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AN EXTENSION
OF THE NOTIONS OF TRACES

AND OF ASYNCHRONOUS AUTOMATA (*)

by A. ARNOLD (*)

Communicated by R. CORI

Abstract. - We extend the notion of a trace (or element of a partially commutative monoid) in
considering a commutation relation over letters which dépends on the context where it is applied.
Accordingly, we extend the notion of an asynchronous automaton and we prove a generalizaton of
Zielonka's theoremfor these notions.

Résumé. - Nous généralisons la notion de trace, c'est-à-dire d'un élément d'un monoïde partielle-
ment commutatif en faisant dépendre la relation de commutation entre lettres du contexte dans
lequel elle est appliquée. Nous généralisons de façon correspondante la notion d'automate asynchrone
et nous généralisons le théorème de Zielonka à ces notions.

1. INTRODUCTION

Words, interprétée as séquences of actions, are very natural formalizations
of sequential computations, and the free monoid is the best mathematical
structure in which one can speak of words. Indeed, monoid theory is one of
the corner stones of Theoretical Computer Science.

But a word cannot formalize a concurrent computation. One needs more
complex objects, which are ail more or less related to partially ordered sets.
Many works are devoted to the définition of such objects and to the construc-
tion of mathematical structures which are to concurrent computations what
the monoid is to sequential ones. Let us cite just a few of them

• partial words and partial languages [6];
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356 A. ARNOLD

• histories and processes [16, 17];

• event structures [11];

• occurence nets and processes [5];

• process monoids [7];

• concurrent histories [4];

• distributed monoids [14].

Among these attempts, the partially commutative monoid, or trace monoid,
[7, 3, 1] is especially fruitful, at least at the mathematical level, in the sensé
that this theory leads to nice and deep theorems [10, 12]. One of the most
interesting results in this theory is Zielonka's theorem [18] which asserts the
équivalence between two different notions of recognizability, one defined by
algebraic criteria, the other one by spécifie devices: the so-called asynchronous
automata. In this theory, traces are équivalence classes of words under the
équivalence relation ~ e which is the least monoid congruence generated by
the set {ab ~Bba} for ail pairs ( a, b > belonging to some symmetrie irreflexive
relation 0. A trace can be represented by a partially ordered set where two
occurences of letters are not ordered if and only if these occurrences can
commute in some word of the équivalence class. An asynchronous automaton
is a finite state automaton which is able to have traces as inputs in the sensé
that two independent occurrences of letters have independent effects on the
states of the automaton.

Our aim was to generalize this theory in the following manner:

• to characterize équivalence relations on the free monoid such that équiva-
lence classes can be represented by partially ordered sets;

• to define a kind of automaton which can be considered as reading such
partially ordered sets.

It was achieved in the following way:

• we define an extension of the notion of a trace, called P-trace; it is a
labelled partially ordered finite set, such that two independent éléments must
have différent labels;

• we define particular sets of P-traces, called CCI sets, such that éléments
of these sets can be identified with équivalence classes of words;

• we define a generalization of the notion of an asynchronous automaton,
called P-asynchronous automaton, which takes as inputs the éléments of a
CCI set.

Indeed we define various kinds of CCI sets.
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AN EXTENSION OF TRACES 357

Projective: It is defined as the "projection" of a subset of a partially
commutative monoid.

r-projective: It is defmed as the "projection" of a recognizable subset of a
partially commutative monoid.

Regular: A CCI set is regular if its syntactic right semi-congruence is of
fînite index.

a-regular: A CCI set is a-regular if the équivalence relation associated
with it is defined by a P-asynchronous automaton, in the same way as an
asynchronous automaton defines a commutation relation and, therefore, a
partially commutative monoid.

The main resuit we prove in this paper is a generalization of Zielonka's
theorem: every recognizable subset of an a-regular CCI set P is recognized
by a P-asynchronous automaton such that the équivalence relation associated
with it is the équivalence relation which characterizes P. Indeed it is a
conséquence of Zielonka's theorem!

We also try to characterize the équivalence relations which defme a-regular
CCI sets. Unfortunately, we were only able to show that a CCI set is regular
if and only if it is r-projective, and we propose as a conjecture the fact that
a CCI set is a-regular if and only if it is regular and the équivalence relation
associated with it satisfïes some additional property. The proofs in this part
of the paper are rather similar to the proofs in Zielonka's paper; the difficulty
lies in the fact that the notions introduced by Zielonka have to be adapted
to the case we deal with. We expect the extensions of these notions could
have some interest in their own right.

This paper is organized as follows. In section 2, we defme the notion of a
P-trace and the notion of a CCI set of P-traces. In section 3, we characterize
the équivalence relations such that the set of équivalence classes is a CCI
set. In section 4, we define the projective and r-projective CCI sets. In
section 5, we defme the notion of a P-asynchronous automaton and we prove
the extension of Zielonka's theorem. In section 6, we defme the syntactic
semi-congruence and the syntactic congruence of a CCI set; we extend some
notions introduced by Zielonka, and we prove the équivalence between the
notion of a regular CCI set and of an r-projective CCI set. In section 7, we
propose our conjecture about the characterization of a-regular CCI sets.
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358 A. ARNOLD

2. P-TRACES

DÉFINITION 2.1: A P-trace t over a fmite alphabet A is a triple < ist, ^ f , \ )
where < £t, ?g, ) is a partially ordered set and Xt is a mapping from ££ into
A which satisfîes the foliowing property:

Vx,yeEt, Xt(x) = \(y) => x^ty or j ; g,x. D (1)

The partially ordered set (Eti St} expresses a kind of "causality" relation
between the éléments of Et and the label Xt (x) of an element x names the
"event" associated with this element. Therefore a P-trace is nothing but a
pomset in some terminologies [13]. The condition (1) means that two occur-
rences of the same event have to be causally related and this property is
sometimes termed as "non autoconcurrency" [13] or "self-dependency" [8].

Indeed, properly speaking, P-traces are équivalence classes under isomorph-
ism of such triples, but, due to the property (1), there is a canonical représen-
tative of each class, having the following form: replace each element x of Et

by the pair (Xt(x), nx} where nx is the number of éléments yeEt such that
y f^tx and Xt(x) = Xt(y). From now on a P-trace will be identified with this
canonical représentative.

DÉFINITION 2.2: A P-trace t = (Et, ^ f , Xt} is a prefix of a P-trace
t'=(Et; ^,', K>), denoted by t\Zt\ if

• Et g E,;

m ^t = ^t, Pi (Et x Et) (Ï. e., <>t is the restriction of St to Et);

• if x e Ev y e Er, and y St
>x t n e n y E Et• O

DÉFINITION 2.3: For a word u of A*, we dénote by alph(w) the set of letters
occurring in u. •

DÉFINITION 2.4: If tx and ?2 are two préfixes of a P-trace ?, then one can
define the intersection t1rrt2 of tx and t2 as the "largest" prefix cornmon
to tx and ?2 (its domain is En D Et2) and their union t± U t2 as the least prefix
of t having tx and t2 as préfixes (its domain is Etl U ^f2). •

DÉFINITION 2.5: If a P-trace is a totally ordered set, it is a wcni over A,
i, e., an element of the free monoid A*. A Z/near extension of a P-trace n s a
word M, considered as a P-trace, whose order g u is compatible with ^ r

More formally u = (Eu9 ^ t t, A,u> is a linear extension of t=(Ev ^t,

Informatique théorique et Applications/Theoretical Informaties and Applications



AN EXTENSION OF TRACES 359

if Su is a total order, EU = E„ Xu = Xt and St E ^» (*.<?., Vx, .ye£u = £f,

We shall dénote by L£'(?) the set of linear extensions of a P-trace f, which
is a subset of yl*. D

The following proposition is more or less folklore, although the resuit is
sometimes attributed to Szpilrajn [15],

PROPOSITION 2.1: If t is a P-trace, then ^t is the intersection of ail Suf
or

ueLE(t).

DÉFINITION 2.6: Two words u and v in A* are said to be Parikh-equivalent
if, for every letter a e A, the numbers of a's in u and in v are equal. D

Obviously, ail words in LE{t) are Parikh-equivalent. Conversely, with
every set L of Parikh-equivalent words, one can associate the P-trace tL

defmed by StL= D S«. It is obvious that L <= LE(tL).
U € L

DÉFINITION 2.7: Let P be a set of P-traces over a given alphabet A. We
say that P is consistent and complete, CC for short, if

• U LE(t) = A* (completeness);
teP

• Vf, t'eP, f # t'=>LE(t) D LE(t') = 0 (consistency). D

DÉFINITION 2.8: If a set P of P-traces is CC, it follows, from the very
définition, that every word u in A* is the linear extension of one and only
one P-trace t in P, Let us dénote by cp : A* -* P the mapping which associâtes
with each word the unique P-trace which contains it in its linear extension.
This mapping allows us to defme an équivalence relation denoted by ~P, or
more simply ~ when P can be understood from the context, by u ~Pv iff
q>(H) = <p(z>).

This mapping is said to be monotonie if u C v => cp (u) {^ cp (v), •

DÉFINITION 2.9: We say that a set P of P-traces is idéal if it is closed under
prefix, L e., if t e P and t' Ç t then t' e P. D

For CC sets, we have the following equivalent définition of "ideality".

PROPOSITION 2.2: A CC set P of P-traces is idéal if and only if the mapping
cp is monotonie.

vol. 25, n° 4, 1991



360 A. ARNOLD

Proof 1: Let t be in P and let t' be a prefix of t. Let u be any linear
extension of t''. Then / has a linear extension u in the form u u" and u' [Z w.

Hence, f ' = <p (M') Ç cp (M) = t and /' = cp (u') is in P.

2. Let w and v be two words in A* such that M is a prefix of v. Let ? be
<p(v) and let us consider the prefix tu of ? whose domain is Eu. To be sure
that this prefix does exist, it is sufficient to prove that xeEu and yStx

implies yeEu. Indeed, y ^Ltx=>y i^vx, since v is a linear extension of t, and
since MÇU, we get yeEu. Moreover, u is a linear extension of tu (if

x, yeEu = Etu and x ^*u.y, then x Sty, which implies x ^vy, which implies
x ^ u y, since x and y are both in £*„), thus <p (M) = /u Ç f = q> (v). D

In all the rest of this paper we shall consider only ideal CC sets of P-
traces, CCI sets for short. Indeed if processes are modelled by P-traces, and
set of processes associated with some machinery (device or program) by sets
of P-traces, as far as the "beginning" of a process is still a process, the set
of P-traces has to be closed under prefix. The condition of completeness can
always be satisfied by suitably extending the set of P-traces under considéra-
tion. The main restriction in limiting ourself to CCI sets is due to the property
of consistency; it excludes the case if mixed causality illustrated by the
foliowing example, due to Mazurkiewicz [9]. On the other hand it is a natural
generalization of the notion of partially commutative monoid [3], as shown
by the next example.

Example 2.1: Let us consider the Petri net pictured in figure 1. If we fire
sequentially a then c then b, the firing of c is made possible by the firing
of a, and the firing of b can be considered as independent, thus the "causality
ordering" between these events is reduced to a ^ c. On the other hand, if we
fire sequentially b then c then a, the firing of c is made possible by the firing
of b, and the firing of a can be considered as independent, and the "causality
ordering" is reduced to b ^ c. The total order a ^ b ^ c is a linear extension
of the two previous partial orders; thus, in this example, the requirement of
"consistency" is not satisfied. D

Example 2.2; Let us consider an alphabet A and let 9 be a symmetrie
irreflexive relation in A x A. We define, over A*, the least congruence relation
~ e generated by (ab, ba) for every pair (a, b) in 0. Since congruent words
are obviously Parikh-equivalent, one can define <p (u) as the P-trace which is
the intersection of all ^v for all v congruent to u. It is easy to show that
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AN EXTENSION OF TRACES 361

LE(cp («)) is exactly the congruence class of u and that wr^=>(p(w)Ç(p (v);

hence, (pG4*) is a CCI set of P-traces. D

Figure 1

3. AN ALGEBRAIC CHARACTERIZATION OF CCI SETS OF P-TRACES

Given a CCI set P of P-traces, one can associate with it an équivalence
relation ~ over A*, as explained in the previous section. This équivalence is
included in the Parikh-equivalence and has other properties; some of them
will be listed below. Conversely, if an équivalence relation over A* is included
in the Parikh-equivalence, it allows us to associate with each word u the P-
trace tu which is the intersection of ail f^v for all v equivalent to u. The set
of all these tu is not necessarily a CCI set. We shall give suffïcient conditions
on this équivalence to get this property, so that CCI sets could be identified
with équivalence relations satisfying these conditions.

PROPOSITION 3.1: The équivalence relation ~ over A* associated with a CCI
set P of P-traces has the following properties:

PI: It is included in the Parikh équivalence.
P2: For any words u, v and for any letter a, u ~ v if and only if ua ~ va.

P3: For any words u, veA* and for any letters a, b with a ^ b, if ua ~ vb,
then there exists a word w such that u ~ wb and v ~ wa.

P4: For any words u, v, w and any letters a, b such that (i) a ^ b; (ii) w
does not contain b; (iii) vw does not contain a, if uavbw ~ uvwba then
uvwab ~ uvwba.

vol. 25, n° 4, 1991



362 A. ARNOLD

Proof: PI is a conséquence of the définition of ~ .

Proof of P2: Since u\Zua and v CI va, by proposition 2.2, (p(w)Ltp (ua)

and cp(V) C cp(W).

If M ~ u, then ZJ is a linear extension of cp (u), and it follows that va is a
linear extension of cp (ua); hence, ua ~ va.

If ua ~ va, we have / = cp (wa) = (p (va) and cp (w) and cp (v) are both préfixes
of t. Since their domains are equal, they are equal.

Proof <?ƒ P3: Let us assume that cp (ua) — cp (vb) = t with û ^ è . Both cp(w)
and cp (V) are préfixes of t. Let t' be their intersection and w be some linear
extension of t'. It remains to prove that cp (wb) = cp (w), z. e., that wè is a linear
extension of cp (u); by the same reasoning we will get cp (wa) = cp (z>).

By définition of t' we have Er = Ew = Eu H ^V Since wa and vb are Parikh-
equivalent, u is equal to MA bu2 and z; to ut av2 with (i) è does not occur
in M2S (u) ö does not occur in v2 and (iii) Wj w2 and vx v2 are Parikh-equivalent;
hence, EU = EW{J {<£, «)} , where n is the number of b's in w. Let us prove
that for any x, yeEu we have x ^

If x, yeEw, x^v(u)y=>x^t.

if xeEw, y = (b,n), obviously x Swby;

if x = < è ; n > , j e E w , it is impossible that x ^9(u)_y, since, because
cp (u) Ç t, this implies x ^ y y, and, since XJZ? is a linear extension of r, x ^ vb y,

which is not possible.

Proof of VA: Let us assume that t = <p (uavbw) = (p (uvwba) and let us prove
that uvwab is a linear extension of t. Let us set ƒ'=uavbw, g=uvwba, and
h — uvwab. Since ^ f E ^ / H ^05 it suffices to show that V'x, yeEt, x ^fy
and x ^gy=>x ^hy which is easily shown, considering the 25 cases where x
and y belong to Eu, Euv - Eu, Euvw - EUD, Euvwb - EUÜW, Eg - Euvwb. D

Conversely, if an équivalence relation ~ over A* is included in the Parikh-
equivalence, with every word u in A* we associate the P-trace cp(w) defined
by ^<p(U)= H uu- If3 moreover, this équivalence relation satisfies P2, P3,

V ~ M

and P4 then cp(̂ 4*) is a CCI set of P-traces. To prove this resuit, we need
the following lemma.

LEMMA 3.2: Let us assume that the équivalence relation ~ satisfies P2 and
P3. If uav ~ wa and if the word v does not contain the letter a then uv ~ w.
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AN EXTENSION OF TRACES 363

Proof: The proof is by induction on the length of u. If u is the empty
word, we have ua ~ wa and we get u ~ w by P2. If v = v' b, since a does not
occur in u, b # a, and, by P3, uav' b ~ wa implies that there exists a word w'
such that uav' ~ w' a and w ~ w' b. By induction hypothesis uv ~ w', and by
P2, MU' b ~ W' b; hence, uv ~ w. D

Now we can prove the previously announced resuit.

PROPOSITION 3.3: If an équivalence relation ~ satisfies PI , P2, P3, and P4,
zY defines a CCI .se* P of P-traces such that the ~ -équivalence classes are the
linear extensions of éléments of P.

Proof: Since u is by définition a linear extension of 9 (u), the completeness
property is satisfied.

Let us prove, by induction on the length of v, that cp (u) fZ cp (uv). If u is

the empty word, this is trivially true. Let v be equal to aw and let us assume
that cp (ua) Ç cp (uaw); it is sufficient to show that cp (u) Ç cp (wa), /. e.

1. Vx, yeEu9 x ^9{u)y iff x £9iua)y;

2. Vx, ^ G ^ , if yeEu and x ^9(llfl).^ then xeEu.

Proof of 1; Let x and j ; be in Eu. If x ^ ^ ^ j j , for each v such that M ~ v,
we have wa ~ ua; hence, ua is a linear extension of cp(wa), and thus x ^vay;
since x and j> are in EU = EV, we get x ^ „ ^ and by définition of cp, x ^ ^y.
If x ^vMy and if x $ 9 ( u a ) j ' , there exists, by définition of cp, a word w such
that w ~ ua and y ^ w x ; the word w can be written as wx aw2 where a does
not occur in w2, and, by Lemma 3.2, u ~ wxw2 with EW1 W2 = EU; it follows
that w1w2 is a linear extension of cp(w) and since x^9iu)y, we have
x ^ w l W 2 >-; on the other hand, since y ^ w x , we have j> ̂ W 1 W2 x, thus x = j ,
a contradiction with x £v{u) y.

Proof of 2: If x ^9(ua)y then x ^uay; hence, if yeEu then xeEu.

Finally let us prove the consistency property: for every ueA*, if u is a
linear extension of cp (u), then u ~ u. This is proved by induction on the
length of u.

If u is the empty word, v is also the empty word.

Let t = <p(ua) and vbeLE(t). We have already proved that cp is monotonie;

hence, t' = <p(u) Ç t. If a = b, then EU = EV and u is a linear extension of t'. By

induction hypothesis, u ~ u, and, by P2, ua ~ va=vb. \î a ^ b we have
u = ux bu2 with & not occurring in w2 and v = v1 av2 with a not occurring in v2.
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It follows that v1v2b is a linear extension of cp(w): since cp (u) \Z cp (ua), we

have ^ ç (u) = ^ ç (Hfl) H (£u x £„) which is included in S vb O ( £ u
x £M), and,

since Eu = EVl V2b, this is equal to f^vi V2b, By induction hypothesis, we get

v1v2b ~ u = u1 bu2, (2)

and, by Lemma 3.2,

vlv2 ~ uxu2. (3)

Thus we get

vx v2 ba ~ ua ~ ur u2 ba. (4)

Since vb = v1av2b is a linear extension of t = <p(ua), one cannot have
x b ^ f x f l (where xa and xb are the last occurrences of a and b in /); this implies
that there exists w ~ ua such that xa ^ w x b ; therefore, w=w1aw2i>V3 with è
not occurring in w3 and a not occurring in w2 w3. Hence,

w = w1 aw2 bw3 ~ ua. (5)

By Lemma 3.2 we get, from (5),

wt w2bw3 ~ u. (6)

From (2) and (6), and by Lemma 3.2 we get

v1v2~w1w2w3. (7)

From (4), (5), and (7), we get

wx aw2 bw3 ~ w>! w2 w3 ba. (8)

By property P4, we have

w ~ wx w2 w3 ab. (9)

Hence, <p (ua) = 9 (w1 w2 w3 ab) and vb is a linear extension of
(p(iVi w2 w3ab); now we are in the previous case: v ~ w1w2w3a and
vb ~ wx w2 w3 ab ~ ua. D

DÉFINITION 3.1: If t is a P-trace in a CCI set P of P-traces over an
alphabet A, and if w is a word of A*, we dénote by t.w the P-trace <p(«w)
where u is any linear extension of t. By P2, the resuit is indeed independent
of the choice of u in LE(t). D

Informatique théorique et Applications/Theoretical Informaties and Applications



AN EXTENSION OF TRACES 365

In particular, if t Ç t', there exists a word w such that t'~t.w.

LEMMA 3.4; Let tt and t2 be two préfixes of t, let t3 be their intersection
and r4 their union, as defined in the previous section. Let vx and v2 be the
words such that t^t^.Vy and t2 = t3.v2. Then a l p h ^ ) O alph(j;2) = 0 and

Proof: Let us assume that vx and v2 both contain a letter a. Let n be the
number of a's in t3; then ( a, n+ 1 ) is in Etl C\ Et2 = Et3, a contradiction.

Let u be a linear extension of t3; we have to prove that both uvx v2 and
uv2vx are linear extensions of *4. Let us assume that one of them, say
w = uvx v2, is not. Since w is totally ordered, this implies that there exist x ^ y
in EH = EH U Et2 = Ew such that x St^y and y <±wx. These éléments x and y
cannot be both in Etl = EU01 or in Et2 = EUV2, because in these cases x èwy.
Therefore, we must have xeEtl~-Eu and yeEt2~Eu. Since x ^ty and yeEt2

with t2 Ç t, we have xeEtl; hence, xeEnC\ Et2 — Et3 = Eu, a contradiction. D

Now we introducé an example which will be used also later on.

Example 3.1; Let A = {a, b, c} be an alphabet. Let us consider the least
right semi-congruence ~ over ,4* generated by ail pairs (uab, uba} and
< uba, uab > such that w is a word of A* having an even number of c's. It is
left as an exercise to the reader to prove that this semi-congruence satisfies
properties PI-4 and, thus, defines a CCI set Pex.

Let us remark that this CCI set Pex is defined in a way very similar to a
partially commutative monoid: two words are equivalent if one of them can
be derived from the other one by transposing some consécutive letters. The
différence with the partially commutative monoid résides in the fact that for
the partially commutative monoid this transposition can be performed at
every location in the word, whilst in this example the possibility of performing
this transposition dépends on the prefix of the word preceding this
location. •

4. PROJECTIVE CCI SETS OF P-TRACES

We are now going to define some particular CCI sets which can be defined
from subsets of a partially commutative monoid. Let us recall the définitions
given in example 2.2.
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Let A be sortie alphabet and 0 be a symmetrie irreflexive relation over A.
Let ~ e be the congruence relation over A* generated by ab~%ba for ail
pairs <a, b} in 0. It is very easy to check that ~ e satisfies PI, P2, P3, P4;
hence, the partially commutative monoid is a special case of CCI set. (We
will corne back to this fact later on.)

Let us consider now a mapping n from A into B such that
n (à) = n (b) => < a, 6 > <£ 0, and its canonical extension, denoted also by TÏ, from
,4* to B*.

PROPOSITION 4.1: If L is a subset of A* closed under ~ e (i. e., u ~Qv and
ueL imply veL) and under prefix (i. e., ifveL and u\Zv then u e L), and if n

is a bijection between L and B*, then the relation ~ over B*, defined by u ~ v
if and only if K~'l (u) C] L ~en~'x (y) H L, is an équivalence relation which
satisfies PI, P2, P3, and VA.

Proof: The relation ~ is obviously an équivalence relation. Since ~ e is
included in the Parikh-equivalence and since ^(TC"1 (M)) = M, ^ is also included
in the Parikh-equivalence.

Let w, u, ua, va be words in 5* and u\ v\ u" ax,v" a2 their images in L
under n~x. Since L is closed under prefix, u" and v" are also in L, Since
7i (u') — 7T; {U") = u and n (v') = n (v") = v, and since n is injective on L, we get
u1 — u" and v =v". If u ~ v, then, by définition, u" ~Qv"; hence,
u" ax ~ e v" au and since u" a1 e L, we have also v" ax e L. But
n(v"a1) = n(v"a2) = va; hence, a1 = a2 and by définition of ~, ua ~ va. Con-
versely, if ua ~ va, then u'a1 ~Qv"a2. Since ax and a2 do not commute
because their images under n are equal, we must have a1 = a2. Hence, u" ~ e v"
and thus u ~ v.

P3 and P4 can be proved in the same way: the proof is left as an exercise
for the reader. D

DÉFINITION 4.1: A CCI set P is said to be projective if its associated
équivalence ~ satisfies the hypothesis of Proposition 4.1. If, moreover the
language L used in this hypothesis is recognizable, then P is said to be
r-projective. •

Example 4.1: Let us consider the two alphabets B={a, 6, a', b\ c] and
A ~ {a, b, c}. Let % : B -> A be defined by

7i (à) = n (a') = a

K (C) = C.
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Let 9 = {{Ö, Z>), (b, ay) be a commutation relation over B, and let
L = ({a, è}*c{a', è'}*c)* be a recognizable language ofi?*. The language
Pref (L) consisting of all the préfixes of L is still recognizable and satisfies
the hypothesis of Proposition 4.1. It is easy to check that the équivalence
relation ~ over A* defined by this proposition is exactly the right semi-
congruence defined in Example 3.1. Thus, Pex is a r-projective CCI set. D

It is an open question to know wether every CCI set is projective. We
now defme a family of CCI sets for which this property holds. We shall
characterize later on, in Theorem 6.16, the CCI sets which are r-projective.

We show that a CCI set P of P-traces is projective whenever the équivalence
~ associated with it satisfies the property M stated hère.

{M) For all letters a, b, c with a / b and a / c, and for any word u,
uab ~ uba and uac ~ uca if and only if uabc ~ ubca.

Let us remark that this property is not always satisfied and that if
uabc ~ ubca, Lemma 3.2 allows to deduce only uab ~ uba. On the other
hand, any partially commutative monoid obviously satisfies this condition.
(But a partially commutative monoid is also obviously r-projective!).

For every word u and every letter a we define the set

Tu(a)= {b # a | uab ~ uba}.

We consider the new alphabet i? = ̂ 4x^(yl) and the projection n from B
into A. We defme also the commutation relation 0 by <<a, X}, <Z?, F ) ) e 0
if and only if (i) a # b, (ii) as Y and beX. From (i) we get that for a\
a"eB, n(af) = n(a")^(a\a")$Q.

Now let us consider the sequential mapping a : A* -> B* defined by

• a(e) = e;

• a(ua) = a (« )<a , Tu(a)>.

Obviously n is a bijection between the set L = a(/Ï*) and A*. Moreover, L
is closed under prefix, due to the définition of a. We prove the following
lemma which shows that in this case the CCI set is the image of a subset of
a partially commutative monoid.

LEMMA 4.2: (i) The set L=G(A*) is closed under ~ 9 .

(ii) For ail u, veA*, u ~ v if and only ifo(u)~Q<j (v).

Proof: Firstly, let us establish some preliminary properties of F and a.

Û) u~v => Tu{a) = Tv(a).
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If beTu(a), then uab ~ uba; by P2 and because u ~ v, we get vab ~ vba;
hence, beTv(à).

(jj ) u ~ v => V w, 3 w' : a (uw) = a (w) w' anJ a (vw) = a (a) W'.

By induction on the length of w: if w is the empty word, then w' is the
empty word; if property (jj) is tme for w, then a (wwa) = a (u) w' < a, Tuw (a) )
and a (vwa) = a (Ï;) W' ( a, rvw (â) ) ; but u ~ v implies, by P2, uw ~ vw, and,
by G), ru w(a) = rüW(a).

(Ui) beTw{a) => rw(a) = rwb(a).

Indeed, c s Tw (a) if and only if
c y*= a and wac ~ wca if and only if (using property M)
c ^= a and wabc ~ wbca if and only if (because wba ~ wab and P2)
c ^ a and wèac ~ WOCÛ! if and only if
ceTwb(a).

Now let us prove the first part of the second point of this lemma by
induction on the length of u. Let us assume that u ~ v. If w is the empty
word, v is also the empty word and o(u) = o(v) = z. If u = u a and v = v' a,
we have, by P2, u' ~ v\ and, by induction hypothesis, a(u) ~ea(x/); by
définition of a, a {u' a) = a (u) < a, Fu, (a) > and a (z;'a) = a (ZJ') <a, ru ,(a)).
But, by (j), w' ~ v implies Yu.(a) = r„,(a); hence, a(u') ~ea{v') implies
o(u'a) ~Q<J(V'a). Finally let us assume that iïa ~ v b with a # b. By P3,
there exists w such that u' ~ wb and v' ~ wa. By induction hypothesis
a (u) ~Q<j(w)(b, Tw (b) > and a (v') - e a (w)< a, Tw (a) >. It follows that

rw&(fl)> (10)

a (i;' 6) - e a (w) < a, Tw (a) )(b,Twa(b)}. (11)

Since w' ~ wè, v ~ wa, and w' a ~ v b, we have also, using P2, wZ?« ~ wab.
Hence,

and thus,

By (jjj), we get

rw(à)=rwb(a), rw(b)=rwa(b). (12)
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Considering the equalities 12 and the définition of 9, from 10 and 11 we
get cr(w'à) ~Qo(v'b).

Now we prove the following property, from which the first point and the
second part of the second point of the lemma can be immediately deduced:

if a (u) ~ 9 w'then w' = a (n (w')) and u ~ n (w'),
which is proved by induction on the number of permutations of letters needed
to go from a(w) to w'.

If a (w) = w' there is nothing to prove. Let us assume that w' = w[ a' b' w'2 with
<V, Z/)e9 and that the induction hypothesis applies to o(u) ~Qw'xb'a' w'2.
Thus, we have n (w'x b' a' w'2) = w1 baw2, oiw^^ baw2) = w\ b' a' w'2, and
u ~ wx baw2. We want to prove that w[ a' blw'2 = <y (w1 abw2) and u ~ w1 abw2.

By définition of a, we have

Thus, wx ab ~ wx ba and, by P2, wx abw2 ~ wx baw2 ~ u, Also, we have
beTwl (à), aeTwl (b), and, by (jjj), we get

Therefore, o(wx ab) = o(wx) (a, TWI (a)} (b, Twia(b)} = wf
x a'b\ and, by

(jj), G(wxabw2) = w'xa'b'w'2. D

5. P-ASYNCHRONOUS AUTOMATA

The notion of an asynchronous automaton has been introduced by
Zielonka [18] to characterize the recognizable subsets of a partially commuta-
tive monoid. An asynchronous automaton reads words, but, since "indepen-
dent" letters have independent effects on the state of the automaton, one
can consider that it reads the "pomsets" associated with the congruence
classes of the words. We extend this notion to a notion of automata reading
P- traces.

Before defining the P-asynchronous automata, let us recall the définition
of an asynchronous automaton.
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DÉFINITION 5.1: An asynchronous automaton over an alphabet A is an
automaton < Q, 8, q^, F, I, D} defined in the following way.

• ƒ is a set of indices.

• For each index iel, there is a finite set of states Q{ and g = \\ Qv
iel

• If / is a subset of ƒ, we dénote by Q3 the product \\ Q-, and if q is an
j'eJ

element of Q, q3 will be the element of Q3 consisting of the components of q
having their index in J.

• D is a family of nonempty subsets D (à) of /, for each letter a.

• For each letter a there is a mapping Sa from QD{a) into QD(a).

m The transition function 8: Qx A^> Q is defined as follows: 5(q, a) is
the unique state q1 such that:

• F is a subset of g, the set of final states, and q^ is an element of g, the
initial state.

Now we extend this définition the following way. D

DÉFINITION 5.2: A P-asynchronous automaton over an alphabet A is an
automaton < g, 8, g^, F, I, D} such that:

• ƒ is a set of indices equal to the union of A and {1, . . ., n) for some n.

• For each index iel, there is a finite set of states Qt and g = Y\ Qv
iel

• If / is a subset of /, we dénote by Q3 the product \\ Qp and if q is an
j e /

element of Q, q3 will be the element of Q3 consisting of the components of q
having their index in / .

• For each nonempty subset J of I and for each letter a there is a mapping
8̂  from Qj into Q3.

• D is a family of mappings Da from Qa into ^ ( / ) , for each letter a
(remember that a is also an index), such that for each qeQa, Da(q) contains
the index a.

• The transition function 8: Q*A->Q is defined as follows: 8(q, a) is
the unique state q' such that:

where J=Da(qa).
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• F is a subset of Q, the set of final states, and q^ is an element of g, the
initial state. D

Let us remark that if the function Da is a constant function, for each a,
we get the définition of an asynchronous automaton of Zielonka, setting
D(a) equal to the constant value of Da(qa).

5.1. Zielonka's theorem

Let us recall hère the statement of Zielonka's theorem [18]. The
theorem 5.2, proved below, can be considered as an extension of this theorem
to CCI sets.

Let L be the set of words accepted by an asynchronous automaton
£$ — ( ô> §> q*> Fi I, £>)> anc* let 0^ be the commutation relation defined by
(a, b}eQ^ if and only if D(à) C\D(b) = 0. Obviously, L is a recognizable
language closed under the équivalence relation ~e^. Zielonka has also proved
the converse of this property.

If L is a recognizable subset of A* closed under the équivalence relation ~ 9

associated with a commutation relation 0 over A, then there exists an asynchro-
nous automaton se which accepts L and such that 0 = 6^.

5.2. A-regular CCI sets of P-traces

In the same way as an asynchronous automaton defines a commutation
relation and, therefore, a partially commutative monoid, a P-asynchronous
automaton allows some letters to commute, but this commutation relation
dépends on the state of the automaton. Thus, intuitively, a P-asynchronous
automaton defines a partial order on the occurrences of letters in the word
it is reading. Hence, every P-asynchronous automaton se defines a CCI set
of P-traces in a way which we shall make précise below. Indeed, as it will
appear, this set does not depend on the set F of final states of se.

Let sé = (Q, 5, q^, F, I, £> > be a P-asynchronous automaton over an
alphabets. Let us consider the alphabet B = Ax0>{I) and the canonical
projection % : B -> A. We define over B the commutation relation
0 = { « a , />, (b, J'))\a^b, JC\f = 0}. For each qeQ, let us define the
sequential mapping <jq: A* -> B* by

• tfg(8) = c;

• Gq(ua) = aq(u).{a,Da(q'a)>, where q' = 8(q, u).

vol. 25, n° 4, 1991



372 A. ARNOLD

It is easy to see, from this définition, that

where q' = b(qy u).
Now let us set a = <jq^ and, for each qeQ, Lq={a(u) | §(q#, u) = q\.

Obviously, Lq is a recognizable subset of B*, for each q.

Finally, let L= U Lq which is also a recognizable subset of B*. By

définition, K is a bijection between L and 4̂* and L is closed under prefix.
In order to apply Proposition 4.1, it remains to prove that L is closed
under ~ e . Indeed, we prove that every Lq is closed under this congruence.

LEMMA 5.1: If o(w1abw2) = w[afb'w'2eL- and if <</, è ' ) e9 , then
a (Wi baw2) = w[ b' d w'2 e L~.

Proof: Let us set

We have, by définition .of a,

a (Wl rów2) - wi < a, £»a (?a) > < *, A tó) > oq< (w2)

a ( W l èaw2) = w\ <6, D,(qb)) (a, Da(q'a
f) > a f .(w2),

and it suffices to show that qa = q'a', qb = <2b>

Since < a', 6' > G 8, with a' = < a, Da (#a) > and a' - < Z?, i)^ (^6) >, the intersec-
tion of Da(qa) and Db(qb) is empty. Since beDb(qb), b<£Da(qa) and from the
définition of ^ ' ^ S ^ , w1a) = ô(^) a) we get q'b^=qb^ For symmetrie reasons,

£' = *.•
Now let us set

J=I-(Ja{JJb).
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From the définition of § we get q' — q", considering the three cases where an
index i belongs to Ja, Jb, or / . D

Now we defïne the équivalence relation ~ over A* by u ~ v if and only if
a(u) ~QG(V), and, by Proposition 4.1, this équivalence defînes an r-projective
CCI set denoted by P(sf).

DÉFINITION 5.3: A CCI set P of P-traces is said to be a-regular if it is
equal to P{s$) for some P-asynchronous automaton se. D

As an example of this définition, let us remark that any partially commuta-
tive monoid is an a-regular CCI set, since the asynchronous automaton
recognizing the whole monoid is also a P-asynchronous automaton, and the
sequential mapping a, associated with it, is the identity. Another example of
an a-regular CCI set is Pex of Examples 3.1 and 4.1.

Example 5.1: Let jaf be the P-asynchronous automaton defined by
• the set of indices / is equal to A — {a, b, c);

• Da (qa) = {a}, Db (qb) = {b}; Da (q'J = Db (q'b) = {a, b};

c(qc) = DM)=&b,c};
m for any subset / of 7, 5̂  and §£ are identities;

This automaton can take only two states when reading a word, q^ and
q' = (q'a> q'b> ^ ) - The first one is reached when reading a word with an even
number of e's, and the second one is reached when reading a word with an
odd number of c's. Moreover, a and b commute only in state q^. Hence, the
mapping a defined above, applied to A*, gives exactly the language introdu-
ced in Example 4.1 to show that Pex is r-projective. D

5.3. Recognizable subsets of an a-regular CCI set

Let P be an a-regular CCI set of P-traces over an alphabet A,

DÉFINITION 5.4: A subset K of P is said to be recognizable if the set
[K\= U LE(t) is a recognizable subset of A*. D

teK

The following theorem explains in which sense recognizable subsets of an
a-regular CCI set are recognized by P-asynchronous automata.
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THEOREM 5.2: If R is a subset of A* recognized by a P-asynchronous
automaton sé, then R=[K\ for some recognizable subset K of the CCI set

If a subset K of an a-regular CCI set P of P-traces is recognizable, then
there exists a P-asynchronous automaton se which recognizes [K\ (as a set of
words) and such that P = P(sé).

Proof: Let sé=(Q, 8, q^, F, D, / ) be a P-asynchronous automaton which
recognizes a subset R of A* and such that P=P(sé). Thus u(R) = U Lq,

qeF

and, by Lemma 5.1, o(R) is closed under ~e; hence, R = K(G(R)) is closed
under ~ . Thus R = [K\ for some subset K of P.

Let sé = (Q, S, q^ F, Z>, ƒ) be a P-asynchronous automaton such that
P = P (se) and let K be a subset of P such that [K\ is a recognizable subset
of A*. Let us consider the sequential mapping a : A* -> 5* previously defmed.
The subset L=o([K\) of B* is recognizable and is closed under ~ e by
Lemma 5.1 and by définition of ~ . Thus, by Zielonka's theorem, there exists
an asynchronous automaton ^ = <S, 8', s^, G, D', F} which recognizes L.

Let us define the P-asynchronous automaton # over A as a kind of product
of sé and B:

• The set of indices of # is the disjoint union of ƒ and /'.
• The set of states of V is thus Q x S; the initiai state is < q^, s^ > and the

set of final states is the set of ail states r such that rr is in G.

m The mapping D'a' is defmed by D'a' (?) = Da (q) U D' « a, Da (q) » .
• Let a be a letter, / be a subset of the disjoint union / U / ; let us set

J1 = J H / and J2 = J pi /'• We defme S;f J (r7) by:

" < & OVi), ^ a, j , > (rJa) > if / 2 = D' « a, Jx » ;
— r3 otherwise.

The idea behind the construction of this product is the following: the first
component of this product is sé and works on an input word u of A* exactly
as sé does whilst, simultaneously, the second part works on a (M) exactly as
$ does. Thus it is not difficult to prove that ^ accepts the words u such
that o(u) is accepted by J1. Hence ^ recognizes n(L) = [K\. Moreover, the
sequential maping a" associated with <& is from A* into C* where C is the
set of ail pairs <a, J1 U J2 )

 s u c n that J2^D' « a, J1 )) which is in bijection
with B. It is not difficult to see that a and a" are identical up to this bijection.
Finally let us consider two éléments a' = (a, / ) and b' = (b, / ' ) of B and
their corresponding éléments a"=(a, J(JD'(ar)) and b" = {b, J'\JD'(b'))
of C. If a' and b' commute {Le., if JÇ\T = 0) then D'{a') DDf(b')^0;
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hence, a" and b" commute. Conversely, if a" and b" commute, JOJ' = 0,
and a' and b' commute. Thus, se and ^ defme one and the same a-regular
CCI set. D

Let us remark that we cannot simply defme a recognizable subset K of a
CCI set P of P-traces by the condition: [K\ is a recognizable subset of A*, as
it is the case for a partially commutative monoid. With this définition, every
CCI set P would be recognizable, since [P] = ^4*, and we will see in the next
section that there are CCI sets which are not accepted by P-asynchronous
automata. Indeed, our définition is consistent with the defmiton of a recogniz-
able subset of a partially commutative monoid, since every partially commuta-
tive monoid is an ^-regular CCI set.

6. REGULAR CCI SETS AND THEIR CHARACTERIZATION

In the next section we shall exhibit necessary and sufficient conditions on
the équivalence ~ associated with a CCI set of P-traces for this set to be
a-regular.

The first condition is that the least right semi-congruence containing ~ is
of finite index.

Let us consider a CCI set P over an alphabet A, ~ its associated équiva-
lence, and let us define the équivalence relation = over A* by u = v if and
only if

Vw, w\ uw ~ uW if and only if vw ~ vw'.

The équivalence = is obviously a right semi-congruence greater than ~ .

DÉFINITION 6.1: A CCI set P is said to be regular if the right semi-
congruence = is of finite index. D

In fact, EE can be considered as the syntactic right semi-congruence of P.
This semi-congruence can be used to characterize CCI sets which are partially
commutative monoids.

PROPOSITION 6.1: A CCI set is a partially commutative monoid if and only
if the équivalence = has only one équivalence class.

Proof: If P is a partially commutative monoid (i. e., ~ = ~ e ) , then uw ~ uw'
if and only if w ~ w'; hence, every word u is ^-equivalent to the empty
word.
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Conversely, if every word u is ^-equivalent to the empty word then we
have uw ~ uw' if and only if w ~ w'. In particular, for every pair {a, b) of
distinct letters, uab ~ uba if and only if ab ~ ba. Let us defîne the commuta-
tion relation 0 by <̂  <2, b ) e 0 if and only if ab ~ ba. It remains to prove that
~ = ~ e . This is proved by induction on the length of the words.

— s ~ v if and only if e = v if and only if 8 ~ e v;
— ua ~ va if and only if u ~ v if and only if u ~ e v if and only if ua ~ e va;

— ua ~ vb if and only if u ~ wb, v ~ wa, and wab ~ wba if and only if
u ~ e wb, v ~ e wa9 and ab ~Qba if and only if ua ~ e v6. D

Since every a-regular set is r-projective, the following proposition proves
that every «-regular CCI set is regular.

PROPOSITION 6.2: Every r-projective CCI set of P-traces is regular.

Proof: Let L be the recognizable subset of which P is the projection
under 7t. Let us dénote by a(u) the unique word in L such that u = n(a(u)).
Let = L be the syntactic right semi-congruence of L defïned by u ~ L v if and
only if V w, uw eLovweL, which is of fini te index. We show that if
o(u) =Lo(v) then u = v, from which it follows that = is of finite index.

Let us assume that <r(w) =LG(V) and that uw^ ~ uw2, Then
a (wwj ~ e a (uw2) with a (wwj = a (w) w'u a (uw2) = a (w) w'2i wx = TT (W^), and
w2 = 7r(vt/2). It follows that w[ ~ôv/2- Since a(w)wi and a(w)w2 are both
in L, and since a(w) =La(i;)? a(î;)wi and u(v)w2 are also both in L. More-
over, a (v) w[ ~ e a (f) w2. Thus, VTVJ = n (a (u) wi) ̂  7t (a (v) w'2) = vw2i and the
resuit is proved. D

Let us give an example of CCI set which is not regular.

Example 6.1: Let us consider the alphabets A = {a, b, a', b\ c) and
B= {a, b, c], the mapping TC : A -> B defmed by

n(x) =
a if x = a'
b if JC = 6'

x otherwise.

Let us define the commutation relation Q={(a, b}} over ^4*. Let D
be the Dyck language over {a, b}* and D its complement, z. e.,
D={ue{a, b}* | |w|a = |w|fe} and 5={ue{a, ô}* | | w|a ̂  \u\b}. Let L be equal
to the set of préfixes of

UJDc)*uc{a'9b'9c}*.
ueD
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It is easy to see that L is closed under prefix and closed under ~0 . Moreover,
n(L) = B* and n is a bijection between n(L) and B*. Hence, the language L
defines a CCI set over B.

The ^-équivalence class of 8, with respect to this CCI set, is (Z)c)*. This
set is not recognizable; hence, = cannot be of finite index. D

Now we shall prove that every regular CCI set is r-projective. We shall
proceed as in Section 4, by constructing a sequential mapping a which will
be regular. In order to define a, we need to associate with every word u and
every letter a some information ranging over a finite domain, which will play
the rôle of Tu (a) in the construction of a in section 4. The définition of this
information involves techniques used by Zielonka in his proof, but some of
the notions introduced by Zielonka [18] and also by Cori and Métivier [2]
have to be adapted to the case of CCI sets.

From now on, let P be a CCI set of P-traces such that the semi-congruence
= is of finite index.

6.1. The syntactic congruence of P

Firstly, we define another équivalence relation over words, related to a
CCI set P, which can be considered as the syntactic congruence of P. The
congruence cîass of a word u will play the same rôle as does the set of letters
occurring in u in Zielonka's proof. Given a CCI set of P-traces over A
characterized by the équivalence ~ , and the associated right semi-congruence
defïned above, we define the following équivalence relation « over A*.

DÉFINITION 6.2: Given two words u and v of A*9 u » v if and only if

1. alph (M) = alph (v);

2. V w, wu = wv,

3. Vw, w', w" such that alph (w") D alph(ww') = 0 , wuw'w" ~ ww" uw' if
and only if wvw' w" ~ ww" vw'. D

PROPOSITION 6.3: The équivalence « is a congruence. If = is of finite index,
so is œ.

Proof: The fact that w is a congruence is an immédiate conséquence of its
définition.

The équivalence defined by the point 1 of the définition of » is obviously
of finite index. The équivalence defined by the point 2 is also of finite index
when = is of finite index. Thus we consider only the point 3 of the définition.
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Let us set, for two words w and u,

K (w, u) = {< w\ w" > | alph (w") H alph (uw') = 0, wuw' w" ~ ww" uw'}.

Then the point 3 of the définition of & is equivalent to

Vw, K(w, u) = K(w,v)

and thus we need to prove that K(w, u) can take only a fini te number of
différent values when w and u range over A*. Firstly, it follows from the
définition of K that w = w'=>K(w, u) = K(w\ u) and since = is of fïnite
index, it remains to show that, for a fixed w, K(w, u) takes a fini te number
of values when u ranges over A*.

Let us also define G(w, w)={w' | <e, w'}eK(w, u)} = {w' \ wuw' ~ ww'u).
We prove that every set K(w, u) is the intersection of a finite number of sets
of the form K(w3 ut) or A* x G(w, ut) where the words u{ have their length
bounded by some integer TV we are going to define. Since the number of
words of length less than N is fmite, K(w, u) can take only a finite number
of values.

In all the sequel, w will be a fixed word. Since = is of finite index, there
exists an integer N such that any word u of length greater than TV can be
written u = u1u2 u3 with u2 # s, M3 7

e £, and wu1 = wux u2.

If u has this form we will prove that

K(w, u1u2u3) = K(w, w1w3)n-4*xG!(w, uxu2) (13)

from which we deduce

G (w, ux u2 w3) = G (w, u1 M3) H G (w, ux u2) (14)

and we get the previously claimed property.

Proof of 13: If <w', w'r}eK(w, u1u2u3)9 then

wux u2 u3 w' w" ~ ww" ux u2 u3 w' (15)

with alph (w") H alph (u1 u2 u3 w') = 0. By Lemma 3.2 we get

wu1 u2 w" ~ ww" u1 u2, (16)

that is to say? w"eG(w, ux u2). From 16, we also get

wux u2 w" u3 w' ~ ww" ux u2 u3 w' ~ wux u2 u3 w' w"
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and, since wux = wux w2s this implies

wux w" u3 w' ~ wux u3 w' w". (17)

Applying again Lemma 3.2 to 16, we get

wu1w
ff ~ ww" ux

and 17 becomes

ww" ux u3 w' ~ wux u3 w' w",

that is to say, ( w', w" }eK(w, ux u3).

Conversely, let us assume that < w', w" ) e K(w, u1 u3) and w" G G (w, ux u2);
we get

wux u3 w' w" ~ ww" ux u3 w' (18)

wux u2 w" ~ ww" ux u2- (19)

From 18, by Lemma 3.2, we get

wux w" ~ ww" ux

hence, from 18

wux u3 w' w" ~ wux w" u3 w'.

Since wux = wux u2, this is equivalent to

wux u2 u3 w' w" ~ wux u2 w" u3 w'

and, using 19, we get

wux u2 u3 w' w" ~ ww" ux u2 u3 w'

which means that < w\ w" }eK(w, ux u2 u3).

Proof of 14: By définition, w' e G (w, ux u2 u3) if and only if
<£, w' }eK(w, ux u2u3) = K(w, ux u3) C\A* x G(w, ux u2) (because of 13), if
and only if w' e G (w, ux u3) and w' e G (w, ux u2). D

In the sequel, we dénote by M the quotient monoid A*/&, and by w/«
the congruence class of u, but in some cases, when the context makes it
unambiguous, we will write u instead of M / « .
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6.2. Some useful notions

Hère we extend to the case of a regular CCI set of P-traces some notions
introduced by Cori and Métivier [2] and Zielonka [18] in the case of a
partially commutative monoid.

From now on we assume that a regular CCI set P is given.

DÉFINITION 6.3: Let / be a P-trace and w be a word. A w-factorization of /
is a pair < /', v > such that

• t=t'.v and alph(v) n alph(w) = 0 ;

• t' .vw= t'. wv. •

Let us remark that, if w & w' then, for every linear extension u of t',
uvw ~ uwv if and only if uvw' ~ uw' v; hence, t'. v w = t'. wv if and only if
t'. vw' = t'. w' v; thus a w-factorization of t is also a w'-factorization of t.
Since this notion is independent of the choice of a représentative in a
congruence class m of M, we can as well define an m-factorization of t. And,
by abuse of notation, we shall also write t' .mv = t'. vm, the second condition
of this définition.

LEMMA 6.4: If(t', v} is an m-factorization of t, and ift=t'. v', then ( t\ v' )
is also an m-factorization of t.

Proof: We have t=t',v=t\v\ t'.vm = t'.mv, and alph(x>) = alph(z/). We
have to prove t'.v'm = t'.rnv'. If it is not the case they have disjoint sets of
linear extensions. Let w be a linear extension of t' and w an element of m.
Then uwv' is a linear extension of t'. mv'. Let us assume that it is not a linear
extension of t" — t' ,v' m = t''. vm = t'. mv. Then there exist x ^ y such that
x^t»y and j ; ^ u m , , x. We cannot have x and y both in 2iuw or both in
EUv = Euv" Hence, ysEuw-Eu and xeEuv,-Eu = Euv-Eu. But, in this case,
ƒ ^ u m ; x and, since uwv is a linear extension of /", we cannot have x rgf~ y, a
contradiction. D

LEMMA 6.5: If { tu vx ) #/?<i {/2>
 vi} are iwo rn-factorizations of t, then

there exists a word v such that (Ltlrrt29 v} is also an m-factorization of t.

Proof: Let t' = t1rr t2 and t" = tx U t2. By Lemma 3.4, tx = f'. wl5 /2 — ^ • w2ï

t"f~tf ,w1w2 — f\w2w1 and alph(w1) D alph(w2) = 0 . And, since f'\Zt,

there exists u such that t = t" .v. By Lemma 6.4, (tu w2v} and ( t2, w t v )
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are two m-factorizations of /. Let u be a linear extension of /'. We get

uwx w2 ~ uw2 wx

uw1 w2 vm ~ uwx mw2 v

uw2 wx vm ~ uw2 mw1 v.

Hence, by P2,

uw1 mw2 ~ uw2 mwx.

By applying Lemma 3.2, we get

uwx m ~ umw1

uw2 m ~ umw2

and, thus,

uwy w2 vm ~ uw2 wx vm ~ umwx w2 v ~ umw2 wx v. D

Due to this lemma we can defme the "least" m-factorization of t.

DÉFINITION 6.4: If m is an element of M, and if t is a P-trace, we dénote
by dm(t) the least prefix t' of t such that there exists v such that < t\ v > is an
m-factorization of t. D

In particular, if a is a letter, 8a(t) is the prefix f of t having as domain
Er={xeEt | x S t .a

 z}> where z is the last occurence of a in t. a.

The following properties will be very useful later on.

PROPOSITION 6.6: Let m, ne M and lei t be a P-trace such that t. mn = t. nm.
Thendm(t.n) = dm{t).

For me M, a e A, and teP, we have

ô (t d\ = [dm® ^ t-am=t-ma

1 dam(t).a otherwise.

Proof: Let us assume that t.mn=t.nm. If ( t\ v > is an m-facto-
rization of t9 then t—t.v and f,vm=t'.mv. Hence, t.n=t'.vn and
/ ' . vnm = t'. vmn = t'. mvn,

Thus, ( f, vn ) is an m-factorization of t.n. It follows

dm(t.n)Çdm(t).
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L e t tx = dm(t.n) a n d t2 = ôm(t). T h e r e e x i s t iv, v, a n d v', s u c h t h a t t2 = tx. w,

< *1? Ü ) is an m-factorization of ?. w, and < t2, v ) is an m-factorization of t.
Then, f=r1 .wv', t.n = tx.wv'n, and, by Lemma 6.4, ^ .mwvn = tx. wv nm.
But t.mn—t.nm and £ = ^ . W implies ^ . wvmn=tx. wv'nm. It follows, by
P2, that fx. m W — ̂  wt/ m; hence, <( rl5 wv' ) is an m-factorization of tx. wv' = ?
and ^ D ^

As a corollary, if t.am=t.ma, then dm(t.a) = dm(t). Let us consider
the case where £. am # ?. ma. Let ( f ' , ü ) be an am-factorization of £. We
have t=t'.v and t' .amv = t'.vam. By Lemma 3.2, t',av = t'.va. Hence,
/ ' . ûmt; = t'.az;m, and ( / ' . Û 5 Î ; ) is a m-factorization of t',av = t'.va = t.a.
Thus,

Now, let us prove that, if < *', v ) is an m-factorization of t. a, then *' = t" .a
and a^alph(ï;).

Let us assume that aealph(t;), that is to say, v = vxav2 with a^alph(x;2).
Thus, t.a=t'.v1 av2, and, by Lemma 3.2, t=f.v1 v2, which implies
t. a = t'. vx v2 ci. By Lemma 6.4, t'. vx v2 am = t'. mvx v2 a, thus, by Lemma 3.2,
f. vx v2 m = t'. mvx v2, and then, t. am = t'.vx v2 am ~t'.vx v2 ma = t. ma, a con-
tradiction. Let u be a linear extension of t'. Then u' v is a linear extension of
t.a=t'.v; hence u' = u\ au'2 with a $ alph (u2 v). But, if u is a linear extension
of t, ua is a linear extension of t.a, thus, ua ~ ŵ  aw^, and, by Lemma 3.2,
ux auf

2 ~ u" a. Hence, u" a is a linear extension of t' which can, thus, be
written as t". a.

Now, let < ? " . Û , v} be an m-factorization of t.a. We have t".av^t.a
with a<£alph(V), and, by Lemma 3.2, t".v = t, hence, t".va=t.a=it" .av.
Moreover, t". amv = t". avm. Hence, t". vam = t". avm = t". amv, and ( t", v )
is an am-factorization of t" . v= t.

Hence,

dam(t)çdm(t.a). a

PROPOSITION 6.7: Let t be a P-trace and t' be a prefix of t. Let t0 ^t'rrdb (t)
with t' = tQ.u and ôb(t) = to.v. Then t0 = ôvb(f).

Proof: Let us set tx = dvb(t') and let us prove that to = t1. By Lemma 3.4,
to.uv = to.vu. Since t' and ôb(t) are both préfixes of t, their union is also a
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prefix of t. Thus, there exists w' such that t=to.uvw'. By définition of
to.v=db(t), we have

t0. vuw' b=t0. vbuw' (20)

hence, by Lemma 3.2,

t0. uvb = t0 . vub = t0. vbu.

It follows, from this last equality, that t1 \Z t0. Thus , to — t1.w. Hence,

t' — t1. wu9 and equality 20 becomes

t1. wvuw' b = t1. wvbuw''. (21)

By définition of tu

t1. wvub = tr. wuvb = t1. vbwu

and then

tx. wvubw' = tx. vbwuw'. (22)

Applying Lemma 3.2 to equality 21, it becomes

tx. wvub = t1 .wvbu

and, thus,

tx. wvubw' = tx. wvbuw'. (23)

From equalities 21, 23, and 22, we get

tx. wvuw' b — tx. vbwuw' (24)

and, applying Lemma 3.2 twice,

tx. wvu— tx .vwu.

Thus, equality 24 becomes

tx. vwuw'b=tx. vbwuw'.

Hence, (tx.v, wuw' ) is a Z>-factorization of t, and tx.wv\Ztx. v. This implies

W~E, and thus, to = tx. D

Now, we extend the définition of d to subsets of M.
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DÉFINITION 6.5: Let L be a subset of M. For a P-trace t, we define dL(0
as the least prefix f of t=t' .v such that, for all m e L, (t\ v} is an m-
factorization of t. •

We have the following property.

LEMMA6.8: dL u L, (t) = dL (t) U dv (t).

Proof: Obviously, dL(t)U dL*(t)\ZdLuL.L'(t). Conversely, let ^ = 9L(09

2, t4p = t1Ut2. By Lemma 3.4, t1 = t3.vu t2 = t3.v2,
t^t^. vx v2 = tz. v2 vl9 and alph (vx) O alph (v2) = 0. Now, dL u L, (f) = tA. w and
^ = dL u L' (0 • v = ?4 •w v - Since ?x = 3L (0, we have

B y L e m m a 3.2 , a n d , s ince t3 •v1v2 = t3. v2 vu w e get

VmeL, t3.v1v2m— t3.v1mv2

hence,

VmeL, /3.z)1

For similar reasons

V m e L ' , £3 .Vj v2wvm = t3 ,v1 v2 mwv.

It follows that

V 'meL\J L\ t4_.

uL,{t)\Zu = dL(t)VJdL,{ty D

Now, we are going to define the numbering of the occurrences of a P-
trace, which plays a major role in Zielonka's proof. Here too, this numbering
is the key tooi of our proofs.

DÉFINITION 6.6: For a P-trace / and a letter a, ya (t) is the last occurrence
of a in t if a e alph (t); otherwise, it is undefined. D

Here are some properties of ya.

LEMMA 6.9: Ift\Zt' and ya (f) e Et, then ya (t) = ya (f).

For all me M and for any letter a, ya (dam (f). a) = ya (t. à).
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Proof: The first point of the lemma is an immédiate conséquence of the
définition.

From the définition of dam(t), we get t = dam(t).v with

dam(t).amv=dam(t).vam.

Thus v does not contain the letter a, and the number of a's in dam(t) and in
t are equal. D

DÉFINITION 6.7: For each teP, and for each linear extension u of t, we
define the mapping v" : Et -• {1, . . ., N+ 1} (remember that N is the cardinal
of M), by induction on the length of u.

• If fis the empty P-trace, and u the empty word, v" is the empty mapping.

• Let u = u'a, /' = cp(«')> s o that t=t'.a9 and let us assume that v"' is
already defined. Let xeEt; then v"(x) is defined as follows:

- if x$Er, Le., x = ya(t), let us consider the set {v"'(ya(dm(da(Y))) \meM
and ya (dm (da (t

r))) defined}; the cardinality of this set is obviously less than
or equal to N and v"(x) is the least element of {1, . . ., N+ 1} not belonging
to this set. D

Indeed, the mapping v" does not depend on the choice of u, as shown by
the following lemma, thus we shall dénote simply by vf the mapping previously
defined.

LEMMA 6.10: If u and v are two linear extensions of t, then v" = vj\

Proof: This result is proved by induction on the length of u.

If u is empty, there is nothing to prove.

If u — u'a and v = v a, then t' = cp(u) = cp(v), and, by induction hypothesis,
v"' = v£'; it follows immediately from the définition of v" that v"== vj\

If u^u'a and v = v'b, with a^b, then u ~ wb and v ~ wa. Let
f = (p(«) = <p(u); let xa = ya(t), xb = yb(t). Let xeEr If xeEw, Le. x / xa and
x / xb, v" (x) = Vy{ul (x) and vt

ü (x) = vv
9{vl (x). By induction hypothesis;

v£(„') W = v;(w) = v;'(yf)(x), hence, v?(x) = vj'(x). Now, v^(xj is the least ele-
ment not in {v£(tO (ya(dm(da(cp(w'))))) | ^ e M } . But w' ~ ivè with wab ~ wba,
thus 9 (u') = cp (w). b, cp (w). ötZ? = cp (w). Z?a, and, by Proposition 6.6,
3fl(<p(«')) = 3a(q>(w)). Since, for every x e £ w , < ( l l^ W = v; (w) (x), v?(xj is the
least element not in {v*(w)(yfl(3m(3fl((p(w))))) | m e M } . On the other hand,
by définition, v"(xa) = Vy(vl(xa), which is equal, by induction hypothesis, to
v£(Wö) ( x j , which is, by définition, the least element not in
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; }. Hence, v?(xfl) = v?(xfl). By similar reason-
ing, v" (xb) — vv

t (xb), which complètes the proof. D

The following property is an immédiate conséquence of the définition of vt.

PROPOSITION 6.11: If t\Zt' and if xeEt, then vf(x) = v r(x).

Now, we deflne the équivalence relation = x over P.

DÉFINITION 6.8: Let t and t' be two P-traces in P. We say that t = x t' if

(i) / = t\

(ii)

(iii)

(iv) VaeA, Vm, „ e M , vt(Ya(Ôm(dH(t)))) = vr(yf l(3B(3,(0)))- •

DÉFINITION 6.9: By analogy with the case of words, we say that an équiva-
lence relation R over a set of P-traces is a right semi-congruence if
tRt' =>t.aRt' .a, for any letter a, D

PROPOSITION 6.12: The équivalence relation =x is a right semi-congruence
offinite index,

Proof: Since ~ is of finite index, and since M is fînite and vt has a finite
domain, = x is of fînite index.

Let us assume that t = x t' and iet us show that t.a=1t'.a.

1. Since t=t'9t.a= f .a.

2. Since t = tf, t.am = t.ma if and only if t'.am=f .ma. Hence, by
Proposition 6.6, either

dm(t.a) = dm(t) and dm(f.a) = dm(f)

or

dm (t.a) = dam ( 0 . a and ôm {t'. a) = 8am (t'). a.

Since dn{t) = dn(t') for ail ne M, in both cases, öm(f .a) = flm(f' .a).

3. If 6 # a, then y6(r.Û) = y6(/); thus, vt.fl(y6(/.fl)) = v t.a(y6(0) = vf (yft(0),
and, similarly, v r .fl (y6 (/'. a)) = vf (yb (ï')).

Now, if b = a, vt a (ya (t.a)) is equal, by définition, to the least element not
in the set {vt(ya(dm(da(t)))) | w e M } . Since t=lt', by (iv), this set is equal

and vf.fl(yfl(/.û)) = vr.a(yf l(f .a)).
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4. Since t =1f, t.an=t.na if and only if t'.an = tf.na. Hence, either

Ôn(t.a) = dn(t) and Ôn {t'. a) = Ôn (/')

or

3„ (t.a) = Ôan (t). a and Ôn (f. a) = Ôan (f). a.

In the fîrst case, we get, for any b, possibly equal to a,

v... (Y» (3m (3B (f • a)))) = v,.. (Jb (dm (dn (t)))) = v, (yb (3m (0„ (O)))

= v, (Y6 (5m (dn (f)))) = v,. .„ (Y» (am (dn (f)))) = vt.,a (yb (dm (dn (t'. a)))),

and the resuit is obtained. In the second case,

v,.a (Y6 (dm (dn (t. Û)))) = v,fl (y, (3m (aan (/). a)))

and

v , . . (Y* (dm (dm (f. a)))) = v,,,a(jb (dm (dan (f). a))).

Since, by (ii), dan(i) = dan(t
r), we have either

dm(dm(t).a) = dm(d„(t)) and dm{dm{f).a) = dm{Ôm{f))

and, in this case, we get the resuit, because of (iv), or

dm (dan (t). a) = Ôam (Ôan (0) - a and dm (Ôan (f). a) = Ôam (ôan (f)). a.

In this case, if b ^ a, then y, (3flm (3aB (0) - a) e Et and yb(dam(dan(t')).a)eEt,,
and the resuit follows, by (iv). If b = a, then, by Lemma 6.9
Y« (5«m (ôan (0) - *) = Y« 0 • «) and ya (dam (Ôan (/')). a) = Y« (^ • <*\ and the resuit has
been already proved in point 3 above. D

Now, we can prove an important resuit of this section.

PROPOSITION 6.13: Let t and t' be such that

db{t)=xdh{t'.a).

Then t'.ab=t'.ba.

Proof: Let us assume that t' ,ab # t' .ba.

By Proposition 6.6,

ôb(t'.a) = dab(t').a.
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Thus, by Proposition 6.9,

ya (Ôb (f. a)) = ya (dab ( 0 .a) = ya (f. a) = y. (da (f). a). (25)

The second hypothesis of this proposition implies, by définition of = u

VÔ6 (O il a Vf, (*))) = Vdb (f . a) (y a Vb {f . «)))

and, from equality 25,

vôb w (7« (3b (0)) = v0& (r.a) (ja (ôa (O. a)) = vôft (r.fl) (ya (f. a)).

Thus, using Proposition 6.9,

vt (y. (db (0)) = vt. .„ (y. (3. (O. a)) = v,... (yfl (ï'. a)). (26)

Since = . is a right semi-congruence, the first hypothesis of the proposition
:- ^ies a(^.a=1da(t').ay hence, by définition of = l 5 and using

~ position 6.9,

vt..(y.(ô.(0.fl)) = v^a(y.(Ôa(O.a)) = v<.<l(Y(l(r.fl)) = vf..<l(y.(/'.fl)). (27)

From equalities 26 and 27, we get

vt(T.(a6(0)) = vt..(yaa.fl)). (28)

Now, let /0 = 5a (0 TT db (t); thus,

3a(0 =to.u, db(0 = t0.vy and / = f0.uvw = t0.vuw.

By définition of da (t), we have t0. uvwa = t0. uavw. Thus, a ̂  alph (v). It follows
that ya(t0.v)eEtQ9 and, by Proposition 6.9, Ya(36(0) = Yfl0o-'") = Yi,('o). BY
Proposition 6.7, f0 = dvb (da (t)), and equality 28 becomes

which is in contradiction with the définition of vt a. D

6.3. The construction of a

The construction of the sequential mapping a proceeds exactly as in
section 4.

Let G be the finite set of équivalence classes of A* for the semi-congruence
= !. Let B be equal to A x G. Let us define a : A* -» ̂ * by

• a(e) = e,
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• a (na) = a (M) < a, rM(a)>,
where Tu(a) is the =1 -équivalence class of da(q>(u)). Let us remark that if
u ~ v, then (p (uw) = cp (vw), and Fuw (a) = Tvw (a).

Now, we define the commmutation relation 0 over B by <<(a, g a ) ,
< è, gfc )> e 0 if and only if a / b and there exists u such that ga = Fu (à) and
ft=r.(ô).

It is clear that the projection n : B* -* ̂ 4* is a bijection between a (̂ 4*) and
4̂* and that a (A*) is closed under prefix. In order to prove that o (A*) is

closed under ~ e and that u ~ v if and only if a(w) ^ea(z;), it is suffïcient,
for the same reasons as in the proof of Lemma 4.2, to prove the following
lemma.

LEMMA 6.14: Ifu~v then o(u) ~Q<J(V). If o(u) ~Qw then w=o(n(w))
and u ~ K (w).

Proof: Let us prove by induction on the length of u that
u ~ v => a (u) ~Q<J(V). If u is the empty word, this is obvious.

If u = u'a and v = v'a, then u' ~ v, ru.(fl) = IV(a) = g, and, by induction
hypothesis, a(w') ~ea(u')- Hence, O(U) = G(U) (a, g) ~Q<J(V') {a, g}.

If u = u a and v = v' b with a ̂  b, then there exists w such that w' ̂  w6,
v ~ wa and, by induction hypothesis, cr(w') ^e* 7 ^) ( ^ Fw(ft)) and
a("y') ^/eCT(M;) ( f l ' r w (a ) ) . Since wró ^ wèa, by Proposition 6,6, we get

6)) = 3fl(<p(w)) and 3b(q>(wa)) = 3b(cp(w)). Thus Twi) (a) = Tw (a) and
rw(6). Moreover, « a , rw(a)>, (b, Tw(b)))eQ3 thus, a (M) - 9 ( W )

(b,Tw(b))(a, rw(a)}~ea(w)(a, Tw(a)) (b, Tw(b)} ~eo(v).

To prove the second point of this proposition, we need only to prove, as
in Lemma 4.2, that if a (u) = w < a, ga > < b, gb >, with « a, ga >, < è, gb >> e 9,
(and thus a # 6), t n e n w ̂  TC(W)6<S and a(71 (w)ba) = w <Z>, gb} {a, ga}.
Indeed u~w' ab with w' — n (w). Thus, ga = Tw, (a), gb = Fw, fl (6). By définition
of0, we have ga = Tv(a) and gb = rv(b). Hence, 3a(cp(u)) = 1 da(9(w')) and
Sb(^(v))=1db(ç(w').a). Thus, by Proposition 6.13, <p(w').ab = <p(wf).ba;
hence, u= w' ab ~ w' ba. Finally a (w' ba) = a (w') ( b, Tw. (b) > < a, Fw, b (a) ) .
Since 71 (a (w')) — w' = TC (W), we have w = a (w'). Since w' &<z = w' ab, by
Proposition 6.6, da (<p (w' a)) = 5fl (q> (w'). a) - da (<p (w')); hence, Fw, fr (a) = gfl. D

Moreover, due to the following property, a is a regular sequential mapping
and therefore, a (A*) is a recognizable language. This language can be
recognized by an asynchronous automaton and we will exploit this fact in
the construction of a P-asynchronous automaton defining P.
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PROPOSITION 6.15: The équivalence relation = 2 defined by t =2 t' if and only
if

• t = t';

• For any meM,dm(t) = , Ôm(t')
is a right semi-congruence offinite index.

Proof: Since = and = 1 are of fïnite index, and since M is fînite, = 2 is of
fini te index.

We already know that = is a right semi-congruence. Thus, we have only
to prove t =2t

r ^MmeM, dm(t.a) =x ôm(t'.à) for any letter a. Since t = t\
t. am ~ t. ma if and only if t' ,am ~ t'. ma. Thus, by Proposition 6.6, either
dm(t.a) = dm(t) and dm(t'.a) = dm(f), in which case the resuit is true, since
dm(t) = ! 3m(O, or dm(t.d) = dam(i).a and dm{t'.à) = dam(t').a, in which case
the resuit is true too, since dam (î) = t ôam (f) and since = x is a right semi-
congruence. D

As a conclusion of this section we can state the following resuit.

THEOREM 6.16: A CCI set P of P-traces is regular if and only if it is
r-projective.

Proof: We have just shown that a regular set is r-projective. The other
implication was proved in Proposition 6.2. D

7. A CHARACTERIZATION OF A-REGULAR CCI SETS

An a-regular CCI set is r-projective, and thus, by Proposition 6.2, it is
also regular. We show that an a-regular CCI set also has the property Q
defined below.

(Q) For ail words u and v, and for all letters a and b, if there exist two
words w and w' such that

uvwa ~ uwav and uvw' b ~ uw' bv

then, for ail words w such that uvw ~ uwv, we have

uwab ~ uwba if and only if uvwab ~ uvwba. D

It is left as an exercise for the reader to prove that the property M defined
in section 4 is stronger than this property g.

PROPOSITION 7.1: Every a-regular CCI set has the property Q.
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Proof: Let se be a P-asynchronous automaton such that P = P(sé).
Let us establish a preliminary property. Let q, q', and q" be the states

reached by se after reading w, uv, and ww, with m>w ~ wwt>. Let / and F' be
the sets of components that se accesses when reading v and w from state q,
and let ƒ and J" be their compléments. Thus, F ni" — 0 , and
£r " q'j'i Qj" = Qj"- Therefore F and 7" are also the sets of components accessed
by se when reading v from state #" and w from state #'.

Let u, v, wu and w2 be such that uvwx a ~ uwx av and uvw2 b ~ uw2 bv.
Let q and q' be the states reached by se after reading u and wt;. Let us

dénote by / the set of indices of the components that se accesses when it
reads v starting in state q, and by / its complement, so that qj = q'j. Since
uvwx a ~ uwx av, a is not in L For similar reasons, b is not in L

Let s and s be the states reached by se after reading uw and uvw. Let us
assume that uvw ~ uwv. By the previous remark, I is also the set of com-
ponents accessed by se reading v from state s and Sj = s'j.

Since a and b are both in / , we have, in particular, sa = s'a and sb = sr
b.

Thus, uvab ~ uvba if and only if Da (sa) H 7)b (jd) = 0 if and only if
A» (O H ^& (4) ~ 0 if and only if uvwab ~ uvwba. D

Now we can state the following conjecture.

CONJECTURE: A CCI ^ w a-regular if and only if it is a regular set having
the property Q.

The reason why the property Q could allow us to prove that a regular set
is also a-regular is the following. Since any regular set is r-projective, there
exists a recognizable subset of some partially commutative monoid, closed
under prefix, such that, roughly speaking, P=n(L). Therefore, we can con-
struct an asynchronous automaton â$ recognizing L, and we have to
transform this automaton into a P-asynchronous automaton se recognizing
n (L), In order to do that, we have to guess, when se has read some word u
and when a letter a has to be read, which is the letter d such that
a(ua)~a(u)af. The problem is that this guess has to be made only from
partial information about the word u, namely the prefix of u which has
modified the component indexed by a of the state of the automaton sé. In
some sense, the property Q amounts to saying that this a' is indeed not
dependent on the whole word u but only on some of its préfixes.

As an example, let us consider the case where P satisfies the stronger
property M, and let us consider the construction given in section 4 to prove
that a CCI set which satisfies M is projective. We have to guess Tu(a) for
some word u. But it is easy to show that property M implies that
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^u(a)~^ea(u)(a)' Therefore, we can transform an asynchronous automaton
recognizing o (A*) into a P-asynchronous automaton by simply adding as
component indexed by a, for any letter a, the congruence class, for =, of
da (u). If b commutes with a in w, which can be decided knowing the congru-
ence class of da(u), the «-component of the state of the P-asynchronous
automaton is not modifïed, since in this case da(u) = da(ub). If b does not
commute with a, it is possible to retrieve the new value of the congruence
class of da(ub) from the part of the state of the asynchronous automaton
which has been modifïed in executing the transition associated with the b'
corresponding to this b.
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