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CROSSABILITY OF CANCELLATIVE KLEENE SEMIGROUPS (")

by C. P. Rupert (})

Communicated by J. BERSTEL

Abstract. — Every cancellative Kleene semigroup satisfies Eilenberg’s theorem.

Résumé. — Si S est un semigroupe simplifiable de type Kleene, alors S satisfait le théoréme
d’Eilenberg.

INTRODUCTION

A morphism @: T — S of semigroups is called crossable if every rational
subset R of T contains a rational cross-section R, for the restriction of ¢ to
R or (in other words) if there exists for each rational subset R of T another
rational subset R, of T satisfying:

(1) RycR;

(2 ¢ (Ro)=¢(R); and

(3) o is injective on R,.

The following classical crossability result is useful in the theory of rational
relations.

E1LENBERG'S THEOREM [1]: If X* and T* are finitely generated free monoids,
then every morphism ¢ : X* — I'* is crossable. W

We say that a semigroup S satisfies Eilenberg’s theorem, or that S is

crossable, if every morphism ¢ : X+ — S is crossable for every free semigroup
P
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152 C. P. RUPERT

Crossability results often have interesting consequences. For example, if S
satisfies Eilenberg’s theorem then every rational subset of S is unambiguously
rational. Moreover, an effective proof that S satisfies Eilenberg’s theorem
enables us to decide whether a given rational expression over S is unambigu-
ously rational. :

Pelletier [3] introduced a technique for constructing congruences from
equivalence relations, used it to produce various counter-examples in the
theory of Kleene semigroups, and in this way showed that not all Kleene
semigroups satisfy Eilenberg’s theorem.

Our major result, Theorem 2 below, proves that every cancellative Kleene
semigroup satisfies Eilenberg’s theorem, by modifying a method used by
Sakarovitch [5] (to prove a special case of Eilenberg’s theorem) and by
Johnson (to show that every deterministic rational equivalence relation has a
rational cross-section, ¢f. Theorem 5.3 in [2]). The method produces rational
cross-sections of equivalence relations by lexicographic minimalization, a
tactic which does not work in general (¢f. Theorem 8.2 in [2]) but does work -
here.

I. PRELIMINARIES

Recall some definitions and theorems.

A subset R (of a semigroup S), which is saturated by a congruence = of
finite index on S, is called recognizable. Rec (S) denotes the set of recognizable
subsets of S.

NEerODE'S THEOREM: A subset R of a semigroup S is recognizable iff there
are only finitely many different quotient sets s™* R:={teS:steR}. H

LEMMA 1: Let R be a recognizable subset of a semigroup S; for each s€ R,
define the set [s]g:={t:t"' R=s"' R}. Then there are only finitely many sets
[s]gr and each of these sets is recognizable. M

Rational subsets of a semigroup S are defined as follows: the empty set (J
is rational and so is every singleton seS; if U and V are rational, then so
are the union U UV, product UV:={uv:uelU, ve V}, and subsemigroup

U* = S generated by U. Rat(S) denotes the collection of rational subsets of
S.

In an arbitrary semigroup S, Rec(S) and Rat(S) are not closely related.
However, the following result holds.
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Kieene's THEOREM: If % is a finitely generated free semigroup, then every
rational subset of X7 is recognizable and conversely. W

Motivated by this result, we call a semigroup S Kleene if Rat (S)=Rec (5).
Clearly, a Kleene semigroup is finitely generated.

By a regulator p:X* - X*, we mean a rationality-preserving relation:
every rational subset R=X™ has rational p-image p (R).

LeMMA 2 [3]: A semigroup S is Kleene iff S is isomorphic to the quotient
T*/x of a finitely-generated free semigroup L* by a congruence x which is
also aregulator. W

LEMMA 3: Any relation £ — X% which is rational in T*XZ* is a
regulator. W

LeMMA 4: The set of regulators is closed under finite union and under
composition. If s is a regulator and if P and Q are rational subsets of % then
(PX Q)N is also a regulator.

Proof: Suppose that { and 0 are regulators; if ReRat(Z*), then
WU (R) =V (R)\UB(R) and Y0 (R)=1V (8(R)); so the first sentence holds.
If R is rational in =¥, then

Ag={(r,r):reR}

is a rational relation * —» X* Now (PX Q)N is simply Ayeye A, if P
and Q are rational, this is a composite of regulators; so the second sentence
holds. M

We also use another closure property of regulators. Given any relations
Y:Z* 52 and @:Z* - T7, define the product relation ¢ A y:Z* - Z*
by

¢ AVi={(ac, bd):(a, b)eo, (c, eV }.

LemMA 5: If U: 2% -2 and ¢: 2% - =7 are regulators, then the product
relation @ A Y:Z% - X% is also a regulator.

Proof : We begin with the following claim.
Claim: For RcZ*, o AY(R)= U o(XIzrNRE) HY ("' R).

xext

Explanation: Suppose te® A Y(R). Choose (a, b)eo, (c, d)ey with
ac=seRand bd=1. Then be ¢ ([alg N\ R(E*)™?!) (since ae[a]g and ac=s€e R),
and deVy(a ' R) (since cea ' R). So t=bdep(ag NRE) " HVY(@ *R)
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and thus

PAVRIE U o((xlxNRE)HV (' R).

xex?
For the opposite inclusion, suppose that

te U o((xlxNRE)HVY'R).

xert

Then te@(Plr N REY) " HVY(p ' R) for some peX*. So t=bd for some
ae[plrk N R(E*)"Y, beo(a) and dey (p~ ! R). Since ae[pl, [alz=[plz and
a '!R=p 'R;soaclalgR(Z*) ! and deY(a ! R). Choose cea™ ' R with
dey(c)cy(a ' R). As (a, b)eo, (c, d eV, and aceR, so t=bdep A Y (R),
and therefore

U o(xIxNRE) ™ HY (' Ryco A Y (R),

xexz’

which completes the proof of the claim. O

We now show that @ A ¥ is a regulator. Suppose ReRat(Z*). Then
the sets [x]g, R(Z*)7!, and x ' R are also rational; hence so.is each set
o ([x]g VYRE")"HY(x~! R). There are but finitely many distinct sets x ' R
and similarly only finitely many sets [x]z. It follows that

PAVRI= U o((xlgNRE) HV(T'R)

xezt

actually reduces to a finite union of rational sets. Thus, @ A (R) is rational
and so @ A Y is a regulator. H

II. A METHOD OF SAKAROVITCH

By an order on a set X, we understand a binary relation>on X which is
asymmetric (no element x € X satisfies x> x) and transitive. A linear order is
an order verifying trichotomy:

VxeX VyeX x=y or x>y or y>ux

If >1s an order on X and R is a subset of X, then by a>-minimal element
of Rc X we mean any r€ R with

{seR:r>s}=.

Informatique théorique et Applications/Theoretical Informatics and Applications



CANCELLATIVE KLEENE SEMIGROUPS 155

When x is a relation on X, A=A (>, x) denotes the relation

kN>"'={(u, v)ex:v>u}.

If x is an equivalence relation, Min (R)=Min (>, k, R) denotes the set

{reR:risa>-minimal element of [/], \ R},

where [r], denotes the k-class of re X.

Lexicographic orders on a free semigroup X* are constructed as follows:
fix a linear order. >on the alphabet ; for distinct words ue £* and veX™,
v>u means either that u is a proper prefix of v or that there exist (possibly
empty) words w, x, and y over the alphabet ~ and letters o. >t in £ such
that u=w1x and v=w o y. Any lexicographic order is linear.

LemMMA 6: If x is a relation and> a lexicographic order on =% then A (>, x)
is a union A, \U A,, where A, denotes the relation

{(xou, xTv)eK:xET*, UEeL* veX* 0€X, 1€X, 1>0}
and A, denotes the relation
{(xo, xov)ex:xeZ* ceX, veX*t }.

Proof : Obvious from the definition of lexicographic order. M

Now the method of Sakarovitch [5] is essentially this: for any lexicographic
order>and any morphism n:X* — I'* from the free semigroup X* to the
free monoid T*, A(>, n~'n) is a rational relation X* — X*, and the set
Min (>, n~'m, R) is therefore rational whenever R=Z* is; when = is non-
erasing, Min (>, n”!m, R) is a cross-section for the restriction of n~' & to
R, and Eilenberg’s theorem follows easily. ‘

The next lemmas isolate some key ideas of this method.

LemMMA 7: Let> and x (respectively) be an order and an equivalence relation
on the set X. Then the following are equivalent:

(1) For each reR, there exists at least one>-minimal element of the set
("I, R, and

(2) Min(>, x, R) intersects every x-class intersecting R. If these conditions
hold and>is a linear order, then Min(>, x, R) is a cross-section for the
restriction of x to R.
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Proof: (1) <> (2) is obvious. If in addition>is a linear order then each set
[r]. M R has a unique >-minimal element, so Min (R) must be a cross-section
for the restriction of x to R. W

LeMMA 8: Suppose that > and « (respectively) are an order and an equivalence
relation on the finitely generated free semigroup TV, and that A(>,x) is a
regulator. Then Min (>, k, R) is rational for every rational set R.

Proof : Suppose that A is a regulator; let A,:X* — X% denote the relation
Ag° A, where Ap={(r, r):reR}. Then

R\A,(R)=R\{reR:3seR(s, NeA}

={reR:VYs(se[r],N R)=>not(r>s)}=Min(R).

Whenever R is rational, A, is a regulator by Lemma 4 and so Min(R) is
rational. W

III. LEXICOGRAPHIC MINIMALIZATION

For the remainder of this article, we fix a finitely generated free semigroup
Z* and a lexicographic order>on *. To generalize Sakarovitch’s argument,
we show that A (>, x) is a regulator when « is a left-cancellative congruence.

A semigroup S is called left-cancellative if

xXy=xz = y=z

the notion right-cancellative is dually defined; cancellative means left- and
right-cancellative.

‘We can now obtain our first result.

TueorREM 1: If % /x is a left-cancellative Kleene semigroup, and if>is a
lexicographic order on %, then A(>, x):Z" - X% is a regulator.

Proof : Express A=A, \UA, according to Lemma 6. To show that A is a
regulator, it suffices (according to Lemma 4) to prove that A; and A, are
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both regulators. Now A, is the relation

U {(xo, xow)ex:xeZ* weX™}
cel

=U ({o,owex:weZ" }UA{(c, ow)ex:weZ'})

ceX

= U (ex(cZ* N[cl)UA(cx(c X" N[cl))),

cel

where [o], denotes the x-class of oeX and A denotes the diagonal
{(x, x):xeZ*}; note that we used the left-cancellativity of k. Since the
semigroup is Kleene, each set c * M [o], is rational; thus, A, is actually a
rational relation X* — X* and hence a regulator.

To show that A, is a regulator, we first observe that each relation
(6 Z*x1Z*) N« (where ceZ, t€Z, and t>0) is a regulator by Lemmas 2
and 4. Thus the union of these relations is another regulator A,. If we show
that A, =A; UAAA; then A, will be a regulator by Lemmas 4 and 5.

Now (s, £)e A, means sx ¢, (s, {)=(xou, xtv) where 1> o are letters in Z,
and x, u, and v lie in £*, If x is actually the empty word, then

(s, )=(cu, tv)e(cZ*XTZ¥)NKkcA;.

On the other hand, when xeX* we conclude from xocu x xtv (using left-
cancellativity) that

(cu, tv)e(cZ*XTZ¥) N KA,
whence it is immediate (by the definition of A A A;) that
(s, D=(xocu, xTv)EAAA;.

Thus A; =A; U A A Aj; for the opposite inclusion, read backwards, using the
left-compatibility

yKX = Xy K xz

of x instead of left-cancellativity. M
Corollaries 1 and 2 below generalize results in [5].

CoroLLARY 1: If n: X% — S is a morphism from £* to a left-cancellative
Kieene semigroup S, and if>is a lexicographic order on X7, then
Min(>, n~ ' n, R) is rational for every rational subset RcZ*.
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Proof : Since S is Kleene, n~ ' n is a regulator by Lemma 2; moroever, a
subsemigroup of a left-cancellative semigroup is left-cancellative; hence, the
theorem guarantees that A is a regulator. The result now follows from
Lemma 8. W

LEMMA 9: Let S be a left-cancellative semigroup, every singleton subset of
which is recognizable. Then the following conditions are equivalent for any
morphism t: X% - S

(1) For each sen(TY), the set ss™* N\n(EZ*)=, and

(2) Each n~ ' m-class is finite.

Proof': (1) = (2): Suppose that some set © ™'« (w) is infinite. Then © ™! & (w)
is rational because S has recognizable singletons and consequently !t (w)
contains an infinite subset xy*z by the pumping lemma. From
n (xyz) = (r (xy* z), we conclude (by left-cancellativity) that

n(yz)=n(y*z)=n(y)n(yz) so n(y)

belongs to the set n(yz)m(yz)~'.

2 =) :If t (v) € ® () © (W)~ for some words u and v, then v* u is an
infinite subset of t "1 (x). M

COROLLARY 2: If S is a left-cancellative Kleene semigroup,> a lexicographic
order on 2% and n:X* — S a morphism such that that ss"* N\ n(ZT)= & for
each sen(X*), then Min(>, n 'n, R) is a rational cross-section for the
restriction of T to R, for each rational R X" in particular,  is crossable.

Proof : By hypothesis, every n ™! n-class is finite. Thus Min (R) is a rational
cross-section by Theorem 1 and Lemmas 7 and 8, regardless of the rational
setRcTt. H

For the next application of these ideas, we recall that an equivalence
relation x; is called locally-finite thinning of the equivalence relation
k<=X* x X" if x, is a restriction of «, if the domain of x, intersects every
k-class, and if each «,-class is finite. The following result is due to Johnson.

Jonnson's THEOREM [2]: Every rational equivalence relation has a rational
locally-finite thinning. W

We also need the following result, which can be restated in various forms
(¢f . Proposition 1.4.3 in [3]).

CHOFFRUT'S THEOREM: If the congruence ¥ on X7 is rational as a subset of
X* X Z* and if x has a rational cross-section, then the quotient * [x satisfies
Eilenberg’s theorem. M
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COROLLARY 3: Suppose x<X* x X7 is a left-cancellative congruence which
is rational as a subset of T* x £*. Then L% [ satisfies Eilenberg’s theorem.

Proof : According to the Johnson’s Theorem, we can find a rational locally-
finite thinning x, for x, or (in other words) we can find a rational set
DcZX? such that x,:=x N\ DXD is a locally-finite thinning of k. Fix any
lexicographic order>on £*. Then Min (>, k, D) is a rational cross-section
for x by Theorem 1 and Lemmas 7 and 8. The result now follows by Chof-
frut’sthecorem. W

1IV. CANCELLATIVE KLEENE SEMIGROUPS

In this section, we show that cancellative Kleene semigroups satisfy Eilen-
berg’s theorem.

LemMa 10 [4]: Let S be a semigroup, every singleton subset of which is
recognizable. Then every subgroup of S is finite. If S has an identity element 1,
then every divisor of 1 actually belongs to the group of units of S. W

LEMMA 11: Let S be a cancellative semigroup, every singleton subset of
which is recognizable. Then the following conditions are equivalent for any
morphism n: Tt - S:

(1) For each sem(Z™), the set ss ' N (EH) =,

(2) n(Z*) does not contain an idempotent;

(3) If S has an identity element 1, then 1¢n ("), and

(4) For each ceX, the set n 'n(c)No(ct)=.

Proof : (4) = (3): Suppose m(w) is an identity element for S; let ceX be
any letter appearing in w; then, as a divisor of the identity n (w), n (o) belongs
to the group of units of S; moreover, this is a finite group; hence for some
n>1, n(c)"=n(c")=n(c) and therefore n ' n(c) No(c*)#J.

(3) = (2): An idempotent in a cancellative semigroup must be the identity.

2 =) If t(@en@nw) ™, then t(v*u)=n(vuw)=n(u) and w(v) is
idempotent by cancellativity.

(1) = (4): If ceX and n>1 satisfy 6"en ! n (o), then

n(c" Hen(c)n(c)"!. A

THEOREM 2: Let n:X* — S be a morphism from L+ to the cancellative
Kleene semigroup S. Then w is crossable.
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Proof: Fix a lexicographic order>on X*. According to part (4) of
Lemma 11, we can easily test whether n(Z*) contains an identity element
for S. Our proof splits according to the outcome of this test; if n(Z*) does
not contain an identity element for S, and if R is any rational set, then (by
Lemma 11 and Corollary 2) Min (>, =~ ' &, R) is a rational cross-section for
the restriction of & to R.

On the other hand, if S is actually a monoid with identity element
len(E"), and if Rc=X™* is any rational set, put G:=n"1(1), and define
£: Xt > X by

e =(AUB)*x0O (AU O) %

where A:={(x, x):xeZ*} and

O:= U (cGxo)U(Goxo)).

ceX

Then € is an order which is also a rational relation X* — X*. If (u, v)es,
then v has length strictly less than the length of u, so there is no infinite
chain

Wi EW,EWSE .. .;

hence each n~!n-class has an s-minimal element. As ecn~!m, we have
A(e, n"'n)=¢~ ', which is certainly a regulator. By Lemmas 7 and 8,
Min (g, n "' m, R) is rational and n(Min (g, n~ ' &, R))=n(R).

We claim no = !m-class contains infinitely many elements of
R, :=Min (g, n~ ' xn, R). Ifindeed R, N n~ ! n(w) were infinite, then according
to the pumping lemma this rational set would contain an infinite subset xy* z
with yeZ*, by cancellativity, () is idempotent so ye G, which implies that
(xy? z, xyz) g, but this contradicts the fact that xy?> ze R, =Min (g, n "' &, R).
By Lemmas 7 and 8, Min(>, n~ !, R)) is therefore a rational cross-section
for the restriction of & to R, and even for the restriction of tto R. M

We remark that Theorem 2 is effective relative to the given Kleene semi-
group S: if we have an explicit finite generating set for S, and an algorithm
which produces for each ReRat(S) a congruence of finite index saturating
R, then we can really produce the cross-sections described.
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