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CHOOSE AUXILIARY POINTS (%)

by Ulrich Huckenseck (')

Communicated by J. BERSTEL

Abstract. — In this article we present and investigate abstract geometrical automata which can
simulate the use of compass and ruler; moreover they have the following capability: If a point Q is
given they can nondeterministically choose some (auxiliary) point Q' € f(Q) where f is an element
of a fixed set F of functions; this machine will be called by #-GCM .

We shall mainly compare the powers of these machines: For a “large” class of pairs (F,F")
we shall show that the concept of the #-GCM, and that of the F'-CGM, have the same
capabilities. On the other hand we shall prove some general results about the different power of
F-GCM,'’s and F'-GCM,’s; these results are obtained by topological and fixed point theoretical
means.

Résumé. — Dans cet article, nous présentons et étudions des automates abstraits géométriques
qui peuvent imiter I'emploi du compas et de la régle; en outre, ces machines ont la capacité
suivante : Si un point Q est donné, ils peuvent faire un choix non-déterministe d’un point (auxiliaire)
Q' ef(Q), ou f est un élément d’'un ensemble fixe F de fonctions.

Avant tout, nous voulons comparer les capacités de ces machines: Pour une grande classe de
paires (¥, F") nous démontrons que les modéles F-GCM, et F'-GCM, sont équivalents. D’autre
part, nous prouvons quelques théorémes généraux qui affirment que les capacités de certaines F -
GCM,’s et F'-GCM,’s sont différentes; a cet effet, nous appliquons des méthodes topologiques et
la théorie des points fixes.

INTRODUCTION

One of the fundamental problems of Computational Geometry is the
design of appropriate abstract geometric autamata. The most well-known of
them is the modified RAM described in [6], p.28. This machine can apply
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472 U. HUCKENBECK

+, —, *, / and comparisons to reals. But all of these operations are arithmetic;
therefore they are not very adequate to geometric problems.

This shortcoming is avoided e. g. in [7], p. 260 where P. Schreiber presents
his geometric Turing machine; this automaton can modify tiles with small
drawings in them; it is clear that this is a geometric operation. In opposite
to this, the works [2], [3] and [4] do not deal with Turing machines but with
geometrical register machines whose primitives correspond to the use of the
most important drawing tools: compass and ruler; in particular, the thesis
[2] was influenced by the overview given in [8}, p.232-233.

In this paper we want to extend these register machines: in addition to the
normal operations with compass and ruler, our machines can nondeterministi-
cally choose auxiliary points within particular sets of points; e. g. the machine
in Example 1.4 will be able to take a point Q" on the x-axis which is unequal
to a given point Q. Obviously this kind of operations enable our automata
to simulate the behaviour of a human drawer very realistically.

Consequently our investigations are not only relevant for Computational
Geometry; they are also very interesting for Euclidian Geometry, and in the
proofs to our last three theorems there even occur some surprising aspects
of topology and of fixed point theory.

The structure of this paper is the following: In Chapter 1, we present the
automaton ‘GCM,,’ and its extended version ‘#-GCM,’; we investigate some
basic properties of them. In Chapter 2, we shall compare the powers of our
machines. We first shall see that a large class of GCM,-extensions are
equivalent; in the last part of Chapter 2, however, we prove some general
theorems about different powers of different GCM-extensions. By the way,
a similar result can be found in the last part of [5].

Let us finish our introduction with the definition of some basic terms:

For every set A, the set I1(A4) contains all subsets of A which are not
empty.

For every  relation RcAxB and aed we define
R{a):={beB|(a,b)e R}. Moreover the domain of definition is given as
follows: def(R):={acA|R{a)+ T }.

Let P be the Euclidian plane, G the set of the straight lines and K the set of
the circular lines in P. G, is the x-axis and G, is the y-axis of the cartesian
coordinate system.

Let Q,, Q,, O P; then Q,, Q, is the (closed) line segment between Q, and
0,; in the degenerate case of Q, = Q,, this line segment collapses to the point
0,. If Q,#Q,, we additionally define (Q,,Q,) as the straight line through
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ON GEOMETRIC AUTOMATA 473

0,,0, and (J; Q,, Q,) as the circular line centered in Q with radius=1length
of Qx’ QZ‘ X

For every r>0 we define B(0,r) as the open circular disk around (0|0)
with radius r; its closure is B(0,r), and S(0,r) is the corresponding circular
line.

A partial function F:P-— P is called rational integer (r.i.) if there exist
polynomials a, B, v, 8: R? - R with integer coefficients such that for every
Q= (x|y)edef (F) the following is true:

a(x,y)
F =
@ ( B(x,)

Y(x,) )
3 (x,y)

1. THE DEFINITION OF OUR GEOMETRICAL AUTOMATA AND THEIR BASIC
PROPERTIES

We begin this paragraph with the definition of the CGM,. This is an
abstract automaton which can simulate the use of compass and ruler. (The
subscript ‘0’ is to make it possible to modify this definition, i.e. to create a
GCM, or a GCM, etc. basing on other drawing tools. E.g. this is done
in {3], Def.2.2))

DerFmiTioN 1.1: (See [3], Def. 2.1, [4], Definitions 2.1, 2.2).

A Geometric Construction Machine of type 0 (GCM,) is an aucomaton with
the following properties:

The machine has three types of memory registers, namely

p0,pl, p2,... for points,

g0, g1, ¢g2,... for straight lines and

k0,k1,k2, ... for circles.

Note that we distinguish between the registers and their contents. Therefore
we denote the current contents of a register by the corresponding capital
letter with a subscript; e.g. P,, is the point stored in pl7, and the current
circle in k39 is K;q.

The GCM, has the following capabilities:

(1) intersecting two lines, e. g. pi: e ki’ M gi"’; (If these two lines have exactly
two points of intersection, then P; is chosen nondeterministically; this situa-
tion can arise if one of the lines is a circle.)

(2) finding the second of two points of intersection if one of them (=P))
is already given; i.e. picegi Nki'\{pi}; pirekiNgi\{pi};
pizeki’ NkiI™\{pj};

(3) creating the straight line with two given points on it, i.e. gi: = (pi, pi'’);
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474 U. HUCKENBECK

(4) generating the circle K;= (P, P;, P;.); this is effected by the instruction
kj:=(pi; pi', pi'"");

(5) copying registers (e.g. g 12: =g3,), output of data (e.g. write (k47),),
executing dummy statements (nop;).

The. program of such a CGM, is a finite sequence (@, . ..,) where the
statements @,, ...,¢,_, are according to (1)-(5); the last instruction o, is
‘end’.

Before executing its program, the registers are initialized such that all

important geometric objects of the cartesian coordinate system are available.
In particular,

p0,p3,p6, p9, ... are initialized with (0|0),

pl,p4,p7,pl0, ... are initialized with (1]0),

p2,p5 p8, pll, ... are initialized with (0]1),
g0, g2, g4, g8, ... are initialized with G,
gl,83,25,¢9, ... are initialized with G,,

kO, k1,k2, k3, ... are initialized with the unit circle around (0 | 0).

After this, the GCM, loads the input points P,, ..., P, into the registers
pl,...,pn resp.; the input straight lines G,,...,G, and the input circles
Ki,...,K,. are loaded into g1, ...,gn’, k1, ..., kn" resp. The remaining
registers keep the contents effected by the initialization.

Then the program of the GCM,, is executed. MW

Remark 1.2: From the definition of the GCM, the following problem
arises: How does the automaton behave if some instruction cannot be exe-
cuted correctly (e. g. finding the point of intersection of two disjoint circles)?
This problem is treated with the help of the three states N (=normal), E
(=error) and F(=final). During its work the GCMj is in the state N. If it
has to execute a “forbidden’ instruction, then it falls into the state E; the
state F, however, occurs if the machine arrives at the ‘end’-statement without
any incident.

A complete list of the forbidden instructions can be found in [3], Def.
2.1. 1

We next introduce that extension of the GCM,’s which is the main subject
of this paper:
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ON GEOMETRIC AUTOMATA 475

DermviTioN 1.3: (@) Let & be a set of functions f: P — II(P). Then an
F-GCM, is a GCM,, with the following additional type of instructions:

piref(p);  (wherefe ). *

This means that the machine nondeterministically chooses the (auxiliary)
point P; within the set f(P)) # .

(b) 1t should be mentioned that this definitions can easily be generalized
by considering sets & of functions f: U — IT (V) where U=P"x G" x K" and
V=P™x G™ x K™, These machines can choose a tuple v within f(u) < V;
this tuple v consists of m points, m’ lines and m’’ circles.

(¢) In this paper we only deal with those sets & which are defined in (a),
and we very often consider the case that # only has one element /. Then we
write f-GCM,, instead of {f}-GCM,. W

In reality, even the class of machines given in 1.3. (c) is too general for
us; therefore we shall concentrate ourselves on the following special case:
F={f}, and f: P >TI(P) has the very simple structure f(Q)=A\{Q};
this means that f helps to find a point Q' which lies in a fixed set 4 and is
different from the given point Q. Note that the additional condition Q#Q’
is very useful since it allows to construct the line (Q, Q") and circles (J; Q, Q")
without entering the ERROR-state E; ¢.g. the correctness of the second
program line in the next example is based on the fact that P; # P,.

Let us now consider this example of an #-GCM, M. It will make the
previous definitions more transparent; furthermore, the machine M will
simulate a human drawer very realistically:

Example 1.4: Letf:P > II1(P), 0+ Gx\{ Q }. Then we consider a machine
M which constructs the perpendicular projection of any point (x|y)=P,eP
onto G,, i.e., M outputs (x|0). The program of M is the following:

p2 :e f(p1);

. . N
g1 := (p1,p2); Y G \
k1 := (p2;p1,p2); A
p3 te k1 ng1 \ {p1} 5/ K?.
i= (p1;p1,p3);
k2 := (p1;p1,p3) G (ol% ‘ / 5 X
0 R 3 P,
N 5 K1 4+
{Note that Kz is large enough to
intersect Gx = Go twice.) P;

p4 e g0 n k2;
p5 e g0 n k2 \ {p4};

Figure 1a.
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476 U. HUCKENBECK

(The next step is. constructing

the mid-perpendicular of P, /FY \P
and PS')

k4 :
k5 :
pé

(p4;p4,p5); Kt} K'S
(pS;p4,p5); 0[31
k4 a Kk5;

p7 kd n k5 \ {p6};
g7 1= (7,06); ° . R R fu
p9 :€ g7 n go0;

write(p9); G;

end.

'l;mm:

Figure 15.

We now describe the outputs of a #-GCM,,. For this end we make the
following definition:

DerINITION 1.5: Let n, #', 0/, m, m’, m”eN and let U: =P"x G" x K"’
and V: =P"x G™ x K™'. Given the relation R < Ux V.

Then we say that a #-GCM, M constructs the relation R iff the following
conditions are satisfied:

(i) For every uedef(R) and every sequence of nondeterministic decisions,
the machine M arrives at the state F, this means that never a forbidden
operation occurs if u € def (R) is input.

(i) R{u) is exactly the set of those outputs which are effected by a
sequence of nondeterministic decisions.

After input of u, the machine M

This means that R={ (4, v)| cannot enter the state E, and v is a

possible output of M. |

Remark 1.6:

(@) Let R be a partial function, i.e. R: U—— V. Then condition (ii) of
Def. 1.5 means that R(u) has to be output for every possible sequence of
nondeterministic decisions; this definition is different from the usual ones
where only one of these sequences has to effect the desired output R (u). But
although this point of view is unusual in Automata Theory, it very often
occurs in Euclidean Geometry where the result of a construction must indeed
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ON GEOMETRIC AUTOMATA 477

be the same for every (nondeterministic) choice of auxiliary points. A typical
example is the machine in 1.4, which constructs the projection function
F:P - P, P;=(x]|y)— (x]|0). By the way, this point of view was also treated
in [9].

(b) The machine M in Remark 2.2(c) constructs a relation R which is not
a function; it is R={(Py, P3)| P,€S(0, D\{ P, }}.

A further example can be found in [4, Example 2.4] where a CGM,
constructs the relation {((P,P,), P;)| P, #P, and P, is the third point of
the equilateral triangle (P,, P,, P3) }.

At the end of this paragraph, we deal with a basic theorem about the
power of f~GCM,’s. We want to show that a particular class of f~GCM,’s is
able to construct every rational integer function F:P—— P. At the first sight,
this problem seems to be solvable easily even by a normal CGM,. But in
reality it is very difficult to avoid the error-state E; this means that not all
of these functions F are GCM -constructible (see the results (2.3.2) in [2]
and 4.4 in [4]); therefore it is necessary to extend the GCM, and to study
its constructions carefully:

TuEOREM 1.7: Let A< P such that there is a point Q, with rational
coordinates which is not situated in A. Let f:P - TI(P), 0> A\{Q}.

Then every rational integer function F:[P — P can be constructed with the
help of an f~GCM,,.

Proof: We do not want to prove this result in detail, but the reader will
be able to do so with the help of the given references.

We first observe that M can create the following points if P1=(x]y) is
input: Q,:=(0]0), the point Q, with Q, ¢ 4, Q,f(P,), Q5 := P, (see Fig. 2).
Then it is obvious that Q, #Q, #Q,=P,.

According to Theorem 3.2 in [4] the machine M can construct the line
PAR(Q, Q’, G), which is the parallel to the line G through the point Qe P
where the auxiliary point Q'e G\\{ Q } is given. Consequently, M can generate
parallels G and G’ to G, and G, resp. which pass Q,. (If @, =(0|0) then
nothing must be done, otherwise M constructs PAR(Q,,Q0,,G,) and
PAR(Q,, Q,, G,). After this the following operations are executed recursively
for i=1,2: LGV :=PAR(Q;,, 0, G?P) and G¢*V:=PAR(Q;,,, 2:;, GY).
These constructions yield the horizontal line G{» and the vertical line G,
and each of them passes Q;=P,.
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478 U. HUCKENBECK

Figure 2.

Hence the points (x|0)e G, N G'> and (0| y)e G, N G are available. Then
the results (2.3.11)—(2.3.14) in [2] and the theorems 3.5—3.7 in [4] imply
that F is indeed constructible with the help of a fGCM,,.

2. COMPARING THE POWER OF %-GCM,’S

2.1. Basic terms and simple examples

In this chapter we compare the power of #-GCM,’s with that of &'-
GCM,’s where & and &' are different. For this end we first precisely define
what it means that “% is as least as powerful as &' ”.

DerFINITION 2.1: Let # and &' be two sets of functions from P to IT(P);
let fes'.

Moreover, let M be an #-GCM,,.

(@) We say that M simulates f iff every input point P, € P effects an output
€f" (P,), and this is true for arbitrary nondeterministic decisions of M. (I.e. M
constructs a relation R < {( Py, Q)| P,eP and Qef(P,)} with def (R)=P. —
Consequently the nondeterministic choice of a point Qef’ (0) can be done
by M.)

(b) We say that & is at least as powerful as ' (F' < F) if every f € F’
can be simulated according to (a). (This means that for every f € %', the
statement ‘pief” (pj);’ can be replaced by instructions of #-GCM,’s).

(e) H wehave two functions. f; f"such-that {f}<{f } and {f"} <{f}, then
we say that fand f are equivalent (f~f). B
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ON GEOMETRIC AUTOMATA 479

Remark 2.2: (a). Let f(Q) < f (Q) for every Q. Then {f} is indeed at least
as powerful as {f" }, since the following {f/}-GCM, M simulates f™:

p2:ef(pl); write (p2); end.
(b) Part (a) of Definition 2.1 implies the following: If P, is input, then
the machine M simulating " can only output points Q € (P,). This trivial

observation will be very useful in the proofs by contradiction in the last part
of this article..

(c) The next two examples show that the following case can arise {¢f. Part
(@)} (YQeP) f(Q) is a proper subset of /' (Q), but {/"} is at least as powerful
as {f}. Our first example is f;: Q0—B(0,)\{Q}, f1:Q—~BO,D\{Q},

which can immediately be treated with the help of the next theorem. The
second example is f,: @S0, )\{Q} and f5:=f}. Then the following

/

/
/,
__4F
j g s

Figure 3.

[2-GCM, M simulates {f,} (Fig.3): As just mentioned, M can simulate f7;
thus it can obtain a point P,e B(0,1) which is unequal to the input point
P,. After this M draws the circle Ks:=(P,; P,, P,) and the line G5 :=(P,, P,).
The next steps are the constructions of PseKs M\ Gs\{P,} and the mid-
perpendicular G, of P, and P, which is also the perpendicular to G5 through
P,. Since P,eB(0,1), the intersection G5 S(0,1) consists of two points;
then M finishes its work by constructing one of these points
P,eGsNKy=GsMNS(0,1). Note now that P;#P, because otherwise
Py=P,eGs and P,=P,€eG, so that P, e G, N G5; but this would imply the
wrong equation P,=P,. Hence actually P;ef,(P,), i.e.,, M works
correctly. I
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480 U. HUCKENBECK

We now finish our basic considerations and deal with the first substancial
result of this paragraph:

2.2. A “large” equivalence class with respect to ‘~’

THeOREM 2.3: Let A,, A, < P be two bounded sets with nonempty open
kernels. Let f;:P —>TI(P), fi(Q):=4AN{Q} (i=1,2). Then f, and f, are
equivalent.

Proof: The assumption is symmetric with resepct to f; and f,. Therefore it
is sufficient to prove that {f; }<{f,}.

For this end we observe that there are closed circular disks D,, D, such
that D, € 4, and 4, < D,.

It is clear that we can find a bijective affine mapping 7:P — P with the
following properties:

(1) t(Dy) = Dy,

(2) v is rational, i.e. for every (x|y) we have
t(x|y)=(oax+By+y|lax+Py+y)  where o,B,7,0,B,7eQ.

Then the following is true:
(3) Also 171 is rational.

Obviously, T and 1™ ! are constructible with the help of f,-GCM,’s; this
follows from (2) and (3) and Theorem 1.7. So we can simulate f, by the
following f,-GCM, M (see Fig. 4): If P, is input then M first constructs
Q:=1"1(P,). After this M chooses a point Q' ef, (Q); then Q'€ 4, < D, and

:Z« T -;;
A [
Figure 4.
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ON GEOMETRIC AUTOMATA 481

Q' #Q=1"*(P,). Finally M constructs Q":=1(Q’). Then Q" € A, because of
(1), and Q" # P, because 7 is injective. This means that indeed Q" ef; (P,).

2.3. Some results saying that not {/"} <{f}

In this part of Chapter 2 we show that particular functions f* cannot be
simulated with the help of a f~GCM, M. For this end we shall replace the
machine M by a ‘specialization’; this is a machine M which can nondetermin-
istically choose among fewer objects than M. This shall enable us to control
the behaviour of A7 better than that of M. Thus we shall see that #7 does
not simulate f, and we shall conclude that nor does M.

Let us now begin with the definition of the term ‘specialization’:

DEerFINITION 2.4: Given the sets &% and % of functions from P to II(P).
Let M be an #-GCM, and let M be a #-GCM,. We assume that the
programs of M and A1 are the same up to the following exception:

Any statement ¢,="‘pi:eg, (pj);” occurring in M is replaced by ¢,=‘pi:e
g,(pj); in M, where g, € # and g,e % have the following property: (V Qe P)
2.(0) < g,(Q). (I.e., M takes its nondeterministic decisions within g, (Q)
instead of g,(Q); hence M can choose among “fewer’ points P; than M)

Then M is called a specialization of M. W

In the next Lemma we want to realize that specializations indeed have
something to do with the problem of simulation:

LEMMA 2.5: Let M be an #-GCM,, and M an F-GCM,. We assume that
M is a specialization of M. Then the following statements are true:

(@ If M constructs a relation R = P X P then there exists a relation R < R
such that def (R)=def (R) and R is constructed by M.

(b) If R is even a partial function, then R itself is constructed by M.

(¢) If M simulates a function f: P — I1(P) then also M does so.

Proof: Part (i) is proven as follows: According to Definition 1.5 we know
that M constructs the relation R:={(P,,Q)| After input of P,, M cannot
enter the state E, and Q can be output by # }. We now have to realize that
def (R)=def (R) and that R < R. But both statements immeditaly follow from
the fact that every nondeterministic decision of A7 can also be taken by M.

Part (ii) and Part (iii) are consequences of (i) and the Definitions 1.5 and
2.1. 1

With the help of this lemma we now prove our results about the impossibil-
ity to simulate a function f, by an f;-GCM,. The next two theorems deal
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482 U. HUCKENBECK

with the case that f; (Q)=4,\{ Q } where 4, is bounded and 4, is not. Note
that our results are according to the common sense: It is not possible to find
a point within the “small” bounded set A,\{Q} if only the “large”
unbounded set 4,\ {Q} is available.

The next Theorem 2.6 is a special case of 2.7. Both proofs are based on
the same ideas but that of 2.6 is simpler. Therefore, studying the special
case helps to understand the more general proof.

THEOREM 2. 6: Given the following functions f,, f,: P — II(P):
(VQeP) £1(Q):=G\{Q} and /,(Q): =B (0, D\{ 2}.

Then f, cannot be simulated by any f,-GCM, M

Proof: Otherwise we construct the following specialization A7 of M:
Let f;:P>II(P) be defined as Q=(x|y)—{(x*+1|0)}. Then f,(Q)
c x\{ Q}=/1(Q) for every QeP. Therefore we indeed obtain a special-
ization M of M if we replaced every instruction ‘pi:ef, (pj); by ‘pi:ef, (vj);.

Let us now study the behaviour of M. We can easily see that all of its
steps can be described with the help of continuous functions. In particular,
the nondeterministic operations of type (1) can be expressed with the help of
root functions, and the instructions of type (*) can only effect the computation
of the continuous function (u|v)— (1> +1|0).

Consequently, we can find a continuous nested root function F:P - P
such that the following is true: For every input P, A can output F(P,) if
taking appropriate nondeterministic decisions.

Note now that also M simulates f, because of Lemma 2.5.(c). Then
2.2.(b) implies that

(1) For every Qe P, F(Q) must be in £, (Q).

Let us now apply our main trick. From (1) it follows that F(Q)e B(0,1)
for every Q. Hence F(B(0,1)) < B(0,1). Since F is continuous, Brouwer’s
fixed point theorem yields a fixed point Q* of F. Consequently,

F(Q)=0*¢BO,D\{0*}=/(2".

This is a contradiction to (1). Hence an f,-GCM, M simulating f, cannot
exist. H
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We next treat the more general version of 2.6:

THEOREM 2.7: Let A, A, = P where A, is bounded and A, is not. Moreover,
for i=1,2 let f,: P - I1(P), QHAi\{Q}. Then f, cannot be simulated by
anyfl'GCMo M.

(Example: A;={(x|0)|xeN}, 4,=B(0,1).)

Proof: Obviously there exists a closed circular disk D, 2 4,. Let now M
be an f,-GCM,, simulating f,.

We now shall apply almost the same ideas as in the previous proof. We
shall create a particular specialization 47; if P, e D, is input, then A7 will be
able to output F(P,)e A, = D, where F is continuous. Finally we shall apply
Brouwer’s fixed point theorem.

Let us now start with the details of the proof. Let (@, . . . @,) be the program
of M; let 1<v,<...<v,<n be the indices of the type-(*)-instructions of
M.

We next create M. For this end we recursively modify the statements
®,,=Pi, €f1 (B)p):

Let us first treat p=1. We define UV < P as the set of those points
P; which can be generated as follows: An arbitrary P, € D, is input, and M
executes its first (v, — 1) steps. We next note that all previous nondeterministic
statements are of type (1); each of them only allows a decision between
two possibilities. Hence we can find finitely many nested root functions
F,,...,F;: D, - P such that for every input P, € D,, M can only create one
of the points P; =F(P,), ..., P; =F,(P,). Consequently,

(1) UV=F, (D,)U ... UF,(D,).

Since Fy, . . ., F, are continuous and D, is a compact set, we have

(2) UY is bounded.

Consequently there exists a point QWeA \UY. Then we define
fO:P STI(P) as

QH{ {oW}ifge U }
AN\[o}ifgg U™ '

Furthermore we replace @, by ‘pi, : e/ (pjy);.
Then it is obvious that for p’=1 the following statements are true:

(3) If P,eD, is input then the modified statement @y, is deterministic;
only Q% can be loaded into pi,.

4) f*(Q) = 1, (Q) for every Qe P. (This follows from Q®7e 4,\ U®".)
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We next have to modify ¢, (p>1). Let ¢,,,...,¢,,_, be already altered
with the help of the points Q"” and the functions f*" where p’=1,...,p—1;
we assume that for every p’ < p the facts (3) and (4) are true.

We now define U® = P analogically to U": Let P,eD, be an arbitrary
input of M and let A7 execute its first (v,— 1) steps; then U® is the set of all
points P; which can be generated in this way. It follows from (3) that the
operations of type (1) are the only nondeterministic ones which have an
influence on U®. This implies that

(5) U™ has the structure described in (1) so that U"” is bounded.

Consequently we can find Q®e 4,\ U®; thus we can define f® in the
same way as /1, and the facts (3), (4) are true for p’=p, too.

Now the modification of the statements @y, - - - O, is finished. We have
obtained a {f™,...,f®}-GCM, M which is indeed a specialization of M
because of (4).

According to Definition 2.1, M constructs a relation and must have an
output statement @,,= ‘write (pi);’. This statement was not modified and also
occurs in the program of M. We now again apply the argumentation basing
on (3). Thus we obtain finitely many nested root functions Gy, ...,G;:
D, —P such that for every input QeD, M can output the points
G (D), .. .,G(D).

Let us now consider G,. It follows from Lemma 2.5.(c) that also A
simulates f; then Remark 2.2.(b) implies that

(6) G,(Q) must be in £, (Q) for every Qe D,.

Consequently, G,(D,) < 4, € D, where G, is continuous. But then
Brouwer’s fixed point theorem yields a fixed point Q*eD,. Hence,
G, (") =0*¢ AN\{ 0%} =/,(Q*. This is a contradiction to (6). Therefore
an f,-GCM, simulating f, does not exist. W

In the next theorem we want to disprove the relation ‘{f,}<{f; }” in the
following case: (Y Q) £;(@)=4\{0Q }, where the open kernel of 4, is empty
and that of A4, is not. At the first sight this result is obvious: It is difficult to
find a point in a “thin” set A4, if only the “thick” set 4, is available. But in

reality we have to make additional assumptions; they are commented on in
Remark 2.9.

THEOREM 2.8: Given A,, A, < P such that the open kernel of A, is not
empty. Moreover we assume that A, is the disjoint union of countably many
closed line-segments. (I.e. there are a countable set L and points U,, V, such

that U, ViN\U;, Vi= for I#land A,=\) U,V,, It is possible that
leL
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U, V,={U,}={V,} for some L) Moreover, let f;:P - II(P), Q> AN{Q}
(i=1,2). Then f, cannot be simulated with the help of any f,-GCM, M.

(Example: We modify the example given immediately before the proof to
2.7: Let 4;:=B(0,1) and 4,:={(x|0)|xeN}. Then A4, indeed consists of
countably many (degenerate) closed line segments so that we can apply our
theorem. Consequently, { (x|0)|xeN}\{Q} is so “thin” that it cannot be
replaced by the “thick” set B(0, 1)\ { Q}, and vice versa, B(0, )\{Q} is so
“small” that it cannot be simulated by the “large” set {(x|0)|xeN}\{Q}.)

Proof: We start with the following definitions: For every /,I'e L let S, ;. be
the closed line segment between U, and V.. Let D,:= \U S, ;. Then D, is

Ll'eL
the union of countably many line segments, and D, is obviously connected.

Moreover, D, 2 A,=\J S, ;. We now assume again that there exists an
leL

f1-GCMy M simulating f,. Then we construct a particular specialization M.
1 0 g2

For this end we do almost the same as in the proof to Theorem 2.7. We
define the sets U®, the points Q® and the functions f® in the same way as
above. The only difficulty is the following: In the proof to Theorem 2.7, the
points Q®® were chosen within 4,\ U®; if we do the same here, we have to
show that also in the present situation 4,\ U® is not empty. This can be
seen as follows: We again apply the argumentation yielding (1) and (5) in
the proof to 2.7; thus we may conclude that

UP=F (D))U...UF,(Dy), )

where Fy, ..., F,:D, - P are nested root functions. Note now that D, is the
union of countably many line segments S, ;; then U® is the union of
countably many images F (S, ) (c=1,...,q, ,I'eL). Since every F_ is a
nested root function and every S, ; is a line segment, we may conclude that
the open kernel of F_(S, ;) is empty.

But then Baire’s category theorem says that the open kernel of the counta-
ble union U® must also be empty. Since 4, has a non-empty open kernel,
we can actually conclude the existence of a point Q®We 4, \ U®.

Now the construction of A7 is finished. In the same way as in the proof to
Theorem 2.7 we obtain continuous functions G, . . .,G;: D, - 4, such that
for every input P, e D,, M can output the points G, (P,), .. .,G;(P;). But
the line segments S;, of A, are pairwise disjoint, and D, is connected.
Consequently, there must be an /* such that G, (D,) € S. ..
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In particular, we have G, (S). ;) € S). ;.. But then the fixed point theorem
of Brouwer yields a Q*€S. . such that G, (Q*)=Q*¢f, (Q*); this means
that M does not in any case construct a point €f, (P,) if P,=Q* is input.
Then Remark 2.2. (b) and Lemma 2.5. (c¢) imply that M does not simulate
f>. This is a contradiction to the assumption that M does simulate f,. W

Remark 2.9: Obviously we can weaken the assumption about the structure
of A, as follows: A4, is the disjoint union countably many sets which are
homeomorphic to closed line segments. On the other hand, it is not possible
to drop this condition: Let 4, =B(0,1) and 4,=S5(0,1) or 4,=G,; in the
first case, f, can be simulated by the f,-GCM, described in Remark 2.2.
(c), and in the second case f, is simulated by an f;-GCM,, constructing the
functionQ=(x|y) » (x*+1]|0)eG\{Q}. W

CONCLUDING REMARKS

In this paper we presented and investigated the #-GCM,. This is a
geometrical register machine which can simulate the use of compass and ruler
and nondeterministically choose auxialiary points within particular regions.

Our investigations were on the power of these machines: Theorem 1.7 was
on the constructible functions. The result 2.3 dealt with a large class of
equivalent extensions of the GCM,,. In the Theorems 2.6—2.8 we presented
some general classes of pairs (f},f,) such that f, could not be simulated by
any f,-GCM,. These proofs were based on topological and fixed point
theoretical facts.

It is obvious that a lot of similar problems arises from the plenty of further
modifications of the GCM,’s. E. g., we can

— treat generalized #-GCM,’s according to Definition 1.3. (b).
— equip the #-GCM,’s with the capability of conditional jumps,

— modify the drawing tools, e. g. define #-GCM,’s basing on a rectangu-
lar ruler instead of compass and ruler.
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