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CROSSABILITY OF CANCELLATIVE KLEENE SEMIGROUPS (*)

by C. P. RUPERT 0)

Communicated by J. BERSTEL

Abstract. - Every cancellative Kleene semigroup satisfies Eilenberg's theorem.

Résumé. — Si S est un semigroupe simplifiable de type Kleene, alors S satisfait le théorème
d'Eilenberg.

INTRODUCTION

A morphism q> : T-> S of semigroups is called crossable if every rational
subset R oî T contains a rational cross-section 7̂ 0 for the restriction of (p to
R or (in other words) if there exists for each rational subset R of T another
rational subset Ro of T satisfying:

(1) * 0 ^ * ;
(2) <p0Ro) = (p0R);and
(3) cp is injective on Ro.

The following classical crossability resuit is useful in the theory of rational
relations.

EILENBERG'S THEOREM [1]: IfH,* and F* are finitely generaled f ree monoids,
then every morphism cp : S* -> F* is crossable. M

We say that a semigroup S satisfies Eilenberg's theorem, or that S is
crossable, if every morphism (p : E+ -> S is crossable for every free semigroup

(*) Received September 1990, revised February 1991.
(*) Department of Mathematics and Computer Science, Robinson Science Building, North

Carolina Central University, Durham NC 27707, U.SA.
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152 C. P. RUPERT

Crossability results often have interesting conséquences. For example, if S
satisfies Eilenberg's theorem then every rational subset of S is unambiguously
rational. Moreover, an effective proof that S satisfies Eilenberg's theorem
enables us to décide whether a given rational expression over S is unambigu-
ously rational.

Pelletier [3] introduced a technique for constructing congruences from
équivalence relations, used it to produce various counter-examples in the
theory of Kleene semigroups, and in this way showed that not ail Kleene
semigroups satisfy Eilenberg's theorem.

Our major resuit, Theorem 2 below, proves that every cancellative Kleene
semigroup satisfies Eilenberg's theorem, by modifying a method used by
Sakarovitch [5] (to prove a special case of Eilenberg's theorem) and by
Johnson (to show that every deterministic rational équivalence relation has a
rational cross-section, cf. Theorem 5.3 in [2]). The method produces rational
cross-sections of équivalence relations by lexicographie minimalization, a
tactic which does not work in gênerai (cf. Theorem 8.2 in [2]) but does work
hère.

I. PRELIMINAIRES

Recall some définitions and theorems.

A subset R (of a semigroup S), which is saturated by a congruénee = of
finite index on S, is called recognizable. Rec(S) dénotes the set of recognizable
subsets of S.

NERODE'S THEOREM: A subset R of a semigroup S is recognizable iff there
are only finitely many different quotient sets s'1 R: = {teS:steR}. •

LEMMA 1; Let Rbe a recognizable subset o f a semigroup S; for each seR,
defïne the set [s]R \ = {t: t'1 R = s~l R}. Then there are only finitely many sets
[s]R and each of these sets is recognizable. •

Rational subsets of a semigroup S are defined as follows: the empty set 0
is rational and so is every singleton s e S; if U and V are rational, then so
are the union U\JV, product UV: — {uv: ue U, ve F}, and subsemigroup
U+ a S generated by U. Rat (S) dénotes the collection of rational subsets of
S.

In an arbitrary semigroup S, Rec(5) and Rat (S) are not closely related.
However, the following resuit holds.
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KLEENE'S THEOREM: 7 f £ + is afinitely generated free semigroup, then every
rationa! subset ofX+ is recognizable and conversely. •

Motivated by this result, we call a semigroup S Kleene if Rat (S) = Ree (S).
Clearly, a Kleene semigroup is fmitely generated.

By a regulator p : 2 + - * X + , we mean a rationality-preserving relation:
every rational subset i ? c S + has rational p-image p(i?).

LEMMA 2 [3]: A semigroup S is Kleene iff S is isomorphic to the quotient
X + / K of a finitely-generated free semigroup E + by a congruence K which is
also a regulator. •

LEMMA 3: Any relation Z + -> S + which is rational in £* x X* is a
regulator. •

LEMMA 4; The set of regulators is closed under finite union and under
composition. Ify\r is a regulator and if P and Q are rational subsets of X+ then
(P x Q) H \|/ is also a regulator.

Proof: Suppose that \|/ and 9 are regulators; if ReRat(L+), then
01/ U 6) (R) = \|/ (U) U 9 CR) and v|/ ° 9 (K) = \|/ (0 (i?)); so the first sentence holds.
If R is rational in E + , then

AR={(r,r):reR}

is a rational relation £*->S*. Now (Pxg)P|v|/ is simply AQ
o\|/°Ap; if i»

and g are rational, this is a composite of regulators; so the second sentence
holds. •

We also use another closure property of regulators. Given any relations
\ | / : I + ->X+ and cp:X+ -+£ + , defïne the product relation cp A \ | / :S+ ->£ +

by

cp A \|/: = {(flc, Z>J):(a, Z>)ecp, (c, rf)e\|/}.

LEMMA 5: /ƒ \|/ : E + -• X+ a«û? <p : E + -> E + ar^ regulators, then the product
relation cpA\ | / :Z + ->Z + / I y ^faö a regulator.

Proof: We begin with the following claim.

, cp A \|/(R)= U <f>([x]R

Explanation: Suppose reep A v(/(i?). Choose (Û, 6)ecp, (c, rf)e\|/ with
ac — seR and 6rf= r. Then 6 e cp ([a]R O ^ P ^ 1 ) (since a e [a]^ and ac^se R),
and rfexKa"1*) (since cea~lR\ So ^
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154 C. P. RUPERT

and thus

q>Ai|r(i9c U

For the opposite inclusion, suppose that

re U

Then teq>([p]R PiRÇZ+y^^ip'1 R) for some /?e£ + . So t = bd for some
ü e ^ H ^ P ^ " 1 , beq>(a) and ^exj/O"1^). Since ae\p]R, [a]R = \p]R and
û"1 i?=/?~1 i î ;soi3e[a] i jni?(S+)"1 and Jeil/O"1^)- Choose c e a " 1 ^ with
<^ev|/(c)c=\J/(a"17?). As (a, b)e<p, (c, d)e^\f, and aceR, so t = bde(p A \|/(i?),
and therefore

U

which complètes the proof of the claim. D
We now show that 9 A \|/ is a regulator. Suppose i?eRat(Z+). Then

the sets [x]R, RÇL+)~1
9 and x~~lR are also rational; hence sois each set

t p l M ^ n ^ P 4 ) " 1 ) ^ ! " 1 ] ? ) . There are but finitely many distinct sets x-1R
and similarly only finitely many sets [x]R. It follows that

= U vdx^

actually reduces to a finite union of rational sets. Thus, cp A >\f(R) is rational
and so 9 A \|/ is a regulator. •

IL A METHOD OF SAKAROVITCH

By an order on a set X, we understand a binary relation > on X which is
asymmetrie (no element xeX satisfies x>x) and transitive. A linear order is
an order verifying trichotomy:

VxeX VyeX x = y or x>y or y>x.

If>is an order on X and R is a subset of X, then by a>-minimal element
of R<= X we mean any reR with

{seR:r>s} = 0.
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When K is a relation on X, A = A ( >, K) dénotes the relation

K P I > ~ 1 = { O , V)EK:V>U}.

If K is an équivalence relation, Min (R) = Min ( >, K, R) dénotes the set

{ reR :ri$a>-minimal element of[r]xOi?},

where [r]x dénotes the K-class ofreX.

Lexicographie orders on a free semigroup E+ are constructed as follows:
fïx a linear order. >on the alphabet S; for distinct words w e l + and veH +,
v>u means either that u is a proper prefix of v or that there exist (possibly
empty) words w, x, and y over the alphabet £ and letters a . > x in S such
that u = wxx and v=way. Any lexicographie order is linear.

LEMMA 6: I/K is a relation and>a lexicographie order onH+ then A(> , K)

is a union Ax U A2, where At dénotes the relation

{(xau, XTV)€K:XE2,*, weP, ZJGE*, aeS, xeS, x>a}

and A2 dénotes the relation

{ *, a e l , veX + } .

Proof: Obvious from the définition of lexicographie order. •

Now the method of Sakarovitch [5] is essentially this: for any lexicographie
order>and any morphism TÜ:Z+ -» F* from the free semigroup E+ to the
free monoid T*, A(>,7T~1TC) is a rational relation 2* -> S*, and the set
Min(>, TC"1 7c, 7?) is therefore rational whenever .Kc=X+ is; when 7c is non-
erasing, Min(>, n"1 TC, /?) is a cross-section for the restriction of TT"1^ to
i?, and Eilenberg's theorem follows easily.

The next lemmas isolate some key ideas of this method.

LEMMA 7: Let > and K (respectively) be an order and an équivalence relation
on the set X. Then the following are equivalent:

(1) For each reR, there exists at least one>-minimal element of the set
[r]x H R; and

(2) Min(>, K, R) interseçts every \c-class intersecting R, If these conditions
hold and>is a linear order, then Min(>, K, R) is a cross-section for the
restriction ofK to R.
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Proof: (1) o (2) is obvious. If in addition > is a linear order then each set
[r]x O R has a unique >-minimal element, so Min(iï) must be a cross-section
for the restriction of K to R. •

LEMMA 8: Suppose that > and K {respectively) are an order and an équivalence
relation on the finitely generaled free semigroup E + , and that A(>, K) is a
regulator. Then Min(>, K, R) is rationalfor every rational set R.

Proof: Suppose that A is a regulator; let A0 :E+ ->i;+ dénote the relation
AR ° A, where AR = {(r, r):reR}. Then

R) = R\{reR:3seR(s, r)eA}

Whenever R is rational, Ao is a regulator by Lemma 4 and so Min (R) is
rationaL •

III. LEXICOGRAPHIC MINIMALIZATION

For the remainder of this article, we fix a finitely generated free semigroup
E+ and a lexicographie order > on E + . To generalize Sakarovitch's argument,
we show that A(> , K) is a regulator when K is a left-cancellative congruence.

A semigroup S is called left-cancellative if

xy = xz => y = z;

the notion right-cancellative is dually defined; cancellative means left- and
right-cancellative.

We can now obtain our first resuit.

THEOREM 1: If E + /K is a left-cancellative Kleene semigroup, and if>is a
lexicographie order onH + , then A(>, K ) : E + -»S + is a regulator.

Proof: Express A = À 1 UA 2 according to Lemma 6. To show that A is a
regulator, it suffîces (according to Lemma 4) to prove that A1 and A2 are
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both regulators. Now A2 is the relation

{(xa,

= U ({o, ow)GK:weI+}UA{(a, a W)GK: weL + })

= U ((a x ( a S + O M J ) U A (a x (a E+ O [a]J)),

where [a]x dénotes the K-class of a e l and A dénotes the diagonal
{(x, x) :xe£ + }; note that we used the left-cancellativity of K. Since the
semigroup is Kleene, each set a Z + HM* is rational; thus, A2 is actually a
rational relation E* -• S* and hence a regulator.

To show that At is a regulator, we first observe that each relation
(aX*xxS*)p|K (where a e S , xe£, and x>a) is a regulator by Lemmas 2
and 4. Thus the union of these relations is another regulator A3. If we show
that A1 = A 3 U A A A 3 then A1 will be a regulator by Lemmas 4 and 5.

Now (s, t)eAl means s Kt, (s, t) = (xau, xxv) where x > a are letters in X,
and x, u, and v He in X*. If x is actually the empty word, then

(s, t) = (ou, Tï))G(aS*xxi:*)nKcA3.

On the other hand, when XGL + we conclude from XOUK xxv (using left-
cancellativity) that

(OM, Tü)e(a ï*xxI*)nKcA 3 ,

whence it is immédiate (by the définition of A A A3) that

Thus Ax c A3 U A A A3; for the opposite inclusion, read backwards, using the
left-compatibility

yKx => xy K xz

of K instead of left-cancellativity. •

Corollaries 1 and 2 below generalize results in [5].

COROLLARY 1*. If %:1L+ ~y S is a morphism from Z+ to a left-cancellative
Kleene semigroup S, and if>is a lexicographie order on Z + , then
Min(>, n~l n, R) is rational for every rational subset
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Proof: Since S is Kleene, n~lfK is a regulator by Lemma 2; moroever, a
subsemigroup of a left-cancellative semigroup is left-canceliative; hence, the
theorem guarantees that A is a regulator. The result now follows from
Lemma 8. •

LEMMA 9: Let S be a left-cancellative semigroup, every singleton subset of
which is recognizable. Then the following conditions are equivalent for any
morphism n : 2 + —• S:

(1) For each sen(?,+), the set ss~l Dn(L+) = 0; and
(2) Each K " 1 n-class is finite.
Proof: (1) => (2): Suppose that some set n~ *• n (w) is infinité. Then n~l n (w)

is rational because S has recognizable singletons and consequently n~ln(w)
contains an infinité subset xy+ z by the pumping lemma. From
n (xyz) = (K (xy2 z), we conclude (by left-cancellativity) that

= n(y2 z) = n(y)n(yz) so n(y)

belongs to the set n (yz) n (yz) ~1.
(2) => (1) : If n (v) e n (ü) n (u)'1 for some words u and v, then v+ u is an

infinité subset of n~1 n (w). •

COROLLARY 2; If S is a left-cancellative Kleene semigroup, > a lexicographie
order on S + and TC : Z+ ->• S a morphism such that that ss'1 C]n(lt

+) = 0 for
each senÇL+), then Min(>, n~1n, R) is a rational cross-section for the
restriction ofn to R,for each rational i?<=S + ; in particular, n is crossable,

Proof: By hypothesis, every n ~1 rc-class is finite. Thus Min(i?) is a rational
cross-section by Theorem 1 and Lemmas 7 and 8, regardless of the rational

For the next application of these ideas, we recall that an équivalence
relation KX is called locally-finite thinning of the équivalence relation
K C I + x S + if KX is a restriction of K, if the domain of K1 intersects every
K-class, and if each iq-class is finite. The following result is due to Johnson.

JOHNSON'S THEOREM [2]: Every rational équivalence relation has a rational
locally-finite thinning, •

We also need the following result, which can be restated in various forms
(cf. Proposition 1.4.3 in [3]).

CHOFFRUTS THEOREM: If the congruence K on S+ is rational as a subset of
E* xE* and if K has a rational cross-section, then the quotient S + /K satisfies
Eilenberg's theorem. •
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COROLLARY 3; Suppose K C E + X I + ^ ö left-cancellative congruence which
is rational as a subset of S* x £*. Then H + / K satisfies Eilenberg's theorem.

Proof: According to the Johnson's Theorem, we can find a rational locally-
finite thinning KX for K, or (in other words) we can find a rational set
Z>c=£ + such that K1: = KODXD is a locally-finite thinning of K. Fix any
lexicographie order > on S + . Then Min ( > , K, D) is a rational cross-section
for K by Theorem 1 and Lemmas 7 and 8. The result now foliows by Chof-
frut's theorem. •

IV. CANCELLATIVE KLEENE SEMIGROUPS

In this section, we show that cancellative Kleene semigroups satisfy Eilen-
berg's theorem.

LEMMA 10 [4]: Let S be a semigroup, every singleton subset of which is
recognizable. Then every subgroup of S isfinite. If S has an identity element 1,
then every divisor of 1 actually belongs to the group of units of S. •

LEMMA 11: Let S be a cancellative semigroup, every singleton subset of
which is recognizable. Then the following conditions are equivalent for any
morphism n : E+ -> S:

(1) For each s e n (£+), the set ss'1 n ^ ( S + ) = 0 ;

(2) TC(X + ) does not contain an idempotent;

(3) IfS has an identity element 1, then 1^7i(S+); and

(4) For each a e l , the set n~1n(a) O cr(a+) = 0 .

Proof: (4) => (3): Suppose n(w) is an identity element for S; let a e E be
any letter appearing in w; then, as a divisor of the identity TC (W), TC (a) belongs
to the group of units of S; moreover, this is a fmite group; hence for some
« > 1 , n(o)n = n(on) = n(o) and therefore n~1n(a) f] a ( c r + ) ^ 0 .

(3) => (2): An idempotent in a cancellative semigroup must be the identity.

(2) => (1): If 7C(U)€7I(M)TC(M)~1, then K(v2u)="n(vu) = n(u) and n(v) is
idempotent by cancellativity.

(1) => (4): If a e I and n > 1 satisfy a" e n ~x n (o), then

THEOREM 2; L^r 7 t : E + ^ 5 èe a morphism from 2,+ to the cancellative
Kleene semigroup S. Then n is crossable.
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Proof: Fix a lexicographie order > on E+ . According to part (4) of
Lemma 11, we can easily test whether n(L+) contains an identity element
for S. Our proof splits according to the outcome of this test; if n(L+) does
not contain an identity element for S, and if R is any rational set, then (by
Lemma 11 and Corollary 2) Min(>, K~1 n, R) is a rational cross-section for
the restriction of n to R,

On the other hand, if S is actually a monoid with identity element
len(L+), and if i?c=Z+ is any rational set, put G: = n~1(l), and define
e : S + - ^ S + by

8 : = (A U ©) * @ (A U O) *

where A : = {(x, x) : x e S + } and

®: = U

Then e is an order which is also a rational relation Z* ->E*. If (w, ZJ)
then t; has length strictly less than the length of w, so there is no infinité
chain

hence each 7i~17c-class has an s-minimal element. As ean~1n, we have
A(e, ït~17c) = s"1

s which is certainly a regulator. By Lemmas 7 and 8,
Min (e, K " 1 ^ , R) is rational and 7t(Min(e, T I " 1 ^ R)) = n(R).

We claim no n~17i-class contains infinitely many éléments of
R1 : = Min (e, TC~ 1 K9 R). If indeed /?! O TÏ~ X TT (W) were infinité, then according
to the pumping lemma this rational set would contain an infinité subset xy+ z
with yeX + , by cancellativity, n(y) is idempotent so yeG, which implies that
(xy2 z, xyz) G S; but this contradicts the fact that xy2 zeR^ Min (e, rc~1 n, R).
By Lemmas 7 and 8, Min(>, 7c"1 n, Rx) is therefore a rational cross-section
for the restriction of n to Rt and even for the restriction of n to R. •

We remark that Theorem 2 is effective relative to the given Kleene semi-
group S: if we have an explicit finite generating set for S, and an algorithm
which produces for each R e Rat (S) a congruence of finite index saturating
R, then we can really produce the cross-sections described.
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