, ;;, from each other.

THEOREM 4: It holds
% NL jin g_

LO, lin Nt Utk ALO, lin
g CO-NLg yin %

Proof: Trivially, it holds
Ly in © NLg, 1;n;€0-NLg y;, & ALg i

The corresponding nonuniform separation results are a consequence of
Theorem 2 and the results of Section 3.

Since nonuniform lower bounds are stronger than uniform ones, and since
the upper bound of Proposition 3 can be described uniformly we obtain the
claimed separation results for the uniform classes, too. H

COROLLARY 3:
(i) NLg, = NSPACE (logn)=NL,;

(ii)) co-NLg yy, = co-NSPACE (logn)=NL.

Proof: Claim (i) and claim (ii) follow immediately from Theorem 3 and
from NL=co-NL [Im87, Sz87]. W

5. LOWER BOUNDS FOR A GRAPH ACCESSIBILITY PROBLEM

In this final section we give exp(Q(n)) lower bounds for the sizes of
oblivious disjunctive as well as of oblivious conjunctive branching programs
of linear length which solve the GRAPH ACCESSIBILITY PROBLEM for
directed graphs of outdegree 1 (Proposition 4 and 5). Hence, this GRAPH
ACCESSIBILITY PROBLEM does not belong to NL, y;, \U co-NL, ;,. Since
it is known to belong to the complexity class L=SPACE (logn) we obtain,
for example, that L is not contained in NLy y, U co-NLg y;, (Theorem 5).

The GRAPH ACCESSIBILITY PROBLEM GAPl={GAPl,} for
directed graphs of outdegree 1 consists in the decision whether there is a
path in a given directed Graph G=(V={v,, .. .,v,}, E) of outdegree 1 which
leads from node v, to node v,. As usual, let G be given by its adjacency
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matrix 4(G)=(a;j); <i, jn, i»; With

wmap=f! T @uEE
L == 1.j)=
5= A 0 otherwise.

Then, GAP1,:{0,1}"®9 - {0,1} is defined by

1 if there is a path in the graph
(@), ;— G of outdegree 1 from v, to v,
0 otherwise.

It is well-known that GAP1 can be computed by logarithmic space bounded
Turing machines and that it is complete in L with respect to different reduc-
tion concepts [see for example Me87]. However, in the following we prove
that neither input oblivious simultaneously linear access-time and logarithmic
space-bounded nondeterministic Turing machines nor co-nondeterministic
ones are able to compute GAP1. We will prove this assertion by establishing
exponential lower bounds for the sizes of the corresponding disjunctive and
conjunctive branching programs.

Let us start with a technical lemma.
Lemma 3 [KWO91]: Let E be a subset of {(i,j)|1=i, j<n, i#j},

#E=L.n(n—1) with 0<{Z1. Let F < [n] be a set of ‘forbidden” numbers
such that 1 < # F<t.n, where T is another constant, 0<t1<1, with {—21>0.

Then there is a set E' < {1,2, .. .,n}> such that

@) #E2(¢—v/6).n—1,

(i) (h,i,j), (k,1,m)eE implies #{h,i,j,k,I,m}=6,
(iii) (i,j, k)€ E implies that {i,j,k } N F= ¥, and
(iv) (i,j,k)e E implies (i,j)e E and (i, k)e E. 1
"Now we are prepared to prove our lower bounds.

PrOPOSITION 4: Every oblivious disjunctive branching program of linear length
which computes GAP1, is of size 2%™. In particular,

GAPL1¢ 2yin( v 1-5py-

Proof: We shall carry out the proof on the basis of Theorem 3.

GAP1, is a Boolean function depending on n(n—1) Boolean variables.
The index set used is & ={(i,/))|(L.))e{1,...,n}? i#j}.
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Let C; and C, be two disjoint subsets of elements of # such that
#C,=2L.n(n—1), 0<L<1, i=1, 2. Using Lemma 3 there is an m=Q(n) and
subsets S, and S, of C, and C,, respectively, such that

— #S=2m,i=1,2,

- (r,5)eS; US, implies {1,n} N {r,s}=&,

— #{k|k is incident to an element (r,s) of §; U S, }=7.m.
Let

Sl = { (aia a;)9 (ais al{,)

i=1,2,...,m},

and
S,={(d,e), (fg)|i=1,2,...,m}.
Now it remains to define a projection reduction =7, ,
n{ylieft > {x, X, Xy Xam 0,1}
from QUAZ™ to GAP1,, with

T {x X0 e X X D= {¥:]7€ 81 },

T ({ Xt 19 Xt 15 - - > X2 m X2 m D ={ Vi 1€ S, }.

Writing y(r,s) instead of y,, we define the required projection reduction
7 by

1 if (r,9)e{(al,d),(@.f),
(e @i+ 1)s (g @i 1), (1,a4) },
X; it (r,8)=(asa),
T (y (r’ S)) = )?1 lf (ra S) = (ai’ al{,)’
x2 m+i lf (ra s)=(dis ei)’
';Zm-H if (r,8)=(/:20
0 otherwise,

where 1<i<mand a,,,,:=n.

Figure 1 illustrates the projection reduction t=mn, , in the case m=3. The
dotted arrows depend on the literal they are labelled with. For example, the
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edge (a;,a;") exists iff x;=1. All other edges are fixed. We observe that the
triples (a;, a;, a!’) serve as switches. W

1
l %,
a} L 2a l_yf N
ix <
.
11 )
i
x
9 e 9

§x
o X,
[ i
X
5
d2 ----- —52 iz
\ ;3
ais...._. ....... m)as__.yfis
i H
% -
az ? 3
13
12
X
6
d3 e 13
n
Figure 1

ProposITION 5: Every oblivious conjunctive branching program of linear
length which computes GAP1,, is of size 2% ™. In particular,

GAP1¢ 2 1 )-spy:

Proof: According to the construction in the proof of Corollary 1 of Section 3
it suffices to consider 7TGAP! and to proof an exponential lower bound for
oblivious disjunctive branching programs of linear length.

“1GAPI, is a Boolean function which depends on n(n— 1) Boolean variab-
les with indices from the set #'={(i,j)|1<i, j<n, i#j}. Again let C; and
C, be two disjoint subsets of .# such that #C;2{.n(n—1), 0<{=<1,i=1,2.
Due to Lemma 3 there is an m=Q (n) and subsets S, and S, of C; and C,,
respectively, such that

— #S8,=2m, #S,=4m,

- (r,9)€S, US, implies { L,n} N\ {r,s}=,
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1
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! AT,
I 1
i l i
ai n ci‘
i 1,
- b
4
[ o PR - b
1 ><4 1‘J.
;2
F- PR e =)
2 2 2
x % c2 |/<5 X,
Zi l2 5
aé n c,
1 g" l
x, 2
5
b2...4 .................... - b’
Xs 2
1 %
8 rrereieees DG ——
3 3 3
f o xel
Xl c l Xg
i) A
al n cg
l T“ l
= b
6/'
n
Figure 2

— #{k|k is incident to an element (r,s) of S, U S, }=9.m.
Let

S, ={(a,a), (@,a")|i=1,2,...,m},
and
S, ={(b;, b)), (b, b}"), (c;, ) |i=1,2, .. .,m}.
Now we define the required projection reduction n=m, ,
n:{y@)]ied} > {x, X1 . s Xg s X2 0,1}
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from QUA?™ to 71GAP1,, with

T { XXy e X X = {:|i€ S, },

n—l({xm+1’fm+la v "me’EZm})={yiiieS2}‘

Setting a,, ., :=1 we define © by

1 if (r,9)e{(1,a),(a},b), (], n),
(a{’, ci)s (CE’ I’Z), (C;’, b:)a (b:a a; 1) }
X; if (r,8)=(a,a),
n(yr):i=4 X if (r,8)=(a,a;),

Xy mai if (r,9)e{(b;,b),(c,ch)}
Xomai if (r,5)e { (b:, 67, (ci, ¢i) }
0 otherwise,

where 1<Zi<m.
Figure 2 illustrates this projection reduction « in the case m=3.

THEOREM 5:
L NL ;,,\Uco-NLg y 3 NL=co-NL.

361

Proof: Since GAP1 as well as 7GAP1 belong to L £ NL=co-NL, Proposi-

tions 4 and S imply the claim. W
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