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PROLOG INFINITE TREES AND AUTOMATA (*)

by Solange COUPET-GRIMAL (*)

Abstract. - This paper deals with an algorithm constructing the minimal deterministic Jïnite
state automaton recognizing a language defined by a rational expression. It relies on a représentation
in a normalized form of languages over flnite alphabets by infinité trees and uses the powerful
implementation of these trees in Prolog. It accomodates extended rational expressions with new
operators including intersection and différence. It is also possible to get complete or non complete
automata, according to what is needed. The resuit is a program which is neat, close to the
mathematic formulation and very concise (2 pages).

Résumé. — Nous présentons dans ce papier un algorithme de construction de l'automate d'états
finis déterministe et minimal reconnaissant un langage défini par une expression rationnelle. Il
repose sur la représentation sous une forme normale des langages sur un alphabet fini par des
arbres infinis et il utilise la puissante implementation de ces arbres en Prolog. Il s'applique aux
expressions rationnelles étendues, avec intersection et différence, et permet d'obtenir des automates
complets ou non complets. Le résultat est un programme concis (2 pages) et élégant car très proche
de la formulation mathématique.

1. INTRODUCTION

Infinité rational trees have been the subject of many studies in theoretical
computer science (see the article of Courcelles [10] about all these studies).
Here we present an application of infinité trees in programming, using their
implementation in Prolog II and Prolog III to give a new solution for a well
known problem: the construction of a minimal deterministic finite automaton
(DFA) from a regular expression.

We know many solutions for this problem. Let us cite Thomson's
algorithm [16] which produces a nondeterministic automaton (NFA); the very
elegant one due to Brzozowski [3], relying on the notion of a "derivative" of
a regular expression, which constructs the minimal DFA and accomodates
extended regular expressions with additional operators like intersection and
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398 S. COUPET-GRIMAL

différence; the algorithm of MacNaughton and Yamada [13], which gives a
DFA (nonminimal) and in which they mark all input symbols in a regular
expression to make them distinct: for example, the marked version of
(a + b) * h (a + b) is {a1 + b2) * b3 (a4 + b5), where ax and a4 are different sym-
bols; lastly, the very efficient algorithm of Berry and Sethi [2], using at once
the derivatives of regular expressions and marking: it builds an NFA and, as
the former one, it does not work for extended regular expressions.

The algorithm we give hère is as gênerai and as complete as possible, since
it accomodates extended regular expressions and its displays on the screen
the drawing of the minimal DFA. It is also possible to get complete or non
complete automata, according to what is needed. The use of infinité trees
permits us to represent languages over finite alphabets in a normalized form
(although regular expressions are not normalized représentations) and to
profit by Prolog which provides a very powerful implementation of these
trees. The program is very neat, close to the mathematic formulation, particu-
larly concise (only one page) and is a solution for the problems set by
Brzozowski [3] and which are still with us:

" . . . we have assumed that it is always possible to recognize
the equality of two regular expressions. If this is the case, then
the state diagram constructed... is always minimal. However, it
is often quite diffïcult to détermine whether two regular expres-
sions are equal. We. . . show that this difficulty can be overcome,
and a state graph can always be constructed, but not necessarily
with the minimal number of states. It should be pointed out that
the other existing methods. . . have the same difficultés and,
moreover, are limited to regular expressions with ( + ), (.) and
(*) only."

(In Brzozowski's paper, expressions are said to be equal when they represent
the same language.)

2. RATIONAL TREES AND REGULAR LANGUAGES

2.1. Rational trees

Informally, a tree is a set of nodes, each of them having a label and a
position. The skeleton of a tree is the set consisting of all these positions. To
make this more précise, we let A* be the free monoid generated by a finite
alphabet A.

Informatique théorique et Applications/Theoretical Informaties and Applications



PROLOG INFINITE TREES AND AUTOMATA 3 9 9

Tree skeleton. A tree skeleton is a set S for which there exists a nonnegative
integer z such that;

— S is a nonempty subset of {0, . . ., z}*;

— every prefix of an element of S is in S;

— for every element p of S and every couple (Uj) of éléments of {0, . . ., z}
such that i <j\ ifpj belongs to S, then pi belongs to S.

Tree: Let F be a countable set and S be a tree skeleton. A tree over F whose
skeleton is S is a mapping afrom S to F; we write S:=sk(a).

The figures below

f

U V

represent respectively a tree a and its skeleton; the tree a whose skeleton is
{s, 0, 1, 00, 000, 001} over the set of labels {f g, u, v} is defmed by a(s)=f,

=f a(Q00) = u, a(001) = o.

Finite or infinité tree: A tree is calledfinite or infinité depending on whether
its skeleton is finite or infinité.

These are two infinité trees

The first one has an infinité number of subtrees since all the subtrees in
the left side are different: it is called nonrational. On the other hand, the
second one has only two subtrees: itself and its left child; it is rational and
thus it admits fmite représentations such as, for example, the diagrams below,
corresponding to the Systems of équations whose unknowns are x, y and z

vol. 25, n° 5, 1991



400 S. COUPET-GRIMAL

and which are indicated under each diagram

y

= f(a,x)J = f(a,y), y = f(a,z), z = f(a,y)}

Prolog infinité trees are rational infinité trees. The unification algorithm
(so called by référence to the logical model) is in fact an algorithm for solving
Systems of équations and inéquations on rational trees. A présentation of
infinité trees in Prolog as well as several examples and a fundamental
program can be found in [7], This fundamental program produces the minimal
représentation s for a given tree a. It is now part of Prolog II and it can be
called by out-equ(a, s). Other exampies using infinité trees are given in [5]
and [6].

In addition, we have to mention the évaluable predicates eq and dif: in
Prolog eq(t, t') and dif {t, t') stand respectively for t=t' and t # t'. Finally,
draw-equ(d) [15] draws on the screen, the tree a in minimal form.

2.2. Languages in form of trees

For clarity, we will consider only languages over the alphabet {0, l}, but
it is very easy to generalize the following to the case of any finite alphabet.
By noticing that the skeleton of the infinité binary trees:

0

00 01

000 001 010 011

10 11

100 101 110 111

is exactly the set of all the strings over (0, l}, it is possible to characterize a
language using only two labels. By convention, the strings in the language

Informatique théorique et Applications/Theoretical Informaties and Applications



PROLOG INFINITE TREES AND AUTOMATA 401

are labeled F, and the other ones are labeled NF. For instance, the tree

NF

NF NF

NF F NF NF

NF F NF F NF NF NF NF

represents a language L which does not contain the empty string c or any
strings starting with 1 since the root and all the nodes of the right child are
labeled NF. Accordingly strings in L must start with 0. Among these, only
strings ending with 1 belong to the language since, in the left child, only
right nodes are labeled F. Moreover, it should be noted that the left child of
the tree of any language L is the tree of the "derivatives of L by 0", that is
the language obtained by stripping from strings in L the leading O's. More
precisely, it is the set written 0" L and defined by 0~ L= {u/QueL}. Similarly,
the right chid is the tree of 1 " L. This involves the relation

trce(L) = where
tree(OL) tree(l'L)

c = FifeeL

c=NFife«L

Since a language is regular if and only if it admits a finite number of
derivatives, we can deduce the following proposition.

PROPOSITION: A language L is regular if and only if the tree which represents
it is rational.

In the previous example, L is the set of all the strings starting with 0 and
ending with 1. It is the regular language defined by 0(0+ 1) * 1. lts tree has
exactly four subtrees. It is rational and its minimal diagram is

If we add to it some "décorations", we get the transition diagram of the
minimal DFA which recognizes the language L (this explains the names of
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402 S. COUPET-GRIMAL

the labels: F as final and NF as nonfinal).

I
(NF)

0 X \ 1

Hence, to solve our problem is to construct the tree of a language given
by a regular expression. This is the purpose of the following section. In
addition, the minimization will be done by Prolog. This informai présentation
relies on the following proposition [9].

PROPOSITION: Let L be a regular language and a be its tree. The minimal
DFA which recognizes L is defined in the following way:

— states are the subtrees of a;

— the initial state is a;

— the final states and nonfinal states are the subtrees of whose roots are
labeled F and NF, respectively;

— for every sub tree b of a, there is a transition under 0 from b to its left
child and under 1 from b to its right child.

3. CONSTRUCTING THE AUTOMATON

We will construct the automaton of a language L defined by a regular
expression e. This automaton, denoted by S (e), is the infinité tree associated
with L. In the following we shall call it the automaton of L or the tree of L.
As it has been mentionned already, we deal here with extended regular
expressions, involving additional operators such as intersection and différence
and whose syntax is defined as follows.

Regular expressions

(1) • cp is a regular expression denoting the empty set.

• s is a regular expression denoting the set {e}.

Informatique théorique et Applications/Theoretical Informaties and Applications
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• For ever y element a in {0, l}, a is a regular expression denoting the
set [a).

(2) • If e, ex and e2 are regular expressions denoting the languages L, Lx

and L2 respectively, then:

— (ex e2) is a regular expression denoting the product LXL2.

— (ex 4- e2) is a regular expression denoting Lx U L2.

— e* is a regular expression denoting the reflexive transitive closure L*
ofL.

— (ex — e2) is a regular expression denoting Lx — L2.

— (e1 O £2) ^ a regular expression denoting L1OL2.

These are the only regular expressions.

3.1. The method of construction

The construction of the automaton S (e) associated with the regular expres-
sion e is recursive and directed by the syntax of e. We define the opérations
union, concaténation, closure, intersection and différence on the set of automata
so that if ex, e2 and e are three regular expressions and su s2 and s are the
automata associated with them, then:

union (sl9 s2) is the automaton associated with {ex +e2)
concaténation (su s2) is the automaton associated with (ex .e2)
fermeture (s) is the automaton associated with e*
intersection (sx, s2) is the automaton associated with (ex H ^2)
différence (sx, s2) is the automaton associated with (ex~~e2)^

Assuming that s is known or that sx and s2 are known, we have to
construct the tree resulting from one of these ftve opérations. Thus, we will
be able to produce the automaton of a regular expression recursively from
the four basic automata, recognizing respectively 0 , {s}, {0} and {1}. This
can be expressed in Prolog by rules such as the two following. The fîrst one
constructs the automaton sof 0 and the second one constructs the automaton
s from (^x+e2).

automaton (empty, s) -» eq (s, non-final (s, s));

automaton {plus (el, e2), s) ~+

automaton (e\9 si) automaton (e2, s2) union ({si, s2}, s);

First, we will present union, intersection and différence which are treated
in the same natural way.

vol. 25, n° 5, 1991



4 0 4 S. COUPET-GRIMAL

3.2. The opérations union, intersection, différence

Let us construct s, the automaton of a language L resulting from the union,
intersection or différence of two languages Lx and L2 recognized by the
automata s1 and s2. It is a top-down construction: after fmding its root, we
calculate its left and right chiidren. We saw previously that the children of s
are the derivatives 0~ L and 1 ~ L. Moreover the nature of the root (F or NF)
dépends on whether s recognizes the empty string or not. Thus we are led to
define the laws +, Pi and — on the set {F, NF} so that, when applied to
the roots of sx and s2, they give the root of s for each of the three opérations
union, intersection and différence. Then we will define the derivatives of L
from those of L1 and L2.

DÉFINITION: For every element c in {F, NF} we define:

c~F=NF;

NF+c = c, FC\c = c, c~NF=c.

PROPERTIES OF THE DERIVATIVES: Let Lx and L2 be two regular languages.
For every symbol a in {0, l } :

a' (Lj U L2) = a~ Lx U a~ L2

a' (Lx H L2) = a~ L, D a' L2

a~ (L1 — L2) = a~ Lx—a~L2.

A proof of these results (given with the formalism of regular expressions)
can be found in [3]. The définitions and properties above involve the following
proposition.

PROPOSITION: Let cx and c2 be two éléments in [F, NF} and xl9 yu x2, y2

any automata. The opérations union, intersection and différence applied to the
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PROLOG INFINITE TREES AND AUTOMATA 405

cx c2

automata sx — / \ and s2 = / \ satisfy the relations:
x\ y\ xi yi

union A • A
unionion [xhx2\

intersection

c1 c2

A • A
cxc\c2

intersectionion (xhx2\ intersection

différence
cx c2

A . A
cx-c2

différence *]xhx2) différence (yx, y2)

Let us prove for example the fïrst relation; the others can be obtained in a
similar way. union (sl9 s2) recognizes the empty string s if and only if at least
one of the two automata sx and s2 recognizes s, that is to say if and only if
at least one of the two roots cx or c2 is F. By the définition of the
law + on [F, NF}, we deduce that the root of union (su s2) is c1 + c2. More-
over, if Lx and L2 are the languages recognized by sx and s2 respectively, we
know that x1 is the automaton that recognizes 0" Lx\ similarly x2 recognizes
0~L2. Hence, by the définition of union, union (xl9 x2) recognizes
0~L1U0~L2 , which is, according to the properties of the derivatives,
0~ (L1[JL2). This implies that union (xl9 x2) is the left child of the tree
union (su s2). In the same way, it can be shown that union (yu y2) is the
right child of union (su s2).

If the trees we deal with were not infinité, the three relations would pro vide
recursive définitions for the opérations union, intersection and différence: we
would construct the result for a couple (sl9 s2) from the results of the chiidren
of sx and s2. In this way, we would get a recursive algorithm (without
terminal case), whose translation into Prolog could be obtained immediatly.
In the program below F and NF are coded with the identifiers final and
non-final. In addition, union ((su s2) , s), and différence « 5 l 5 s2 )>

 s) a r e

assertions if and only if s is respectively the result of the union, the intersection
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406 S. COUPET-GRIMAL

and the différence of s1 and s2. Finally we recall that in Prolog II the tree
c

/ \ is coded by { c, x, y ) if c is a variable,
x y

union (< < cjjcj,yj > , < C2,x2,y2 » > <c>x>y > ) ~>
plus(< cj,C2 >, c)
union (<xjpc2 >jc)
union (< yj,y2 >,y);

intersection (< < C]jcj,yj > , < C2^2^2 >> > <c>*>y > ) ->
inter (< cj,C2 >, c)
intersection (< xjjC2 >>x)
intersection (< yj,y2 >$)*>

difference(<
minus (< cj,C2 >, c)
différence (< X]PC2 >jt)
différence (< y 1^2 >>y)i

plus (<final, c >, final ) ->;
plus (<non~final, c >, cj ->

i'nrer (<final ,o,c ) ->;
(<non-final, c >,non-final) ->;

1 (<cfinal>, non-final ) ->;
minus (<c, non-final >,c)->;

However, it is clear that hère there is no terminal case since the two trees

Si= / \ and s2= / \ that we are traversing are infinité; they do

not have any leaves. Such a program calculâtes indefinitely all the nodes of
the leftmost branch of the resulting automaton.

How To MAKE THE ALGORiTHM TERMINATE: Let ƒ be one of the three opéra-
tions union, intersection or différence. The termination of our aigorithm relies
on the fact that the trees sx and s2 both have a finite number of subtrees. The
program above, when constructing the infinité leftmost branch ofs=f(s1, s2),
calculâtes, in each step, a tree t~f(tu t2) where tx and t2 are subtrees of s1

and s2 respectively and t is a child of the tree calculated in the preceding
step. Since the trees sx and s2 have a finite number of subtrees, after a finite
number of steps, this program will necessarily calculate a tree t'=f(tu t2)
after undertaking the same calculation t—f(tu t2) in a previous step for an
ancestor / of t'. This will be the terminal case for the recursion. Informally,

Informatique théorique et Applications/Theoreticai Informaties and Applications
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t' is replaced by an arrow pointing to its ancestor t, This contributes simulta-
neously to the détermination of t and t\ More rigorously, the treatment of
the current branch terminâtes by adding the équation t—t' to the System of
équations that détermines s and that we are building by traversing s1 and ,y2

in preorder. This is called (by référence to the logical model) the unification
of / with t\

On the following page, we give two trees r and /' representing respectively
the languages consisting of all the words ending with 0 and 1. We mean to
construct the uiïiön x of r and f. We see that these two trees have only two
subtrees: r and / for the first one and r' and /' for the second one. They are
followed by schémas showing the different steps of the construction of the
tree x = union (r, /'). The équations in boldface are the unifications which
ensure the termination. The right child of x, that is to say the tree
z = union (r, r'), is calculated in the same way,

It is possible to verify that in the end, we obtain:

which is minimized by Prolog resulting in

x-NF

This principle for terminating the recursion is rather difficult to explain,
but it can be expressed very easily in Prolog. We record in a list all the
équations of the type r ~ union (au a2) that have been treated already or,
more simply, all the couples <<z, r> (argument-result) where a — {au a2). This
list / will be an additional parameter in the rules union, intersection..., and at
the beginning, it will be the empty list, traditionaily denoted by nih
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NF <-r NF

1 > F NF <r 1 > NF F <r

F NF <-r l-> F NF <-r V-> NF F <-r' l'-> NF F or*

(0+1) 0 (0*1) 1

1/ x = union (r,r) x = NF

/ \
y z

2/ y = union (1,1') 7\ ; = NF

/ \
r

3/1 = union (1,1')

t = y (by2)

x = NF

/ \
F z0\

4/ u = union (r,r') u= F

/ \

x = NF

/ \
F z

5/ v = union (1,1')
v = y (by 2)

w = union (r,r')

w = u (by 4)

Informatique théorique et Applications/Theoretical Informaties and Applications
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The rules member below permit us, with a given couple < a, r ) (first
parameter), to know if the argument a occurs in a couple < a, r' > of the list
(second parameter). If it actually occurs, the resuit r we are looking for is
unifîed with r' and the third parameter takes the value true; in the opposite
case, it takes the value f aise.

member(<air>tnilfalse) ->;
member(<a,r>,<a,r'>.l,true) -> eq(r,r');
member(<a,r>,<a',r'>Jtb)-> dif(a,a') member(<a,r>,l,b);

The4wo following rules deal with the termination of the recursion in accord-
ance with the value (true or f aise) of the fïrst parameter.

iff(true,p) ->;
iff(false,p)~>p;

Finally, it is easy to be convinced that the problem can be solved by
transforming the rules

automaton and union,... in the following way:

automaton(plus(el,e2),s) -> automaton(el,sl)
automaton(e2,s2)
already-met(union(<slts2>,s,nil));

union(«cljcl,yl>,<c2jc2,y2»,<c,xty>,l) -> plus(<cl,c2>,c)
already-met(union(<xl fx2>rx,l))
already-met(union(<yl ,y2>,y,l));

and adding the rule

already-met(f(a,r,l)) -> member(<a,r>,l,b) iff(bf(a,r,<a,r>.l>));

In the same way, we modify the rules intersection and différence (cf. the
whole program in the end). Now, let us consider the case of concaténation
and closure which raise more problems.

3.3. Concaténation

The same approach as in the preceding section would lead us to calculate
the derivatives of the product of two languages L1 and L2 . Now, it can be
shown that for every symbol a in the alphabet:

a~ (L1L2) — (a~ L1)L2 if

a~ (Lx L2) = (a~ L^^yja' L2 if 8eLl.

vol. 25, n° 5, 1991
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One recognizes that the problem is more difficult, since the operator "ÛT "
does not commute with the product. The last relation can be translated in
term of trees by:

concaténation
F c \

A , A = " c c
c i yi X2 y 2/ union (concaténation^, / \ )^2)) union (concatenation(yi,/\ ),y2>)

^2 y2 ^2 y 2

where c dénotes the root of s. A recursive algorithm relying on this equality
appeals to a non terminal recursion. This poses a problem for termination.
As a matter of fact, we have to calculate the union of two trees; the first
one, resulting from an opération concaténation is not completely known. A
new approach led us to introducé an auxiliary opération, called concaténation',
with three arguments.

DÉFINITION: Let Lx, L2 and R be three languages. We define

concaténation'(Lu R, L2)^R{J (Lx L2).

Now5 it is possible to express the product with this opération since

LXL2 — concaténation' (Lu 0 , L2)<

Consequently, to solve our problem, it is sufficient to give a construction
of the automaton recognizing the language L resulting from the opération
concaténation* when applied to any three languages. This construction relies
on the usual considérations: it uses a necessary and sufficient condition for
L to contain the string g and a caracterization of the derivatives of L,

PROPOSITION: JfzeLx then

concaténation'(Lu R> L2)- concaténation'(Lx - {e}, R U i 2 , L2)*

x then:
— € e-concaténation' (Ll? Ry L2) ifandonly ifzeR;

a~ concaténation'(Ll9 R? L2) — concaténation'{a~ Lx, a~~ R, L2)

for every a in the alphabet.

Proof: Let us assume that EÇLX, Hence LxL2-L2\J(Li-{ç])Lz and
therefore concaténation' (Lu R> L2)^RU (Lx L2) =^(R\J L2) U (Lx - {e})Lz

-concaténation' (i>l™{e}î R\JLZ, L2); this proves the first equality. Now;

let us assume that e is not in Lv Thus, it is not in the product LXLZ.

Informatique théorique et Appliçatipns/Theoretical Infonnatics and Applications



PROLOG INFINITE TREES AND AUTOMATA 411

Therefore it is in the union R U (Lx L2) if and only if it is in R. Finaliy, for
every symbol a in the alphabet a~ (R\J LlL2) = a~ R{J (a~ L1)L2 by the
properties of the derivatives of the union and the concaténation of two
languages. From this, we deduce the result immediately. The following corol-
lary is just a translation in terms of trees.

COROLLARY: If C dénotes any element in {F, NF} and x, y, xl9 yl9 x2, y2, r, t
any automata, the following relations hold:

I F \ (NF
1. concaténation' f\ , r, n~ concaténation' / \ , union (r, f), t

\x y j \x y

I NF c
2. concaténation' / \ , A ,t

concatenation\xl7 JC2, t) concaténation'(

We can notice that, by these relations, the union is computed before a
recursive call to concaténation' (relation 1), with two known arguments. With
the considérations of the preceding section about the termination of the
algorithm, the relations can be expressed in Prolog by:

automaton(conc(elre2),s) ->
automaton(el,$I)
automaton(e2,s2)
automaton(empty,r)
already~met(concatenationf(<sl,r,s2>>s,nil));

concaténation^<non-final(xl,yl),<cX,yf>,s2>,<cjc,y>,l) ->
already~met(concatenation'(<xlfx'>s2>pctl))
already-met(concatenation'(<yl ,yt,s2>,y,l));

concaténation (<final(xlfyl),r,s2>,s,l) ->
already~met(union(<r,s2>,r'tnil))
already-met(concatenationf(<non-ftnal(xl ,yl ),r

To prove that the algorithm terminâtes, it remains to show that if s, r and
t are three automata, the computation of concaténation' (s, r5 t) only générâtes
a finite number of new calculations of the form concaténation' ($', r\ f), We
show that each argument (s\ r\ t') is such that:

• s' is a subtree ofsy with possibly a different root.

• r' is the union of a subtree of r and a finite number (maybe zero) of
subtrees of t,

vol 25, n* 5, 1991
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These three conditions are obviously satisfied for the initial argument
(s, r, t). Let us assume that they are satisfied for an argument (V, r', t') in a
given step. Two cases may occur:

• if we apply the first rule, the new argument (s", r", t") of concaténation'
is such that t" — t. Moreover, s" equals s' (with possibly a different root).
Thus it is a subtree of s (with possible a différent root). Finally, r" is the
union of r' and t. Therefore it is actually the union of a subtree of r and
some subtrees of t.

• By applying the second rule, we are led to calculate concaténation'
(xu x2, t) and concaténation'(yls y2, t) where x1 and y1 are the children of s1

and x2 and y2 those of r . x± and yx are subtrees of s. In addition, by
hypothesis, r' is the union of a subtree r" of r and some subtrees tu t2, . . . , / „
of t. Hence if L{X) dénotes the language recognized by an automaton X,
then L(r') = L{r") \J L{tt) \J . . . \J L(Q9 and thus for every symbol a in
{0, 1}, fl"L(r') = fl"L(r")Ufl~^fc). • . \Ja~ L{Q. This implies that the
children of r', which are the automaton of the derivatives of a~ L(r'), are
the union of a child of r" and a child of tu t2, . . ., /„, that is to say of a
child of r and some subtrees of t.

The algorithm terminâtes since s, r and / have a fini te number of subtrees.

3.4. Closure

Hère we will construct, from the automaton of a language L, the automaton
of its transitive reflexive closure L*. As previously, we are led to study the
derivatives of a~ L*. Now, it can be proved that, for every symbol a of {0, 1}

a~L* = (a- L)L*,

and we immediateiy deduce the relation for automata:

I c\
closure \ A = / / c \\ i le)

\x yj concaténationbc, closure A concaténation y , closure A
l \ x y j \ \ x y

But there is the same problem as in the preceding section. A recursive
algorithm, relying on this relation, to calculate t = closure (s) would lead to
the computation of t' = closure (s). After unifying t' with t, we would compute

Informatique théorique et Applications/Theoreticai Informaties and Applications



PROLOG INFINITE TREES AND AUTOMATA 4 1 3

concaténation (x, t') with one of the two arguments, t', which is not completely
determined. This follows from the fact that the recursion is not terminal.

Let us define again a new opération closure' as follows.

DÉFINITION: Let Li and L2 be two languages. We define:

closure'{LXi L2)~ L2{L\).

Moreover, the closure of a language L can be expressed with closure':
L* = closuré{Lx, {s}). Thus an algorithm permitting the construction of the
automaton of closure'(Lx, L2) for any languages Lx and L2 given by their
automata solves our problem. For this purpose, we use the following proposi-
tion.

PROPOSITION: s E closure' (Lx, L2) if and only ifseL2. In addition, for every
symbol a in the alphabet:

a~ closure' (Ll5 L2) = closure' (Lls a~ L2) if

a~ closure'(Lu L2) = closure' (Li, a~ (Lx U L2)) if eeL2.

This proposition can be proved easily by using the properties of the
derivatives of products and closures. It can be expressed in terms of automata
by the corollary:

COROLLARY: Let x, y, x', y be any automata, The opération closure' satisfies
the following relations.

i NF\ NF
1. closure' \s, A =

\ x yj closure\stx) closure\syy)

2, closure's, A
x y

I F) F
where union \ s> /\ = / \

closure\s,x') closure\s,y') \ x y) x' y'

From these two relations we can deduce, with the usual considérations
about the termination of the algorithm, the Prolog rules below (where " A "
stands for e).
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automaton(star(e),s) -> automaton(e,sl) auiomaton("A'\n) already-met(closuref(<slin>1sinil));

closure*(<s,non-final(x\y')>tnon'final(xsy))l) ->
l d ( l ( X l ) )y ) )

aiready-met( closure (<s,y'> ty /));
closure (<sfinal(x',y')>final(x,y),l) ->

already-met(union(<final(x'3y') fi
already-met(closuret(<spcn>pcti))
already-met(closure(<s,y">,y,l));

As for the concaténation, it can be proved [9] that the computation of
closure ' (s, n) only générâtes a fini te number of new calculations of the form
closure' (sl9 s2) and that ensures the termination of the algorithm.

4. CONCLUSION

The whole program can be found in the following section. We observe
that it is very clear and concise: Prolog, which memorizes, compares, unifies,
minimizes, draws the infinité trees, takes charge of most of the work. More-
over, it is easy to generalize it [9] to any finite alphabet and to noncomplete
automata. With this more genera! version and the compiler Prolog II+ we
tested the following examples on a Sun 3.60. The table below gives, expressed
in seconds, the respective times for the computation of the automaton, the
computation of the automaton inciuding the display on the screen of its
minimal System of équations and the computation of the automaton inciuding
the drawing of its minimal form. In the last column, there is the number of
states of the minimal automaton. For example, it is 2n + i for the expression
(a + 6)* a (a + b)n. The expression ((ba*)n b + ab* ab)* is an example given in [4]
and [12].

regular computation of with the with the number
expression the automaton minimal system drawing of states

(aaa)*- (aa)*

(aaa)*n (aa)*

(a+b)*a (a+b)

(a+b)*a(a+b)2

(a+b)*a (a+b)3

<ba*b+ab*ab*)*

((ba*)2b+ab*ab*)*

((ba*)3b+ab*ab*)*

0,05

0,05

0,08

0,4

11,5

0,2

1

10

0,2

0,2

0,1

0,7

13

0,7

2,6

16,4

0,8

0,7

0,4

1,2

13,8

1,5

4,6

19,7

6

6

4

8

16

8

15

28
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To calculate the automaton corresponding to (000)*-(00)* we ask Prolog
the question:

> automaton {minus (star (conc (conc ("0", "0"), "0"))>

star (conc ("0", "0"))), s) draw-equ(s);

Prolog answers by showing on the screen the drawing of the infinité tree in
the left side of the figure on the following page, which represents the
automaton whose transition diagram is the hexagone in the right side.

= NF

NF y

NF y

/ \
\F

/ \
ÏF

/ \

/ \

A
NF y

/ \

F y

x y

y = NF

/ \
y y

5. The Program

automaton(emptyys) ->
eq(s,non-final(s,s));

automaton("*"final(s,s)) ->
automaton(empty,s) ;

automaton("0",non-final(final(s,s),s))
automaton(empty,s) ;

automaton("l ",non-final(sfinal(s,s)))
automaton(empty,s);

automaton(conc(el,e2),s) ->
automaton(el ,sl )
automaton(e2,s2)
automaton(empty,r)
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already-met(concatenation'(<s],r,s2>,s,nil));
automaton(plus(el ,e2),s) ->

automaton(el ,sl )
automaton(e2 ts2 )
already-met(union(<sl ,s2>,s,nil));

automaton(star(e),s) ->
automaton(e,sl)
automaton( "A",n)
already-met(closure '(<sl,n> ,s,nU));

automaton(et(el,e2),s) ->
automaton(el,sl)
automaton(e2)s2)
already-met(intersection(<sl ,s2 >,s,nil));

automaton(minus(el,e2)ts) ->
automaton(el ,sl)
automaton(e2,s2)
already-met(difference(<sl ,s2 >,s,nil));

"CONCATENATION"

concaténation'(<non~final(xltyl),<cpc'fty'>,s2>,<cpc,y>,l) ->
already-met(concatenation'(<xljc',s2>pc,l))
already-met(concatenation(<yl ,y',s2y

concaténation^<final(xl ,yl ),r,s2>,s,l) ->
already-met(union(<r,s2 > ,r',nil))
already-met( concaténation^ <non-fînal(xl ,yl ),r',s2>,s,l));

"UNION"

union(«cljcltyl>,<c2jc2,y2»,<cjcty>,l) ->
plus(<cl,c2>,c)
already -met(union( <xl yx2 > je, l))
already-met(union(<yl ,y2>,y,l));

plus(non-final(c),c) ->;
plus(fînal(c)final) ->;

"CLOSURE"

closure'(<s,non-final(x',y')>,non-final(x,y),l) ->
already-met(closure(<s X> J-fl))
already-metfclosure (Ks.y^j^l));

closure'(<sfinal(x',y')>final(x,y),l) ->
already-met(union(<fînal(x',y'),s>final(x",y"),nil))
already-met(closure'(<sjc">pcj))
already-met(closure'(<s,y">,y,l));

"INTERSECTION"

intersection(«cljcl,yl>,<c2pc2,y2»,<cpc,y>,1) ->
inter(<cl,c2>,c)
alreaay~met(intersection(<xfjc2>pc,l))
already ~met(intersection(<yl ,y
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inter(final(c),c)->;
inter(non-final(c),non-fïnal) ->;

"DIFFERENCE"

dijference(«cljcl,yl>,<c2fx2,y2»,<ctxty>,l) ->
minus(<cltc2>,c)
already-met(difference(<xl jc2>pc,l))
already-met(dijference(<yl fy2>,y,l));

minus(<cfinal>,non-final) ->;
minus(<c,non-final>;c) ->;

"DIVERS"

already-met(<f,a,r,l>) ->
member(<a,r>,l,v)
iff(vt<f,a,r,<a,r>.l>);

member( <x,s>, nilfaux) - > ;
member(<x,s>,<x,s'>.ltvrai} -> eq(s,s');
member(<x,s>,<y,t> J,v) -> dif(x,y) member(<x,s>,l,v);

iff(vrai,p) ->;
iff(faux,p) -> p;
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