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SEPARATING COMPLEXITY CLASSES RELATED TO CERTAIN
INPUT OBLIVIOUS LOGARITHMIC SPACE-BOUNDED TURING

MACHINES (*)

by M. KRAUSE O, Ch. MEINEL (2) and St. WAACK (3)

Communicated by Jean BERSTEL

Abstract. - In thefollowing we prove that input oblivious simultaneously linear access-time and
logarithmic space-bounded nondeterministic Turing machines are more powerful than deterministic
ones. Moreover, we separate all the corresponding complexity classes Lo Hn, 7VZ0Un, co-NL0i Iîn
and P~AL01infrom each other.

Résumé. — Dans cet article, nous prouvons que les machines de Turing non déterministes à
lecture insensible à la donnée, à temps d'accès linéaire et en space borné logarithmiquement sont
plus puissantes que les machines de Turing déterministes de même nature. De plus, nous séparons
les classes de complexité correspondantes les unes des autres.

INTRODUCTION

One of the most important problems in complexity theory is to separate
complexity classes (or to prove their coincidence). For example, in order to
separate the classes L, NL or P one has to prove that logarithmic space-
bounded nondeterministic or alternating Turing machines are more powerful
than deterministic ones. In the following we investigate this question and
give an affirmative answer to simultaneously linear access-time and logarith-
mic space-bounded input oblivious Turing machines (Le., Turing machines
for which the order to read the input bits dépends merely on the length of the
input and not on the input itself). Moreover, we establish strong différences in

(*) Received December 1990, final version November 1991.
O Universitât Dortmund, Fachbereich Informatik, Postfach 500500, W-4600 Dortmund,

Germany.
(2) Universitât Trier, Fachbereich IV, Abt. Informatik, Postfach 3825, W-5500 Trier, Ger-

many.
(3) Karl-Weierstrap-Institut für Mathematik, Mohrenstr. 39, 0-1086 Berlin, Germany.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/92/04 345 18/$3.80/<c> AFCET-Gauthier-Villars
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the computational power of such deterministic, nondeterministic, co-nondeter-
ministic, and alternating Turing machines. One of the interesting consé-
quences of these results is the proof that the technique of inductive counting
[Im87, Sz87] does not work under the mentioned constraints.

Whereas this fact shows that nondeterministic as well as co-nondeterminis-
tic input oblivious, simultaneously linear access-time and logarithmic space-
bounded Turing machines are less powerful than solely logarithmic space-
bounded ones, the question arises whether at least each problem of L can be
computed by one of these restricted machines. However, this question has to
be negated. We prove that the GRAPH ACCESSIBILITY PROBLEM for
graphs of outdegree 1 which, of course, belongs to L can be computed neither
by input oblivious nondeterministic nor by input oblivious co-nondeterminis-
tic logarithmic space-bounded Turing machines within linear access-time.
Since ail problems belonging to L can be computed by input oblivious
simultaneously linear access-time and logarithmic space-bounded alternating
Turing machines, this shows in addition to the conséquences mentioned
before that input oblivious simultaneously linear access-time and logarithmic
space-bounded nondeterministic and co-nondeterministic Turing machines
together are not able to solve ail problems computable within linear access-
time and logarithmic space by input oblivious alternating Turing machines.
However, the GRAPH ACCESSIBILITY PROBLEM for monotone graphs
of outdegree 1 which is also /^-projection complete in L [Me86] can be
computed within these access-time and space restrictions already by input
oblivious deterministic Turing machines [Kr91].

In order to prove these results we consider the corresponding nonuniform
complexity classes which can be described by means of certain Q-branching
programs [Me88]. In detail, nonuniform, input oblivious, simultaneously
linear access-time and logarithmic space-bounded deterministic, nondeter-
ministic, co-nondeterministic, and alternating Turing machines correspond
to oblivious ordinary, disjunctive, conjunctive, and alternating branching
programs of polynomial size and linear length, respectively. Investigating
such oblivious Q-branching programs instead of the corresponding nonuni-
form Turing machines we are able to establish exponential lower bounds as
well as polynomial upper bounds for the sizes of certain Q-branching pro-
grams which imply similar bounds for the Turing machine access-time and
space. The proof technique we apply to obtain our exponential lower bounds
for certain oblivious Q-branching programs of linear length generalizes that
for ordinary oblivious branching programs [AM86, Kr88, KW91]. In detail,
considering the SEQUENCE EQUALITY PROBLEM we prove exponential
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lower bounds and polynomial upper bounds for oblivious disjunctive and for
oblivious conjunctive branching programs of linear length which imply the
séparation of all the nonuniform complexity classes under considération.
However, since nonuniform lower bounds are stronger than uniform ones,
and since our upper bounds can be described uniformly we obtain similar
séparation results for the corresponding uniform classes. Finally, we give some
exponential lower bounds for the GRAPH ACCESSIBILITY PROBLEM for
graphs of outdegree 1 which prove that neither input oblivious nondeterminis-
tic nor input oblivious co-nondeterministic logarithmic space-bounded Turing
machines are able to compute this problem within linear access-tirne.

The paper is organized as foliows. In Section 1 we recall the définition of
an Q-branching program and review the relations between deterministic
(Q = 0 ) , disjunctive (£!={ v }), conjunctive (Q={ A }), and alternating
(Q={ v, A }) branching programs and logarithmic space-bounded deter-
ministic, nondeterministic, co-nondeterministic and alternating Turing mach-
ines (Theorem 1), respectively. Then we introducé the restricted model of
oblivious Q-branching programs which are related to the corresponding types
of input oblivious Turing machines (Theorem 2), respectively. In Section 2
we develop the technique for proving exponential lower bounds for oblivious
disjunctive branching programs of linear length. Then, in Section 3 we con-
sider the SEQUENCE EQUALITY PROBLEM and prove an exponential
lower bound (Proposition 2) for oblivious disjunctive branching programs
and a polynomial upper bound (Proposition 3) for conjunctive ones. Due to
these bounds we separate the corresponding Turing machine classes
(Theorem 4) in Section 4. The concluding Section 5 is devoted to the investiga-
tion of the GRAPH ACCESSIBILITY PROBLEM.

Generally, w.l.o.g. we assume ^ i { 0 , l } * for all languages A under consi-
dération. Throughout this paper we make no différence between A and its
characteristic fuiïction denoted by A, too.

1. BRANCHING PROGRAM DESCRIPTIONS

Our investigation of restricted logarithmic space-bounded deterministic,
nondeterministic, co-nondeterministic, and alternating Turing machines are
based on descriptions by certain types of branching programs. Following
[Me88] we can relate these machines to polynomial size deterministic, disjunc-
tive, conjunctive, and alternating branching programs, respectively. Unifying
this approach we consider polynomial size Q-branching programs, Q g B2.

vol. 26, n° 4, 1992



348 M. KRAUSE, CH. MEINEL, ST. WAACK

In detail, a branching program is a directed acyclic graph where each node
has outdegree2 orO. Nodes with outdegreeO are called sinks and are labelled
by Boolean constants. The remaining nodes are labelled by Boolean variables
taken from a set X~{xu . . .,xn}. There is a distinguished node, called the
source, which has indegreeO. An Q-branching program P is a branching
program some of whose non-sink nodes are labelled by 2-argument Boolean
functions ( û e Q i B 2 instead of Boolean variables. The Boolean values
assigned to the sinks of P extend to Boolean values associated with ail nodes
of P in the following way: if both successor nodes v0, vt of a node v of P
carry the Boolean values 50, 8X and if v is labelled by a Boolean variable xt

we associate with v the value ô0 or hr according to xt = 0 or x f =l . If v is
labelled by a Boolean function co then we associate with v the value co (80,5J.
P is said to accept (reject) an input we {0,1}" if the source of P associâtes
with 1 (0) under w. An Q-branching program P is called a disjunctive, a
conjunctive, or an alternating branching program if Q={ v }, Q={ A }, or
Q={ v , A }, respectively. In the case Q={ v } acceptance reduces to the
existance of an accepting computation path. Ordinary branching programs
correspond to Q = 0 .

The most important complexity measure of an Q-branching program P is
the number of its non-sink nodes, the size of P. By ^çi-BP, Q i B2, we
dénote the set of ail languages acceptable by séquences of polynomial size
Q-branching programs.

In order to relate Turing machine classes and Q-branching program classes,
^ £ Œ&2> w e n a v e t o consider the nonuniform counterparts L/poly, NL/poly,
co-NLfpoly, and AL/poly of the classes L, NL, co-NL, and AL consisting of
ail languages A g {0,1 }* for which there exists a polynomial length-restric-
ted advice a :N-»{0,1}* and a log« space-bounded deterministic, nondeter-
ministic, co-nondeterministic, or alternating Turing machine M such that M
accepts w # a (| w |) iff w e A.

THEOREM 1 [Me88]: It holds

and 0>K v , A }-BP

Now we introducé the restricted model of input oblivious Turing machines
which is the subject of this paper. A deterministic, non-deterministic, co-
nondeterministic, or alternating Turing machine is said to be input oblivious
if the order to read the input bits in the course of a computation dépends
merely on the length of the input and not on the input itself. We shall use a
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rondom access input variation of Turing machines similar to that defined in
[Ru81]. In this model the Turing machine has no input head. Instead it has
a special index tape and a special read state. Whenever it enters the read
state with the natural number i written on the index tape, the z'-th input bit
is available. By L0Xin, NLolin, co-NLonn, and ALoain we dénote the classes
of all languages acceptable by input oblivious, simultaneously linear access-
time and logarithmic space-bounded deterministic, nondeterministic, co-non-
deterministic and alternating Turing machines, respectively, where the access-
time counts the number of entering the read state.

The notion of an input oblivious Turing machine is well-known: its input-
behaviour does not depend on the course of the computation.

Nonuniform input oblivious Turing machines are related to oblivious
Q-branching programs, Q £ B2. An Q-branching program is said to be
oblivious if it is leveled (L e., all paths from the source of the program to any
one of its sink-nodes are of the same length) and if all nodes of any level are
labelled either by Boolean functions œeO or by one and the same input
variable. As usual, the width of an fi-branching program is the maximal size
of its levels. A level which contains an input variable is called an input level.
The length of an oblivious Q-branching program is the number of its input
levels. By &yinn-Bp0 we dénote the class of all languages which are acceptable
by séquences of polynomial size and linear length oblivious Q-branching
programs.

THEOREM 2: It holds

co-NL0t xJpoly =

and

The proof can be obtained by similar arguments as of [Me88]. •

Let us only remark that, because of the well-known equality ALogSpace = P
due to Chandra, Kozen, and Stockmeyer, it is not difficult to show that the
class ALonJpoly = 0>

nn{vA}_Bpo coincides with the class of languages
acceptable by nonuniform polynomial time-bounded (deterministic) Turing
machines.

vol. 26, n° 4, 1992
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PROPOSITION 1:

P/poly = 0>nn { v , A } - BPO = ALOt nJpoly. •

2. THE LOWER BOUND TECHNIQUE

We start with an observation made by Alon and Maass [AM86].

Put [ri] — { 1,2, . . ., n } and let v. = (iu i2, . . . . » /r) be a séquence of éléments
of [ri]. Let S,- <= [n], 7= 1,2, be two disjoint subsets of [n]. We say that an
{5r

1,52}-alternation occurs at index j in the séquence [ if ij belongs to S1

(S2) and if the minimal element ik, k>j, which belongs to Sx U S2 is an
element of S2 (Si). The number of indices,/ at which there occurs an { 5 l 5 S2 }-
alternation is called the alternation length of l with respect to {Su S2 }.

The following lemma is a straightforward conséquence of a Ramsey-
theoretic lemma given in [AM86],

LEMMA 1: Assume that in the séquencel each ie[ri] appears at most k tintes.
Then for any preassigned partition [n] = C1 0 C2 of [n] into two disjoint sets
there are two subsets Sj ^ Cpj= 1? 2, such that

— the alternation length of l with respect to {*S1,52} is less than or equal
toi.k. m

Now let us return to oblivious Q-branching programs. Let P be an oblivious
Q-branching program of length X which computes a set A" g {0,1}". We
associate with P a séquence i= (iu z2> • • • > O °f indices, where ij is the index
of that input variable the nodes of the >th input level of P are labelled with.
The séquence _/ is called the index séquence of P. The alternation length of P
is defîned as that of L

The notion which plays the central role in our lower bound proofs is that
of a sheaf Sheafs are projection réductions from palindrome-like sets into
the problem under considération. Recall, a mapping

nm'- {yi>y2> • • '9yn}^{x19xl9x29x2t. ..9xm9xm,o,i]

is a projection réduction [SV81] from a set M g {0,1 }m to a set N £ {0,1}"
iff

M(xl9x29 . . •,xm) = N(nm(yx),Km(y2), . ..,nm(yj).
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Equivalently, this means that M=(7c*)"1 (N), where

7i*: {0,l}m-+{0,l}"

is the canonical map resulting from nm.

DÉFINITION: Let Sx and S2 be two disjoint subsets of the set [«], and let
An c (0,1 y. {SUS2} is called a sheaf in An of thickness x iff there is a
projection réduction n2 T,

from the set QUA2 T : = {ww \ w e {0,1 }T} to An such that

and

or vice versa.
The following lemma supplies a lower bound for oblivious disjunctive

branching programs in terms of sheaves of the problems under considération.
Similar methods were developed for ordinary input oblivious branching
programs in [AM86, Kr91, KW91].

LEMMA 2: Let Pn be an oblivious disjunctive branching program of width co
and length X deciding a set An. Let a be the alternation length of Pn with
respect to [SuS2}, where St and S2 are disjoint subsets of[ri\.

If{SuS2} is a sheaf in An of thickness T then

Proof: Let i=(ii, . . ., h) be the index séquence of Pn of alternation length
a with respect to {51,S2}5 let n be the projection réduction which ensures
{51,S2} to be a sheaf in An

9 and let La(1)5 . . .,La(a) be those levels of Pn

where an {Su S2}-alternation occurs at index a (ƒ), 1 Sj ^ <*, in the séquence L

A set H^ {0,l}T is said to satisfy the sheaf property with respect to a
node v of Pn iff for all w, w'eH there is a computation path for n*(ww')
from the source v0 via v to a sink of P„ which is accepting just in case of
w—w'.

vol. 26, n° 4, 1992
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Now, the assertion is a conséquence of the following three claims:
Claim (i): Ho — { 0,1 }T satisfies the sheaf property with respect to the node

v0.
Claim (ii): If / ^ g { 0 , 1 }T satisfies the sheaf property for some node

ü,.ela (o , l ^ / < a , then there is a node vi+1eLa(i+1) and a subset Hi+1^ Ht

such that Hi + 1 satisfies the sheaf property with respect to vi+1, and

Claim (iii): If Htx_1 <= {0,1 }T satisfies the sheaf property for some node

ie4(«-i)3 t h e n

Claim (i) is trivial. Since the proofs of claims (ii) and (iii) are similar, we
outline the proof of claim (iii) only. Assume, there are two different words
w, wreH(t^1 such that there are accepting computation paths of n*(ww) and
of n*(wr w') from v0 via vtt-t having a node t>aeLa(a) in common. Since the
last {5'1,lS2}-alternation occurs at a (a), the program would accept Tc*(wvt/)
as well as TT*(M/W). Contradiction!

From these 3 claims we obtain

and, consequently, œ^2T/a. •
The following theorem claims that the complexity of a language is high if

it contains sheaves in rather gênerai position.

THEOREM 3: Let s:N-*N be a nondecreasing fonction, \ogn = o(s(ri))f^n,
and let A, A <= {0,1 }*, be a language. Assume that f or ail 8, 0<e< 1/2, there
is a 5, 0 < S, such that for infinitely many natural numbers n the following
condition is fulfilled: There is a partition Cl9 C2 of[n] with #C1, #C2^[n/2],
such that for any two (disjoint) subsets C] g Cj with #C)^e.« , j= 1, 2, there
is a sheaf {S1,S2} in An of thickness greater than or equal to 8.s(n) with

Then each séquence of oblivious disjunctive branching programs of length
O (ri) which accepts A is ofsize 2a(s(n)). In particular, it holds

{ v }-BP0'

Proof: Let (Pn)n e ̂  be a séquence of oblivious disjunctive branching pro-
grams of widthco and length en, where c is fixed. Let us pick an n for which
the assumptions are fulfilled. Let / be the index séquence of Pn. Let Cl5 C2

Informatique théorique et Applications/Theoretical Informaties and Applications
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be the partition of [n] with #C^[«/2]. Obviously, there are subsets
Cj g Cp j = 1, 2, #Cj^[n/4]9 such that each zeC\ U Q occurs in i at most
4. c times. Then by Lemma 1 there are disjoint subsets CJ' £ CJ,
#Cj'^n,2~8c

y j= 1,2, such that the alternation length of i with respect to
{ Q', Ci'} is bounded by 8. c.

By the assumptions there is a 8>0 and a sheaf {Sl9 S2 } in 4̂" of thickness
greater than or equal to b.s(n)y where St c; C", and S2 ü C '̂. Clearly, the
alternation length off with respect to {jSr

l5S2} is also bounded by 8.c. By
Lemma2 it follows that SIZE(P„)^2S(n)S/8c = 2Q(s(M)). •

3. A LOWER AND AN UPPER BOUND FOR THE SEQUENCE EQUALITY PROBLEM

In the foUowing section we give an exp (Q (n)) lower bound for the sizes of
oblivious disjunctive branching programs of linear length which solve the
SEQUENCE EQUALITY PROBLEM (Proposition 2). Additionally, we
give polynomial size oblivious conjunctive branching programs of linear
length (Proposition 3) which perform this task.

Let w = (xux2i . . . , X 2 „ ) G { 0 , 1 }2". By

we dénote the reduced séquence of w which is described by the séquence
iu . . .,ir of those odd indices of [2n], where xi. + xi.+ x-^\,zi. is defined by

The SEQUENCE EQUALITY PROBLEM SEQ={SEQ„} is defined by

for any w, w ' e{0 ,1} 2 " , neH.

PROPOSITION 2: Every oblivious disjunctive branching program of linear length
which computes SEQn is of size 2n ( n ) . In particular,

SEQ£^ l i n ( v }~Bp0'

Proof: Let Cu C2 be the partition of [4n] into C1 = [2«] and
C2 E [4n]~[2n], For any e, 0<s<l /2 , let CJ, 7=1,2, be two (disjoint)
subsets C'-e Ci with #C'->8.4«. Due to Theorem3 we have to show that
there exists a sheaf {Sl9S2}> Sj g CJ, j=l, 2, of thickness greater than or
equal to 8. n for some 5 > 0.
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A subset ^ i [4«] is called admissible if it contains at most one of the two
éléments 2j— 1 and 2j for each y, l^j^ln. For 7=1,2 let Sj be a maximal
admissible subset of C'y Obviously, it holds

#5,^(1/2). # q = 8.2n.

W.Lo.g. we assume # S t = #S 2 . Let «':= #5 (
1 = 8.2«.

Let *S1 = {z1, . . ., v } and S2 = {«'!, . . .,C'}• We consider the following
projection réduction 7E — 7C2B,,

1 if {2[i/2]-l ,2[i/2]}n(51U52) = 0 ,
xr if ieSx and z=/r,
„,+r if Ï'6JS2 and z = i'r9

0 otherwise.

Then we have

redCTrCji), . . .,n(y2n)) = (xil, . . .9xin),

and

red(7i(j;2n+1), . . .,7t(iy4n)) = (x/ î . . . ,*/ ,) .

Hence, it holds
SEQB(7Ü(J;1), . . ^'K(y2n)yn(y2n + 1)y . . .,TC(j4„)) = 1

iff

(xiv . . . 5xij |,) = (Xi1, . . -9Xin)

iff

Q U A 2 " ' ( x i l f . . . ^ ^ x / , . . . , x / , ) = l .

Since JC" 1 ( { 1 , . . .9n'}) = Sx and T C ~ 1 ( { « ' + 1, . . . , 2 « / } ) = 5f
2, TC is a projec-

tion réduction which proves that { Sx, S2 } is a sheaf of thickness «'. •

COROLLARY 1: (i) Every oblivious conjunctive branching program of linear
length which computes —i SEQn is of size 2n(n). In particular,

(ii) Every oblivious branching program oflinear length which computes SEQn

or —i SEQ„ w of size 2n(n). /n particular,

Proof (i) For every oblivious conjunctive branching program of linear
length Computing ~n SEQ„ we obtain an oblivious disjunctive one of equal
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size and length which computes —i (—i SEQJ = SEQn if we replace conjunctive
A-nodes by disjunctive v-nodes, 1-sinks by 0-sinks and 0-sinks by 1-sinks.
Hence, Proposition 2 implies the assertion.

Claim (ii) is an immédiate conséquence of Theorem2, Proposition! and
claim (i). •

Whereas oblivious disjunctive branching programs of polynomial size and
linear length do not possess enough computational power for Computing
SEQ the corresponding conjunctive branching programs do.

PROPOSITION 3: SEQ„ can be computed by means of an oblivious conjunctive
branching program of linear length and polynomial size, i. e.

Proof: It is easy to check that SEQn can be written as

n

SEQ„= A Sip

where the value Sy^w, w') is defined, for all (hj)e[n]2 and each
w=(xl9x2i . . . ,x2 r t) , w' = {x'ux'2, . . .5x'2„)e{0, l } 2 " , by

It isr not hard to verify that all the ingrédients of these Stj can be computed
by means of input oblivious ordinary branching programs of linear length
and quadratic width testing the variables xt and x] 'm the same order. •

In analogy with the Corollary 1 we obtain

COROLLARY 2: ~| SEQn can be computed by means o f an oblivious disjunctive
branching program of linear length and polynomial size, i. e.

4. THE SEPARATION RESULT

Due to Theorem 2 and the lower and upper bounds given in Section 3 for
the SEQUENCE EQUALITY PROBLEM we can separate the oblivious,
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356 M. KRAUSE, CH. MEINEL, ST. WAACK

simultaneously linear access-time and logarithmic space-bounded Turing
machine classes L0Ain, NL0lin, co-NL0Vm and AL0Un from each other.

THEOREM 4: // holds

AL09Ïïn

co-iVL0)lin

Proof: Trivially, it holds

L0)Hn g NL0tVin,co-NL0iUn g

The corresponding nonuniform séparation results are a conséquence of
Theorem 2 and the results of Section 3.

Since nonuniform lower bounds are stronger than uniform ones, and since
the upper bound of Proposition 3 can be described uniformly we obtain the
claimed séparation results for the uniform classes, too. •

COROLLARY 3:

0) NLOt iin p NSPACE (log n) = NL;

(ii) co-JVL0tlin p co-NSPACE(log«) = iVX.

Proof. Claim (i) and claim (ii) follow immediately from Theorem 3 and
, Sz87]. •

5. LOWER BOUNDS FOR A GRAPH ACCESSIBILITY PROBLEM

In this final section we give exp(Q(/2)) lower bounds for the sizes of
oblivious disjunctive as well as of oblivious conjunctive branching programs
of linear length which solve the GRAPH ACCESSIBILITY PROBLEM for
directed graphs of outdegree 1 (Proposition 4 and 5). Hence, this GRAPH
ACCESSIBILITY PROBLEM does not belong to NLÖ> lin U co-NL0t lin. Since
it is known to belong to the complexity class L = SP ACE (log n) we obtain,
for example, that L is not contained in NL0> lin U co-NL0t lin (Theorem 5).

The GRAPH ACCESSIBILITY PROBLEM GAP1 = {GAP1„} for
directed graphs of outdegree 1 consists in the décision whether there is a
path in a given directed Graph G = (V— {vu . . ., vn}, E) of outdegree 1 which
leads from node vx to node vn. As usual, let G be given by its adjacency

Informatique théorique et Applications/Theoretical Informaties and Applications



SEPARATING COMPLEXITY CLASSES 357

matrix A (G) = (a^ ^ ^Wj ̂  with

l if (vi9v^eE9

0 o t h e r w i s e .

Then, GAP1„ : {0,1}"{n~1} -• { 0,1} is defmed by

1 1 if there is a path in the graph
G of outdegree 1 from vx to vn,

0 otherwise.

It is well-known that GAPl can be computed by logarithmic space bounded
Turing machines and that it is complete in L with respect to different réduc-
tion concepts [see for example Me87]. However, in the following we prove
that neither input oblivious simultaneously linear access-time and logarithmic
space-bounded nondeterministic Turing machines nor co-nondeterministic
ones are able to compute GAPL We will prove this assertion by establishing
exponential lower bounds for the sizes of the corresponding disjunctive and
conjunctive branching programs.

Let us start with a technical lemma.

LEMMA 3 [KW91]: Let E be a subset of { ( Ï J ) | 1 ^ Î

#E^.n(n-l) with 0<Ç^L Let F g [n] be a set of "forbidden" numbers
such that 1 ^ #F^x.n, where x is another constant, 0<x< 1, with Ç — 2 T > 0 .

Then there is a set E' g { 1,2, . , ., n }3 such that

(i) #tf£((Ç-T)/6).«-l,
(ii) (h, ij)9 (k, /, m) e E' implies # { h, ij9 k,litn} = 6,

(iii) (ij, k) e E' implies that {ij\ k}C\F=0, and

(iv) (ij, k) e E implies (ij) e E and (i, k) e E. M

'Now we are prepared to prove our lower bounds.

PROPOSITION 4: Every oblivious disjunctive branching program of linear length
which computes GAPln is ofsize 2 a ( n \ In particular,

Proof: We shall carry out the proof on the basis of Theorem 3.

GAPltt is a Boolean function depending on n{n— 1) Boolean variables.
The index set used is f = {(ij) | (ij) e { 1, . . ., n }2, i*#y*}.
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Let C1 and C2 be two disjoint subsets of éléments of J> such that
#Q§;Ç.«(«—1), O^Ç^l, z=l, 2. Using Lemma3 there is an m = Q(n) and
subsets S1 and S2 of Ci and C2, respectively, such that

- ( r , j )eS 1 US 2 impUes{l ,n}n{r , j} = 0 ,

- # { k | fc is incident to an element (r, J) of Sx U S2 } - ? • w.

Let

and

Now it remains to define a projection réduction n = n2m

n:{yi\ieJ}-^{xuxu , . .,x2m,x2m,05

from QUA2*1 to GAPln, with

n~1({xuxl9 . . . ,x m s x m }) -{^

Writing
7i by

instead of yrs we defîne the required projection réduction

if

if (r,s) = (

if (r,s) = {

if (r,s) = {

if (r,s) = {

otherwise,

2m

v2mH

0

where l^Li^m and am+1: = n.

Figure 1 illustrâtes the projection réduction n — n2m in the case m = 3. The
dotted arrows depend on the literal they are labelled with. For example, the
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edge {a^a") exists iff xt—\. All other edges are fixed. We observe that the
triples (ah a'h a") serve as switches. •

— ....„_*a '*

Î1

] 2
 ?-

i ><2

t.
d 2

-S—12
:
! "x
1

- * 2 92

I5"
4 x

Figure 1

5

"^3 ^3

3 1 -
1 *6

n

PROPOSITION 5: Every oblivious conjunctive branching program of linear
length which computes GAPln is ofsize 2 n (n). In particular,

Proof: According to the construction in the proof of CoroUary 1 of Section 3
it suffices to consider ~|GAP1 and to proof an exponential lower bound for
oblivious disjunctive branching programs of linear length.

~lGAPln is a Boolean function which dépends on n{n~ 1) Boolean variab-
les with indices from the set Jr={(iJ)\ l^ï , j^n, ï#y}. Again let C1 and
C2 be two disjoint subsets of ƒ such that #C £ ^Ç.n(n- 1), 0<Ç^ l , i*=l,2.
Due to Lemma 3 there is an m = Q(n) and subsets Sx and S2 of Ct and C2,
respectively, such that
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1"> ï V

b > 1 .
1 X4 C _

a 2 - a 2 » °2
, ^ 5 i -

l 2 1 *S
a 2

T
* b2

*5 i 2 T

S 1

n

Figure 2

— # { fc | k is incident to an element (r, s) of SX{J S2} — 9 .m.

Let

and

^2 = {(** *D, (*«, 6Î0, (^, e,") 11 = 1,2, . . . ,m }.

Now we defme the required projection réduction n = n2m

n:{y(i)\ieS}-+{xl9xu . . .,x2m9x2m909l}
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from QUA2m to nGAPln, with

361

n~H{xm+l9xm+l9 . . • ,x2m,x2m}) = {y

Setting am+1 : = 1 we define n by

1 if (rts)e{(l,aM4>bd,Q>ï,n),

n(y(r,s)):=

0

if (r9s) = (ai9cQ9

if (r, s) = (a4, a"%

if (r,5)e{(MÏO,fe,tf
otherwise,

where lrgz^m.
Figure 2 illustrâtes this projection réduction n in the case m = 3. •

THEOREM 5:

L £ iVLOt lin U co-NL0i lin <^NL = co-NL.

Proof: Since GAPl as weil as nGAPl belong t o l g NL^QO-NL, Proposi-
tions 4 and 5 imply the claim. •
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