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CONTEXT-FREE LANGUAGES WITH RATIONAL INDEX IN © (n*)
FOR ALGEBRAIC NUMBERS A (*)

by Laurent PierrE (1) and Jean-Marc FARINONE (?)

Communicated by A. ARNOLD

Abstract. — The complexity of a non-empty language L may be estimated by the asymptotic
behavior of its rational index, which is a function p,:N—{0} - N~{0}. For any positive integer A,
we knew a context-free language whose rational index is in @ (n"). In this paper we show context-
free languages, whose rational indexes are in ® (n*) for other various values of A>1, such as the
rational numbers or the algebraic numbers or even some transcendental numbers.

Résume. — La complexité d'un langage non vide L peut étre estimée par le comportement
asymptotique de son index rationnel, qui est une fonction py:N—{0} > N—{0}. On connaissait
déja des langages algébriques d’index rationnel en ® (n*) pour tout entier positif . Dans cet article
nous montrons qu'il existe des langages algébriques d’index rationnel en © (n*) pour d’autres valeurs
de N> 1, telles que les nombres rationnels, plus généralement les nombres algébriques, et méme
certains nombres transcendants.

I. INTRODUCTION

There are many ways to measure the complexity of languages. The rational
index introduced by L. Boasson, M. Nivat and B. Courcelle [3, 4] is one of
them, that behaves well when combined with rational transductions: if
L>=L’(i.e. there exists a rational transduction 1, such that t(L)=L’), then
the rational index p, of L provides an upper bound on p; ., since

JceN—{0}, VneN-—{0}, en(pr(em)+ D) Zpy ().

This is why the rational index can prove helpful when studying sets of
languages closed under rational transductions like the set of context-free
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276 L. PIERRE AND J.-M. FARINONE

languages. We define the extented rational index p, of a language L to be
p. Wi for any letter s, which occurs in no word of L. The extended rational
index p, of a given language L is generally not harder to compute than its
rational index p,. Both indexes are related since

VHEN—{O}, pL(n)éﬁL(n)<n(1+pL(n))9

but the extended one gives more information about the complexity of the
language since

L'SL = 3ceN, pp.m=p.(cn).

We denote by © (n*) the set of functions which are the products of 7+ n* by
positive bounded functions. Given two languages L, and L, and two
numbers A, and A, such that p, €® (") and p,e® (n*2) and 1 <A, <},
then you can conclude that L, does not belong to the rational cone generated
by L,. Note that this is true even if A, —Ai; <1, but this case could not be
handled with plain rational index. In reference [6] you can find a way to
construct a context-free language with a rational index in © (n*) for any
positive even integer. For a long time the rational index of a context-free
language was thought to necessarily behave asymptoticaly like a simple
function, namely an exponential or a polynomial function. In this paper we
give methods to construct context-free languages, whose rational indexes are
in ® (n") for other various values of A>1, such as the rational numbers or
the algebraic numbers or even some transcendental numbers. The technic
used in this paper is strongly related to the one used in [10], where we proved
that some context-free languages have rational indexes, which grow faster
than any polynomial, but slower than any exponential function exp (A n).

. NOTATIONS AND DEFINITIONS

N will denote the set of non-negative integers, and N, =N—{0} the set
of positive integers.

A Ul B will denote the union of the disjoint sets A and B.
An alphabet is a finite set of letters.

A language written over an alphabet T is a subset of T*.
¢ denotes the empty word.

|u| is the length of the word u, i.e. the number of its letters. E.g.
| @® bac? |="1. The function u+— |u| will be denoted | . |.

Informatique théorique et Applications/Theoretical Informatics and Applications



CONTEXT-FREE LANGUAGES OF RATIONAL INDEXES IN ® (n*) 277

|u|, is the number of occurrences of the letter x in u. E.g.|a®bac*|,=4.
The function ur— |u|, will be denoted | . |,.

If X is an alphabet then |u|y is the number of occurrences of letters of X
in u. E.g. |a®*bac?|,,, .,=3. The function ur|u|y will be denoted | . |x.

L (/) denotes the regular language recognized by the finite automaton 7.

A context-free language is a language generated by a context-free grammar.
For instance

S.={a"b", n#m, n,meN}
is a context-free language, since it is generated by the grammar
{a,b},{S, T,U},{S>aSb+T+U, T>aT+a, U->bU+b}, S).
Similarly
S.={a"b", neN}
is a context-free language generated by the grammar
({a, b}, {S}, {S>aSb+e}, S).

We shall use S, a lot in this paper.

Let r be a binary relation between the two free monoids X* and Y*. We
say that r is a rational transduction, if its graph is a rational subset of the
monoid X* X Y*; i.e. it is the value of an expression containing only products,
unions, stars (or* operation) and finite sets. The rational transductions may
be characterised in another way:

Tueorem (Nivat) [9]: For any rational transduction r:X* — Y* there exist
an alphabet Z, a regular language K< Z* and two morphisms ¢ : Z* - X* and
:Z* > Y* such that:

VLeX*, r(D)=yKNe ' (L).

Furthermore, we may assume the two morphisms to be alphabetic, i.e.
0 2)cX\U{e} and Y (Z)< Y \U{e}. We shall write

‘c=\l/omKo(p_1‘

Let L and L' be two languages. If L' is the image of L under a rational
transduction, then we denote it L= L’ and we say that L rationally dominates
L'. For instance S_2>S., since S.=a*S_US_b".

vol. 24, n° 3, 1990



278 L. PIERRE AND J.-M. FARINONE

The transformation t:L+—at L\JLb* accords with the definition of a
rational transduction, since its graph is

(e, 0" {(a, a), (b, D) }* U{(a, a), (b, b) }*(c, b)".

As an example of Nivat’s theorem we can decompose it t={* Ko™,
where X={a, b}, Z={a, b,a, b’}

©: Z*¥ - X*, V. Z* > X*

ar>a, arsa
b b, b—b
a'r>eg, avwr—a
b'—e, b'—b

K=d*X*JX*b'*

If L=L" and L' L then we say that L dominates strictly L' and we write
L>L".Eg S_->5,.

Reference [1] holds the above definitions.

Every regular language is recognised by a finite automaton. £, is the
family of the regular languages recognized by a finite automaton. £, is the
family of the regular languages recognized by finite automata with at most n
states.

A function f: R — R will be said increasing if
Vx, yeR, x<y = [f@)<fO)

You may notice that, according to this definition, a constant function is
increasing.

Let f be a function N — R. We shall use the Landau’s notations o and O
[8], § IV.7, and the Knuth’s notations. Q and © [7]:

o(N={g:N->R,VceR%, 3IneN,Vnzny |gn)|Zc|f @]}
ON={g:N->R,3ceRt, 3IneN,Yn2n,, |gm|<c|f )|}
QN={g: N>R, IceR%, IneN,Vn2n, |gn)|2c|f®)|}
ON=0"HNA)
g~f will stand for g—feo(f).
Remark: If f does not take the value 0 then

g~f < limg/f=1,

Informatique théorique et Applications/Theoretical Informatics and Applications



CONTEXT-FREE LANGUAGES OF RATIONAL INDEXES IN @ (1) 279

geo(f) < lim g/f=0,
geO0(f) < limsup|g/f]<oo
and
ge®(f) < (liminf |g/f|>0andlim sup|g/f|<o0).
[ x] is the floor of the real number x i.e. the greatest integer k such that

kZx.

[x] is the ceiling of the real number x i.e. the lowest integer k£ such that
k=x.

If T is a sub-alphabet of an alphabet U, then n; will denote the morphism
U* - (U—T)*, which erases the letters of T and keeps the letters of
U-T.E.g.

T4, & (axayzxa)= xyzx.

|my | will stand for the morphism | . |=®y, so that [my|=]. ]| .|,

A w B will denote the shuffle of the languages 4 and B, i.e. the set of the
words produced when interspercing words of 4 in words of B. E. g.

a* b*iu c*=c* (ac*)* (be*)*={a, c}* {b, c }*.

[I. DEFINITION AND BASIC PROPERTIES OF RATIONAL INDEX
1. Definition of p and p

Dermition 1: If L is a non-empty language then its rational index is the
Sfunction py: N, — N defined by

po (M= max min |w|
KeZ, weKnlL
KnL#@

DeFiNITION 2: Let L< X* be a non-empty language. Let s be a letter which
does not belong to X. We define the extended rational index of L to be the
rational index of Luis*, and we denote it by p;.

vol. 24, n° 3, 1990



280 L. PIERRL AND J.-M. FARINONE

2. Basic properties

A morphism of free monoids ¢:X* —» Y* is said to be alphabetic if
o(X)cY U {e}, and strictly alphabetic if @ (X)< Y. In [2] Boasson ef al.
give the five following lemmas.

LemMma 1: If L and L' are two languages then p;, , ;. <max (p;, pr.).
LemMA 2: If L and L’ are two languages then p;,.<p; +p;..

LEMMA 3: Let @: X* —» Y* be an alphabetic morphism, and L< X*. Then
Powy=PL-

LeMMA 4: Let K be a regular language recognised by an m state automaton.
Let L be a language. Then

VneN, pp.xm)=pL(nm).

LeMMA 5: Let ¢ be an alphabetic morphism from X* to Y*. Let L be a
subset of Y*. Then

VreN,, py-1gym<n(p,(m)+1).
Using the last three lemmas and Nivat’s theorem they derive the theorem.
TueoreM 1: If L' < L, then there exists an integer ¢ such that
VneN, ppm<cn(p.{cn)+1).

Proof: According to Nivat’s theorem there exist two alphabetic morphisms
¢ and  and a regular language K such that L'=@ (KN~ (L)). Let ¢ be
the number of states of an automaton recognising K. Then

pr ()= Py (x ~ vl (M) <pg A vl m= Pyl (em)<en(l+pL(en)). O
We can make a variation on lemma 5:

LeMMA 6: Let © be a strictly alphabetic morphism from X* to Y*. Let L be
a subset of Y*. Then p,-1,<p;.
The proof is left to the reader. This leads to the following theorem.

THeOREM 2: If L' £ L, then there exists an integer ¢ such that
VneN, pp.(m)<p.(cn).

Proof: According to Nivat’s theorem there exist two alphabetic
morphisms ¢ and { and a regular language K such that L'=¢@ (K Ny~ (L)).

Informatique théorique et Applications/Theoretical Informatics and Applications
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Let ¥ be the strictly alphabétic morphism defined by:
V@=v(@ if V(a)#e
and
V' (@)=s if Y(a)==s.

Then \I/_‘l (LYy=V¥~!(Luss*). Let ¢ be the number of states of an automaton
recognizing K. As in the proof of theorem 1 we have

P (M) =Py x A vy M=pxny-tw (n)é Py-1 @z (cn)
Hence

pr(M= Pyt w s% (em=pL ., +(m)=pL(cn). O
This theorem has the corollary:
THEOREM 3: If L' S L then there exists an integer ¢ such that

VneN,, P (n)=pL(cn).
Proof: We have L'w s* < L'< L. Hence theorem 2 yields that
VneN., pr oy ¢+ (m)=pL(cn)

for some integer ¢. [

my is an alphabetic morphism verifying w,(Lws*)=L and
n3 (L)=L ws*. Hence lemmas 3 and 5 yield the theorem:

TueoreM 4. If L is a language then
VreN, p (m)=p.(m)<n(p,(n)+1).

Remark: In this paper, the rational index of a language and its extended
rational index will be refered to as its rational indexes.

3. The rational come generated by S,
In order to evaluate the rational indexes of S, we first give two lemmas.
Lemma 7: VreN, pg, (n)22n—1.
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282 L. PIERRE AND J.-M. FARINONE

Proof: Let n be a positive integer. The shortest word in S, recognised by
the » state automaton drawn in figure 1 is @"~* b". Its length is 27— 1. Hence
ps, (mz2n—1. O

a a
=0
' b

Figure 1.

Lemma 8:VneN,, ps (mM)=2n—1.

Proof: Let n be a positive integer. Let &7 be an n state automaton recognis-
ing at least one word in S,.uss*. Let w be a shortest word in
L() N (St s¥). Let us assume that {w|=2n. Then a successful path in
f labeled by w holds at least two disjoint loops. Hence w=ou B vy for some
words o, B, v, # and v such that ¥ and v are non-empty and &/ recognises
af vy, auPy and afy. These three words belong obviously to a* b* L s* but
they do not belong to §.wu s*, since they are shorter than w. Hence they
belong to S_.us s*.1 e. they hold as many a as b, and so do u, v and w. This
is a contradiction to we S w s*. Hence we have proved that |w|<2a. O

THEOREM 5: VneN,, ps, (n)=ps, (W)=2n—1.
Proof: Lemmas 7, 8 and theorem 4 yield

VneN,, 2n—1=Zps, (M<ps, (m=£2n—1. O

Theorems 2 and 5 yield the proposition:

ProrosiTION 1: If LES,, then 3ceN,VneN, p, (n)<cn.

We shall handle in this paper a lot of languages dominated by S... This is
why we introduce a new notation:

DerFmNiTION 3: Let K|, K,, and K5 be three languages over the alphabet X.
Let ©,, and @5 be two morphisms X* — N. Then we shall denote

.Vi (Kla Q4 K2’ P3, K3)

Informatique théorique et Applications/Theoretical Informatics and Applications
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the language
{W1 Wy W3 | w €K, w,€Ky, wye Ky, @1 (W) #@3(w3) }
EgS,=V,.(@*|.|&].|b%.

LEMMA 9: Let K, K, and K be three regular languages over the alphabet X.
Let @, and @ be two morphisms X* - N. Then V. (K, ¢,, K,, 03, K3)<S,.

Proof: Let @} : X* — a* be the morphism such that ¢} (x)=a® * for every
xeX. Let ¢5:X* — b* be the morphism such that ¢} (x)=5%® for every
xeX. Let o be the rational transduction, whose graph is the set of the
couples (w, w, ws, ®; (W) 03 (®;)), when w, w, and w; range over K, K, and
K;. Then V., (K}, 9,, K3, 03, K3)=07(S,). O

For instance this lemma proves that S, dominates the language
{a*cbPca’ ch®|a+2B#27+58}
=V, (a*cb*, |. |, +2]. | ¢ 2] o+ 5] |5 a*cb®).

IV. STRUCTURE FUNCTIONS

1. Definitions of structure functions
We first define S..-functions.

DEerFINITION 4: A S -function will be a partial function g: N — X*, where
X is a finite alphabet, and

X*—g(N)=S,.
Remarks:

— fis a partial function, i.e. f (i) may not exist for some ieN,.

— X*—g(N,) is a context-free language, since it is dominated by another
context-free language.

— The choice of X does not matter. Indeed if Y is a superset of X, then g
may be considered to be a partial function from N, to Y*. And, since

X*—g(N)=(r*—g(N,)NXx*
and conversely
*—g(N)=X*—g(N,)U@*—X*),

val. 24, n° 3, 1990



284 L. PIERRE AND J.-M. FARINONE

it is obvious that X*—g(N )< S, if and only if Y*—g(N,)<S..
DEFINITION 5: We define a structure function to be a S .-function g: N, — X*
verifying also the three following properties:

® for some unique letter x € X, that we shall denote x,, we have | g (i)|,+1=i
for every ie N, for which g (i) exists.

o g(N,) does not contain any infinite regular language.
o g (i) is defined for infinitely many i.
Remark: In the first property uniqueness is supposed only for convenience:

in order to specify a structure function g, we only have to give the value of
g (i) whenever it exists; we need not specify which letter is x,.

The second property is easily checked by means of the following lemma:
LemMA 10: Let g: N — X* be a partial function such that

lim |g (@) |/i= .

i
Then g(N ) does not contain any infinite regular language.

Proof: Let assume g (N, ) to contain an infinite regular language. Then we
can find three words «, u and B such that u is not empty and cu* B=g(N,).
Hence for any positive integer i, there exists a positive integer j; such that
o' B=g(j,). Let n be a positive integer. Then j,, . . .,j, are n pairwise distinct
positive integers. So that

Thus

Q |ggi)| g({[l|<>cﬁ|+i|u|)/n!=.]z'[lL'iﬁ~i:_L—ilu—l s|oaupl*

hence liminf|g(j)|,J;<|auB| and thus liminf|g(i)|/i<|owup| which is
not compatible with:

lim |g@)|/i=c0. O

i— o0
For instance we shall prove later that
fa: N+_’{x1a xz}*, i X7 (e Xy
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CONTEXT-FREE LANGUAGES OF RATIONAL INDEXES IN © (n*) 285

is a structure function.

DEFINITION 6: For any structure function g we define g to be the partial
function N, - N, such that g(n) is the largest integer p such that

lg(p)|sn—1:
gm=max{p||lg(p)|sn—1}.

LemmMma 11: If g is a structure function then:

e there exists an integer n, such that g (n) is defined if and only if n2ny;

e g is increasing;

e for any ngno we have g (n)<n;

e lim g(n)=oo.

n— o

_ Proof: g(N,) is not empty, since it is infinite. So we can consider the
integer n,=1+min|g(N,)|. Let us define G'(n) to be the set of numbers p
such that g(p) exists and |g(p) |<n—1. Then obviously G (n) is a increasing
sequence of sets, which are non-empty if and only if n=n, Furthermore,
when g(p) exists, we have |g(p)|,,=p—1, so that |g(p)|Zp— 1. Hence, if
|g(p)|<n—1, then p<n. This proves that G (n)c[1, n). This completes the
proof of the first three assertions of the lemma, since we may notice, that g
(n) is defined if and only if G (n) is not empty, and then g (#)=max G (n).

Since g (i) is defined for infinitely many i, for any integer j we can find a
integer p such that p=>j and g(p) is defined. Then peG(| g(p)|+1), so that

p=g(lg®|+1).

Let n be an integer such that n>| g.(p)|. Since § is increasing, we have §
(n)zg(|g(p)|+1) and thus

gmzg(lg@)|+1)zp2).
We have proved that
Vj, 3p, Vn, n>|g(@)| = gmzj

Thus limg=oc0. O

o0

DeriNnitioN 7: Let f and g be two structure functions. We shall say that
f dominates g and we shall write f =g, if there exist two finite alphabets X
and Y and a rational transduction @, ,:X*— Y* such that f(N,)cX*,

vol. 24, n° 3, 1990



286 L. PIERRE AND J.-M. FARINONE

g(N =T,
Qr o (X*—f(N))=T*—g(N,),
Py, (X*)=T1*
and
VueX*, Vveq, @), |ul,=|v,

Obviously the domination between structure functions is a pre-order, i.e.
it is reflexive and transitive.

DEFINITION 8: Let f and g be two structure functions. If f =g and g(n)eo(f
(n)), then we shall say that f dominates strictly g and we shall write f > g.

Obviously the strict domination between structure functions is transitive.
2. Main example of structure function

DEFINITION 9: We define X, ={x,, ...; x,}, with X,= .

DerFmniTiON  10:  We  inductively define the sequence of functions
fei N - X¥ by:

SolD)=¢
fk(i)=(fk—-l(i)xk)i_lfk—l(i) if k>0.

In other words f, (i) is the word in X¥~!, whose /-th letter is x;if #71 is
the greatest power of i dividing .

So we have
Ife@]=i~1
and
@], =# = 1).
E.g.
fo(D)=¢, fo(@)=¢, fo(B)=¢
fi(D)=g¢, f1@=x,, f1(3)=xx;
fa(D=¢, S22 =x;x;, x4, S2(3)=x xy x5 %, % x5 X1 Xy

Informatique théorique et Applications/Theoretical Informatics and Applications
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fi(D=¢, [3(@)=x; X% X3 %1 X5 Xy,
— 2 2 2 2 2 2 2 2 2
S3(3)=x1 x5 X1 X5 X7 X3 X7 X5 X XpX] X3 XT X3 X1 X5 X7.
DEFINITION 11: Let i and k be two positive integers, such that i<k. Let w
D g
be a word of X¥. Then ny,_ (w) can be written in a unique way

— O o o 5
Ty, (W)=X{0z X[ z, X2 ... Z;X{0

where o, O ... 0; are non-negative integers and zi, z, . . . z; are letters of
Xy~ X, Then z,z, . .. z;=my, (W) and j=|7txi (w)|. Let us define the sequence
of the groups of x; in w to be the finite sequence

(g0, X1, ..., x{).

13

There are exactly |ny,(w)|+1 groups of x;’s in w. Some of them may be
empty. The length of the group of x;’s of rank p is the number of occurrences
of x;, which are preceded by exactly p occurrences of letters of X, — X;. E.g.
Let k=3 and

W=X; X5 X1 Xy X3 Xy Xy X3 Xy XpXq X XpXq Xg X3 X1 Xq Xy.
For i=1 we have
S | 2 2 1 1 0 2 3
Toxo (W) =W=X] X, XT X3 X7 X3 X1 X5 X1 X5 X7 X5 XT X3 X7.

Note that there is an empty group of x, in the middle of the factor xZ. The |
lengths of the 8 groups of x, are 1221102 and 3. For i=2, we have

Ty, (W)=, X3 X3 x3 = X5 X3 X3 X3 X3 x5 X3,
hence there are 4 groups of x,, whose lengths are 103 and 0. At last
an (W) = xg’

hence w has 1 group of x,, whose length is 3.

fx(n) is the only word of X} such that for every ie[1, k] the lengths of all
its groups of x; are equal to n—1. And a word of X} belongs to f, (N ) if
and only if all its groups have the same length.

DEFINITION 12: Let A, =X¥—f,(N,).

So a word belongs to A, if and only if a group of x; and the (only) group
of x, have different lengths for some i such that 1<i<k.

LemMA 12: For every k=2,
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288 L. PIERRE AND J.-M. FARINONE

® [, is a structure function,

° fk(n)=|_%_] and
® fi>fier

The remaining of this section will be the proof of this lemma. For this we
first prove two lemmas.

LemMAa  13: Let k=2. There exists a rational transduction
Ofp fasr Xk = Xifyy such that

If weos ;) then |WI|Xk+1=‘lek M
Gfk:fkn(X’T):Xt"'l' 2)
Ot fist (A= Ay4 1 &)

Proof: Let @:XF,, - Xi be the morphism defined by: ¢(x;)=¢ and
Q(x;41)=x; for iz1. Let ¢':X} > X, be the substitution defined by:
¢ (x)=x; and @’ (x)=(x, x})* x;,  (x] x,)* for i22. We defineo,, ,, ., by

Of o rars =071 (A) UG x3)* 0 (A) (ry xP)*.

(1) holds obviously, and (2) too, since ¢~ ! (XF)= X}, ,.

DerinttioN 13: If 0<i<k, we shall denote A, ; the set of the words w
belonging to X} holding a group of x; whose length is not |w|,,.
We have

A=A U Udy oy

If we X} then the groups of x;,, in a word w'e @~ (w) have the lengths of
the groups of x; in w for every ie {1, ..., k}. Its groups of x; have any
lengths. Hence ¢ ~* (4,) is the set of the words of X3, ,, in which for some i
such that 2<i<k+1 a group of x; and the group of x,,, have different
lengths. Le. 9 ' (4, )=A;+1 ;47 and

(P-I(Ak)=Ak+1,2U"'UAk+1,k' )
Similarly let w be a word in X}. Let us consider the groups of x, in w:

— & o L § A
W=XT X XT2 X, . XPx, XPert
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where k=|m,, (w)| and Vj, i;> 1. Then
Ot x2)* @ (W) Oy xT)* = (xF x2)* X7t (6 XT)* X, (xF x)* x32 (e, xP)* X, - -

co O Xx)* X3 O X)X, (T )* X P 1 (e xP)* X5,
Let w' be a word in (x¥ x,)* ¢’ (W) (x, x¥)*. The groups of x;,, in w’ have
the lengths of the groups of x; in w for every ie{2, ..., k}. The groups of
x, in w’ have any lengths. And the groups of x, of w appear among those of
w'. More precisely every group x4 of x, in w becomes in w' a factor belonging
to (x* x,)* xj (x, x¥)*, i.e. a group of x, of any length A, whose members
alternate with A+1 groups of x,, among which one is xj. Hence
(xFx,)* @' (4,) (x, x¥)* is the set of the words of X, ., in which for some
ie{1,3, ..., k} a group of x; and the group of x,, have different lengths.
Le.

O x)* @' (A) (a X)*=Apvy, 1 Uiy, s U Udpr e &)
(4) and (5) add and yield

07 () U et x)* @' (Ay) Gy x)* = Ay, 1 U - oo Udirr o
ie.os i, (A)=4p,. O

Remark: This proof works only if k=2. For instance in a word of A,
either a group of x, and the group of x; have different lengths and then it
belongs to @ ~'(4,), or a group of x, and the group of x; have different
lengths and then it belongs to (x¥ x,)* @' (4,) (x, x})*. On the other hand
A= . Hence o, , (A)=T#A,.

LemMA 14: A, < S, for any k=2.

Proof: We shall prove it inductively.

e A, is the set of the words in {x,, x, }* in which two consecutive groups
of x, have different lengths or the number of x, is not the length of the last
group of x,. Le.

Ay = x)* Ve b, | | x| | X)) (e xH*
UV#: ((XT xz)*s | g Ixza Ss | . I’ XT .

This proves that A, <S,.

e Let k£ be an- integer greater than 2. Let us assume that 4, ;<S..
Lemma 13 yields that 4,=o,,_, ,, (4,_,). Hence 4,<A,_,. This proves
that 4,<S.. O
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Proof of lemma 12 Let k be an integer such that k=2. According to
lemma 14, f, is a S,-function. For any je[l, k] and any ieN, we have

£ |, =37 G~ 1)

so that x; is the only letter occuring i—1 times in f, (i) for every i. Hence
x,, = X;. Since

I/ @) |=~1, (6
we have

lim |f,(9)]/i= o,

i

proving thereby that f,(N,) holds no infinite regular language. We have
shown that f, is a structure function. (6) results in the second assertion of
lemma 12. So

Je@)~n'k,

This proves that £, , (n) € o (f, (1)), while lemma 13 proves that f w2frsq1- SO
the third assertion of lemma 12 holds. O

V. THE LANGUAGE RELATED TO A STRUCTURE FUNCTION

1. Definition of L,

Let g: N, — X* be a structure function. Let b,, a_ and b, be three letters
not belonging to X. We shall define a language L,c(X U {b,, a,, b, })*.
L, is a subset of the regular language

F,=(b1 w X*)(a, b3)*%,
that we shall call its frame. We define the structured part of L, to be

S,= U (bf w g())(a,bL),

ieN4
the unstructured part of L, to be
U,=(bF w (X*~g(N, ) (a, b%)%,
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and the extended structured part of L, to be

Eg={WEFg’ |w|xg+1=|wlam }'
These three languages are subsets of F,. Since | g (i) lx,+ 1=1i, we notice that
S,=E,~ U,

DErFINITION 14: The above definitions of S,, U, and E, allow us to define L,
as the union of E, and U,. It is also the disjoint union of S, and U,,.

L,=E,JU,=S,UU,

=

%%

N\
&

Figure 2 represents the various languages, we just defined.

S, is not a context-free language. (We shall not prove it.) But since g is a
S,-function, U,<S, and it is obvious that E,<S.. Hence U, and E, are
context-free languages, and so is L.
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2. Lower bound on p, .

Letne N;. Let us get a lower bound on PL, (n). Let p=g(n). Let o be the
automaton depicted in figure 3.

In this figure

stands for

X1, 71 xp Y1
- @ ... -

where w=y, ...y,

This automaton has » states. It is made of a simple path of length n—1
leading from the only initial state to the only final state. Every arc of this
path is labeled by two letters in such a way that the whole path is labeled
by b7~ 1714 Ig(p) and by b" 1. There is also an arc leading from the final
state to the initial state labeled by a,. So & recognises a word of
bF w X% (a,b¥)* if and only if it is

b1 g (p) (a, b ™

for some meN. This word belongs to L, only if m=p and then it belongs to
S,. Thus the shortest (and only) word in L(/) N L, is

W=y 1B g (p) (a,, b)Y
Hence

pr, ) Z|w|=n—1+Z(n. ©
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Remark: |63~ 1719l g(p)|=n—1 and the letter b, is used to ensure that
the path labeled by #7119 lg(p) is a simple path (i.e. a path holding no
loops) of maximal length (n—1) in an n state automaton. Similarly b is
used to ensure that the loop labeled by a,, 4% ! is a simple loop of maximal
length.

3. Upper bound on BLg.

Let neN, . Let of be any automaton with » states recognising at least one
word in L, w s* Let w be a shortest word in (L, wi s*) N L(s). We
shall give an upper bound on |w|, that depends only on # and not on & so
that it will be also an upper bound on BLg (n). Let us consider a successful
path vy in & labeled by w.

e First let us assume that (U, w s*) N L(H)#J.

Let w' be a shortest word in (U, w s*) N\ L(&/). Then |w'| éf_)ug n)
because of the definition of rational index. w' belongs to (L, w s*) N L(sZ),
whose shortest word is w. Hence |w|<|w'|. Thus |w|<py, (n).

e Let us assume now that U, w s* and L (&) are disjoint.

Then every word in (L, w s*)\ L(#) belongs to S, w s* Thus w
belongs to S, wi s* and

| . l<n 1. 1<n r
we®d! w g(p) w s*) \au % w 5%

| . {Epn+n—1

for some positive interger p. Braces show upper bounds on the lengths of
parts of w, that we shall prove.

First let us prove that there are at most n— 1 letters in w before the first
a,- Let us assume that this part of w holds a loop. If the label of this loop
belongs to bf L s* then it can be removed yielding a shorter word than w
belonging to S, wi s*. This is a contradiction. Hence the label of this loop
does not belong to 4% w1 s*. Since g(N ) holds no infinite regular language,
we can change g(p) into a word of X*—g(N,) by iterating this loop. This
transforms w into a word of (U, wi s*)\ L(#). This is a contradiction.
Hence the prefix of w belonging to 4% w g(p) w s* holds no loop.

If we remove loops from the part of w belonging to b* 1 s*, then w
changes into a shorter word of L(«) N (S, w s*). This is a contradiction.
We have proved that the overbraced parts of w contain no loops. Hence
their lengths are smaller than n. w is made of p+ 1 parts, whose lengths are
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at most n— 1, and p times the letter a,,. Hence its length is at most pp+n—1.
We have |g(p)|<n—1. Hence p<g(n). Thus in this case we have

|w|sn—1+gm)n.
The results in the two cases, we have looked at, can be summarized by
lw|§max(ﬁvy(n), n—1+g(n)n).
Hence

pr, (m) Smax (py, (), n—1+g (n) n). ®

4. Value of p,
Since U, < S, proposition 1 yields
Pu, (M €0 (),

while lemma 11 states lim g (n)=co. Hence

n—= oo

Py, (meo(r—1+g(mn).
Hence for large enough n we have

Py, (M) <n—1 +g(n)n.
Hence (7) and (8) and theorem 4 yield
pr,(M)=pr,(M)=n—1+ g(m)n for large enough .
We have proved the theorem:

THEOREM 6: If g is a structure function, then L, is a context-free language,
whose rational index is

PL, n)= 5L, (ny=n—1+gn)n for large enough n.

DerFINITION 15: If k is a integer greater than 1, then L, will be denoted by
L, for simplicity.

According to theorem 6, the language L, is a context-free language, whose
rational index is

P, (M=pL, (M=n—1+ L%J n for large enough n.
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The following section is concerned with relationship between domination
of structure functions and domination of their related languages.

5. Comparison of the various L,.

THEOREM 7: Let f and g be two structure functions. If f =g then L 2 L,.

Proof: Using the rational transduction @, ,:X* - Y*, we shall build a
rational transduction ¢’ such that

0" (Lp)=L, )
If weF, then it belongs to (bf w,)w, for some unique w,eX* and
w,€(a, b%)* and we define @' (w) to be (b @, ,(w,))w,.

If w¢ F, then we define ¢’ (w) to be . Since ¢, , is a rational transduction
and F, is a regular language, it follows that ¢’ is a rational transduction.
The properties of ¢ , yield properties of @:

® ¢, ,(X*)=1Y* hence ¢'(F;)=F,.

o If w eX* and wieq,, ,(wy) then |w, |, =|w}|,, hence ¢’ (E/)=E,.

9, (X*—f(N,)=Y*—g(N,) hence ¢’ (U)=U,.

e These last two points prove (9). O

We shall use the notation f(n)e O(g(O(n)). It means that 7 (n)eO(g
(h (n))) for some function ke O (n). In other words

In:N, >N, 3¢>0, In,, Yn>n, h(m)<cnandf (n)<cg(h(n)).
Eliminating 4 yields

J¢>0, 3Iny,, Vn>ng, Ff(m)<c max g().
ie[0, cn)

Since g is increasing, it becomes
¢>0, 3In,, Va>n,  f(n)<cg(en),

or in other words, for some positive ¢ and large enough n we have f (n) <cg
(cn). We can also write

3¢>0, lim sup f (n)/g(cn) < co.

n-r oo
Anyway, it is simpler to write f (n) € O (g (O (n)) since it saves quantificators.
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Similarly f (n) € 0 (g (O (#)) means

J¢>0, lim f(n)/g(cn)=0,

-
or

3¢>0, Ve'>0, 3ny,, Vn>ny, f)Sc g(cn).

LeMMA 15: Let f and g be two structure functions. If L, <L, then f (n)e O (g
(O () [i. e. for some c and for large enough n we have f (n) < cg (cn)].

Proof: According to theorem 6,
pr,m=n—1+gmn and p, (W=n—1+F(m)n

for large enough n. Since L,<L,, theorem 3 proves that for some integer ¢
we have

VneN,, BLI(n)§BLg(cn).

So that for large enough »n we have n—1+f(m)yn<cn—1+g(cn)cn i.e. f
(n)<c—1+g(cn)c, which proves that f () <2 cg (cn), since g(cn)=1. O
Theorem 7 and lemma 15 combine immediatly into the lemma:

LEMMA 16: Let f.and g be two structure functions. If f<g then f (n)eO (g
(O ().

LemMMA 17: Let f and g be two partial increasing functions from N, to N .
The three following properties cannot all be true.

e For some integer d, f (n)e O (n?).

e g (meo(f(OMm).

o f(m)e0(Om).

Proof: Let assume all the three properties to be true. The last two properties

result in £ (n)eO (o (f (O(O (n))))=o0(f (O (n))). Since f is increasing, this
means that for some positive integer ¢ we have lim f (cn)/f (n)=o00. So that

n—oo
we can find an integer n, such that for any n=n,, we have f (cn)/f (n)=2c".
Then we can inductively prove that for any positive integer / we have
f(c'ny)=2'c" f (ny), so that

lim £ (c'no)/(c'ng)* = oo,

1=
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and thus lim sup f (#)/n?= co. This is contrary to the first property. O

n-= oo

Theorem 7 has the corollary:

THEOREM 8: Let f and g be two structure functions. If f>g then L, >L,.

Proof: f=g, hence L 2L, f and g are two increasing positive partial
functions, verifying geo(f) and f (n) <n. So that according to lemma 17, we
cannot have 7 (n) € O (g (O (n))). Lemma 15 yields then that L, 2 L,. 0

For instance if k=2 then L, ,, <L,.

VI. THE LANGUAGE RELATED TO A FINITE SEQUENCE OF STRUCTURE
FUNCTIONS

The purpose of this section is to build for every finite sequence of structure
functions- g,, ..., g, a context-free language whose rational index is

@(n I1 g (n)). Hence it will follow that for every sequence k,, ..., k, of
i=1

integers greater than 1, the sequence of structure functions f, , . . ., f;, yields
a context-free language, whose rational index is @ (n!* k1t - - - +1/ke) 5o that
for every rational number A greater than 1, we can find a context-free
language whose rational index is © (n*).

In order to avoid a lot of subscripts and ellipses (« . . . ») and to make the
proofs clearer, we shall first handle a sequence f, g, 4 of three structure
functions, and then we shall generalize the results to any sequence of structure
functions.

1. Definition of L, , ,

Let f:N,>X*g:N,>Y* and h:N,—>Z* be three structure
functions. We assume that X, ¥, Z and {b,, a,, b, as, bs, a,, b,, # } are
four disjoint alphabets. L, , , will be a language on the alphabet

XUYUZU{by, ay, by, a3, by, ay, by b,
but to define it we shall use the larger alphabet
Q=XU YUZU{bp aza b29 a39 b3’.ams bgos # }-

Let AcQ* and B<Q* be two languages and i be an integer greater than 1.
We define 4 T, B to be the set of the words of 4 in which every factor a , b¥
is replaced by a word of a; B, in which every occurence of b, is replaced by
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an occurence of b;. More precisely 4 T; B=1; 5(A) where 1 j is the substitu-
tion defined by:

tTiB(boo)= €
TTiB (aw)=ai (Pbl, b; (B)

T;,8(x)=x for any other letter

where @, ,, is the strictly alphabetic morphism, which replaces b, with b,
and keeps the other letters unchanged. 1 has interesting obvious properties:

e T is associative: For any languages 4, B and C and any integers i and j
greater than 1, the two languages (41,;B)1;C and 41,(B1;C) are equal, so
that we can denote them 41,B1;C.

e If A and B are context-free languages, then so is 4 1, B.
o If B is a regular language, then A1, B< 4.
e If A4 and B are both regular languages, then so is A 1, B.

At last we define T, to be the rational transduction, which keeps words
containing at least one # and then erases all the # in the kept words. I e.
if A=Q* then T, A)=r Y (4 N Q*#Q*). For instance

t, ({dbc, dbb#c, #cb#b})={dbbe, cbb}.

We can now define L, ,, As L, is a subset of its frame

F,= (bt w X*)(a, b%)*, similarly L, , , will be a subset of its frame, which
is to be the regular language

Fp, o w=F( 15 F 13 F= (bt w X*)(a, (b3 w1 Y*) ay (b w1 Z*) (a,, bE)*)M)*.
We define the structured part of L, , , to be
St 0 1n=8,125,138,
and the extended structured part of L, , , to be
E; , w=E;1,E,1;E,

S/, 4, n 18 nOt a context-free language, but E, , , is.

We define U, , ,, the unstructured part of L, , ,, to be the set of the
words w in F; 1, F, 1, F, such that at least one of the words of F,, F, and
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F, involved in the construction of w is unstructured, i. e.

U, g h=T#((FfU # Uj)TZ(FgU #Ug)TE}(FhU #U,)
=T#(((FfU #UI)TZFQT3Fh)U(FfT2(FgU #Ug)TSFh) (10)
U@E T2 F, T3 (F,U #Up)
=(Us1,F,15Fy)
UT#(Fsz(FgU #Ug)T3Fh)
UT#(FszFgTs(FhU # Uy)

Conversely Fy , ,— Uy, , ,is made of the words w belonging to F, 1, F, 1, F,
such that none of the words of F,, F, and F, involved in the construction of
w is unstructured. I e.

Ef, g, h Uf, a h=(Ff_Uf)T2(Fg_Ug)T3(Fh—Uh)-
Hence

Eroon U g w=Ep 6 sV Ep 50Uy, 4, )
=(E 1L ETEINF = U1, (F,=U) T3 (F,—Uy)
=(Efm(Ff—Uf))T2(Egm(Fg—Ug))T?:(Ehm(Fh_Uh))
=SfT2SgT3Sh

:Sf, g, h*

DEerINITION 16: The above definitions of S; , ,, E; 4 yand U, , , allow us
to define L, , as the union of its extended structured part and its unstructured
part, and it is also the disjoint union of its structured part and its unstructured
part.

Ly g w=E; 60V Us 0S8, 06U Up g e
Figure 2 still holds. Uy, U, and U, are dominated by S, and F,, F, and

Fy are regular languages, hence (10) proves that U, , ,<S.. Hence L, , ,
is a context-free language.

We can express L, , 4 in an another way. F, , , is the union of the sets

Gtwo) [] (az 03 B) [T (@ B3y, ) (bR ,.)>
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where

PEeN, aEeX*,
g:€N, B.e Y* for 1=i<p,

r, €N, i, j€Z* for 1Zisp and 15j<g,

LJ
Uy, ,, »is made of those sets verifying the condition

aeX*—f(N,)
or
3i, BieY*—g(N,) (C)
or
i, 3j, Yi, ;€Z*—h(N,)

E, , ,1s made of the sets verifying the condition

lotle+1=p
and
Vi, |Bilxg+1=qi (Co)
and
Vi, Vj, Vi, il T 1=70

L, , ,is made of the sets verifying at least one of the two conditions (C,)
and (C,). S, ,, »1s made of the sets verifying (C,) but not (C,)i.e.

a=f(r)
and
V i9 Bi = g (qz) (Cs)
and
Vi, VjJ, Yi, j=h(r;, )
Hence

&%kaMmﬂmnGZme%m)
i=1

peN4 gieN4

H03U(wmmmmﬁw»

ji=1 ri, jeN4
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2. Lower bound on p; g h

Let 7 be a large enough integer such that the three integers p=£ (n), g=g
(n) and r="h(n) exist. We want to obtain a lower bound on p, o ,(n). Let
&/ be the automaton depicted in figure 4.

Figure 4.

This automaton has n states. It is made of a simple path of length n—1
leading from the only initial state to the only final state. Every arc of this
path is labeled by four letters in such a way that the path is labeled by each
of the four words b1~ 11/ f(p), b~ 1719@lg() pa~1-1EO () and
b 1. There is also an arc leading from the final state to the initial state
labeled by the three letters a,, a; and a,,. So the set of the words of F, , ,
that .o/ recognizes is

Byt f(p) (@, b 0@ g(g) (as 057 O TR (r) (a,, Bl M M®.
It is disjoint with U, , ,, but it has exactly one element of S, , ,, which is
BT £ (p)(a, b1 @ g (g) (a3 By TP T A(r) (ag by Y)Y,
whose length is n— 1+ p (n+ q (n+rn)). Hence

Pr, , nZn—1+f () (n+g(n) (n+h(n)n)). (11)

3. Upper bound on p, o

Let neN,. Let & be any automaton with » states recognizing at least one
word in L, , ,uwis*. Let w be a shortest word in (L, , ,w s*) N\ L(s). We
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shall give an upper bound on |w|, that depends only on » and not on & so
that it will be also an upper bound on p, ., (n). Let us consider a successful
path vy in </ labeled by w.

e First let us assume that (U, g; R SN L) #D.

As in the previous section, we can conclude that [w|<py, , ().

e Let us assume now that U, , ,ws* and L (&) are disjoint. Then every
word in (L, , ,w s*) M\ L() belongs to S, , ,ws* Thus w belongs to
Sy, 4 nus* and

[.l<n
we (bt w f(p))
p | . l<n a |.l<n | <n
* I [t g @) T (@ G3wril ) (on (b2 w57y )

TR IOL)

| . ISp(+g(m) (n+h(n)n)

for some non negative integers p, q;, .. ., Gp Fi, 15 - - -5 1y, 4 fOr 1SI<p. As
in the previous section overbraced parts of w hold no loops. Hence their
lengths are smaller than n. As in the previous section we have | f (p)|<n—1.
Hence p<f (n). Similarly for every i in {1, ..., r} we have ¢,;<g(n). And
for every i and j we have r, ;<h(n). All of this allows us to compute an

L, J=

upper bound on |w|. Indeed:
[w|Sn—1+F(n)(n+gn) (n+k(n)n)).
The results in the two cases, we have looked at, can be summarized by

|w|<max By, , ,®), n—1+F (@) (1+ () (n+ K (n) ).

This upper bound on |w| is also an upper bound on p, o (@)

4. Valueofp,

As in the previous section we can conclude that

‘_)Lf, g, h(n)=po, g, h(n)=n~1 .

+ F(m)(n+gn)(n+h(myn)) for large enough n.
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5. Generalization to more than three levels

In the same way we built L, , ,, we can define the language L, . ,.
for any sequence g,, ..., g, of structure’ functions. In order to describe
precisely this language we must change slightly the notations used so far. We
assume that g;:N, - Y¥ for any ie[l,e], and that Y,...Y, and
{by, ay, by, ..., 04, b, a,, b, #} are disjoint. We define

Q=Y,U...UY,U{by, a5 b, ...,a,b, ay, by, #}.

Indeed these are the notations used so far except for Y,, ¥, and Y,, which
were called X, Y and Z. '

We define
Fo o o= Fy T2 1.F,
St o a2=Sg T2 1.8,
E, .. . .=E 1. ...1.E,
Us o ae= T (Fy U# U DT, 1(F,, U # U,))
Ly, 0T E e Y s, 0= Se e U U e

Obviously the previous results generalize:

THEOREM 9: If g4, . . ., g, are structure functions on disjoint alphabets, then

F,., ... g s aregular language, E, ~~ , and L, , are context-free
languages, U, . , =S, and for large enough n we have

Pryp . 0 ®=0r,  )=n—1+Z )+ @)+ ... 2. ()n) .. ).
6. Main example

DEFINITION 17: For any positive integers i and j we define the alphabet
X, =Xy pXa 5o Xi ;)
DeriNiTiON 18: We define v, ;: XF¥ — XF; to be the strictly alphabetic iso-

morphism, which adds the second subscript j to every letter. I. e. v; ;(x)=x, j
Jor every le[1, i].
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DErFINITION 19: Let k4, . . ., k, be a finite sequence of integers greater than 1.
Then Ly, . . ., will be a short notation for

L

Gky, 10 Sky)s (ky, 20 Sky)s -+ 5 (kp, e© fi)

Remarks: This notation is compatible with the notation L, defined in the
previous section to mean L, for an integer k> 1, if we identify X, and X, .

— The functions t’s are needed only to ensure, that the structure functions
Yy, 1° frys 1k2,2°f,(2, «« sy, ¢ ° f, use disjoint alphabets X, 15 -+ 9 Xy, )

Theorem 9 yields that L, , is a context-free language, whose rational
index is

Pray . M=py  (W=n—1+ Lfﬁj(w L%J(}H’ . L%Jn). )

for large enough n. So that

BLkl . (n)=kal . (n) ~ pltlke+ .+ 1k
v ke v ke

THEOREM 10: Let re Q M [1, + oo[. Then there exists a contexi-free language
L such that py, (n)=p (1) € O (). '

Proof: If r=1 then L= S, works, since ps, (n)=ps, (n)=2n—1€0 (n).
e Let us assume r>1. Then r=p/q for some integers p and ¢ such that

0<g<p. Hence r=1+(p—q)1/q and we can choose L=L, = ,. O
p—gqtimes
We study now the domination between the various L, ., . The three

following theorems will provide an easy way to build infinite strictly increasing
or strictly decreasing sequences of context-free languages.

THEOREM 11: Let gy, ...,8, and hy, ..., h, be two sequences of structure
Sfunctions. If g;z h; for all i, then L, =L, . ., if these two languages
exist.

Proof: Let us assume that g;:N, —» Y* and h,:N, - Z¥ for i=1,.. ., e
The existence of L, ~ , means, that the e+1 alphabets
{ b1,a5,bs, .. .,0,b,,0,,b,, # } and Yy, ..., Y, are disjoint. Similarly, the
existence of L, ., means, that the e+1 alphabets Z,,...,Z, and
{ bi,a3,by, ..., 8, b,,a,,b,, # } are disjoint.

For every i in { 1,...,e }, we have g;=h;. This means, by definition, the
existence of a rational transduction o, ,: Y¥ — Z} with some properties. We
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define the rational transduction o;: b s Y¥ — b¥ i ZF such that

13

=1
O~ Tib;)° Ogi” Wity )y

It is the rational transduction which maps every word in bf Lu w onto
b¥ w o, 4, (w) for every word we Y}.

We define
Q=Y,U...UY,U{bya,b,, ...,a,b,0a,,bs, # }
and
Q=Z, U...UZ,U{by,a5by .. .,0,b,a4b,, #}.

We are now ready to define the rational transduction ¢’ : QF — QF such that
C”(Lm, .. -,ge)=Lh1, L ket

o IfweQf—F, , thenoc”(w)=d.

e Let us assume now that we F,, . Then we have

piz

p‘ Piy, iz
wea [] <a2a,~2 I <a3ai2,i3 11

iz2=1 iz=1 ig=1

Pi,, ...,

2 crte=1
X< I1 (aeuizv,,.,ie(awb’;)”l‘y--,ie)...)))
ie=1

where
peN, aebf w Y¥
pi, €N, o,ebs; w Yy for 1<i,<p,
Piy, i €N, %, i, €05 w ¥y for 1<i,<p and 1=i3=p,,,
piz,...,ieeN’ cx‘iz,.. .,ieeb:u-l Y: for lélzél’a

l§i3§pi2) . ',léie+1§pi2, .

et
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Then we define

P 7i, Piy, iy
c’'w)=oc;(®) H (az o, (,) l_[ (‘13 03 (%,, i) H
izg=1 iz=1 =1

pi

x <... 11 (aece(ah,...,Q)<awb:)mr‘~‘,n).;.)>).

i,=1
The graph of the transduction ¢’ is
Z'=2%,((a2,82) X, (@3, 3) T3 (- - . (8, a) Z,(ag 0% X a5 L)) .. )F)¥)*

where X, denotes the graph of the rational transduction ;. The product of
the two regular sets a, b¥% Xa, b* =(a,,€)(b,,e)*(e,a,)(s,b,)* and the
graphs of rational transductions X, ..., %, are rational subsets of Q¥ x O
and so X" too. This proves that ¢’ is a rational transduction.

As in the proof of theorem 7 the properties of the o,’s result in
G” (Ugl, - A,ge)= Uhl, Doy he and 0” (Egl, .. .,gz):Ehl, .. ., he hence
0'" (Lgl, .. .,ge)=Lh1, ..y he and Lgl, .. >Lh1, .. s he D

s Ge=

Theorem 11 has the corollary:

THEOREM 12: Let g4, ...,8, and hy, ..., h, be two sequences of structure
Junctions on disjoint alphabets such that g;<h; for all i, and g; <h;, for some
ig- Then Ly~ , <Ly . . 4.

Proof: This theorem can be proved in the same way as theorem 8:
Pry .. 0 ~n]] 20
i=1

‘_)L,,l, . ,,,,E(n) ~n n ﬁi(")-

i=1
For all i, since g;<h;, lemma 16 yields

£:(n €0 (7 (0 ()
For i, we have

8o (W €0 (B, (m).
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These facts result in
Pr,, . ., meo(y . (OM).

On the other hand we have Bth, L ameo@™).

Lemma 17 yields then that ;—)th, o hg(n)éO(ﬁLgb .., (Om)) so that
lemma 15 yields that L, ==, 2L, . ,. O

Hence, if ky, . . .,k,and /,, . . .,I, are two different sequences of integers,

such that for all i we have 2<k; </, then L, =, >L, .

NortaTiON: Let (g4, . . ., g.) be a finite sequence of length e. We shall denote
by (g1, - --.8e. ... 4) the finite sequence of length e—1 obtained by the
removal of g,..

THEOREM 13: Let e be an integer greater than 1. Let g,, . . ., g, be a sequence
of structure functions. Let ¢'e{ 1, ...,e}. Then

Ly, 6> Lg g e
Proof: We shall only prove this theorem in the case e=4 and ¢'=2. The
proof is similar in the general case. '
Let f:N, > X* g:N, > Y* A:N, > Z* and /: N, — T* be four struc-
ture functions, such that X, Y, Z, T and { b, a,, b,, a;, b3, a,, by, a
b, # } are five disjoint alphabets. We shall prove that

0

Ls g ni>Ly i1

For that we choose a word w; in a;S§,7,S, and a positive integer n,
such that g(n,) exists. Then we transform every word belonging to
Ly gniN Fpl,(gn)wie™ ' as F, 1, F) into a word of F;t, Fy 13 Fy by
removing all the factors of the form g(n,)wjs~'a, and then by decreasing
by one the subscripts of the letters b;, a, and b,. The removed factors follow
the occurrences of a,. '

Indeed this transformation is a bijection from
Lf, g bl N F; Tz(g(ng) W’ifl ay; F,1, F)

onto L, , ;, and it can be performed by the reciprocal of a morphisme ¢.
Let us detail this. Let us define

Q=XUYUZUTU{by,a,b,,a3,b3,04,b4,a,,b,, #}.
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Let n,(resp. n, and n;) be the least integer, for which g (resp. # and ) is
defined. Let

wy=as h(n)(a,l(n) a?l)"™

be the word in a; S, T, S, having a minimal number of occurrences of a,.
Let

Wy =g(ng) wie ™! as.

w, has been chosen such that

VueQ*, woue(S,135,148) <« ue(S,1,5),
VueQ*, wyue(U,13U,1,U) < ue(U,T,U),
VueQ*, wyue(E,NE 1, E) < uc(B1,E),
VueQ*, wyue(F,13; F,14 F) < ue(F,1, F).

We define the morphism

©: (XUZUTU{by,a,b,,a3,b3,a,,b,, # })*—>Q*

by
o(x)=x if xe(XUWZUT)

@ (by)=b,

¢ (a)=a,w,
¢ (by)=0by
(p(a3)=a4
@ (b3)=b,

0 (a.)=a,
oWb,)=b.

Then obviously

(p_l(Ff,g,h,l)=Ff,h,b
(p_l(Sf,g,h,l)=Sf,h,la
(p_l(Uf,g,h,l)z Ugnis
(p—l(Ef,g, h, l)=Ef,h, I3
ot Ly, g n, D=Ly 1
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So that L, , , 2Ly ;- On the other hand we have
Pry o n i~ P, (DE ()
so that
Py WeEO(PL, (1)

and we can conclude as in proof of theorem 12, that L, , ;2L , 4 O

E g let ky,...,k, be a sequence of integers greater than 1. Let
ee{l,...,e}. Then L, T P P

VIL. OTHER EXAMPLES OF STRUCTURE FUNCTIONS

1. First example: a structure function leading to a context-free language whose
rational index is ® (ninn)

DeriNiTION 20: Let X,,,= {a,b } and

fexpi N, —»X:‘xp
i-1
i—babtab®ab? ... ab® '"1=p I ab? b
j=1
Ie
‘fexp(l)zb

Jexp (2)=bab
S (3)= babab®
Sexp (4)=babab® ab’
Suxp G+ 1)=fo (i) @bl Tere @1

Let us show that f,, is a structure function and x, _=a:
exp

L4 X:‘xp _ﬁxp (N +) = (X:‘.kxp - b (ab*)*) U V# (X:‘xp’ l . l >4, I . l > b*) (ab*)* SO
that according to lemma 9 X%, —f.,,(N,)<S..

o VieN,, | fop ) |,=i— 1.
o VieN,, | f,,()|=2"—1, so that

lim | f,,()|/i=c0  and  F,()=|lIn,n].

i— o
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Theorem 6 yields that L, is a context-free language and for large enough
n we have

po“p(n)=;_)Lfexp(n)=n— 1+nf o, (m)=n— 1+n|In,n |~ nln,n.

2. Second example: a structure function leading to a context-free language
whose rational index is ©® (n1n1nn)

Let us define a new notation in order to express the next examples.

DermNiTIoN 21: If ie N, and w is a word, such that |w|<2'71 =2, then we
define

Fop (1, W) =foyp () 67117 L em,
i. e. a copy of o, (i) in which we have replaced the suffix b'*1** with cw. If

|w|>2""1 =2 then f,., (i) ends with too few b’s and F.,, (i, w) is not defined.

E.g. F,,(4,d f.,(2)=babab’® abcd® bab and F,,(3,d* f,,(2)) is not
defined.

Hence, in particular

| Fexp(i,w)|=2i-1
and
| Fop (W) [, =1—1+| W],

LeEmMA 18: Let f: N, — X be a S.-function. Let X’ be a subset of X. Then
the function g:i— F., (| f () |x+1, f () is a S,-function.
Note that X and {a,b, c} are not necessarily disjoint.

Proof: Let us define Y=X{J {a, b, c} . Let us define the rational trans-
duction t:{a,b}* > Y* whose graph is made of all the couples
(wy 82121 wy ew,) for wie{a,b}* and w,e Y*. Then

Y*—g(NL)=(T*—Xg,c ¥¥)
Ut(XEp —Sexp (N 1))
U X e (Y= f(N,))
U V# (X:‘xpﬂ l - laa c, l . |X’a X*)-
In this union the first term is regular. The two following terms are dominated

by S, since f,,, and f are S,-functions. And the last one is dominated
by S.. This proves that Y*—g(N,)<S5.. O
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LemMA 19: Let f : N, — X be a S,-function. Let X* be a subset of X. Let z
be a letter, which does not belong to X. Then the function g: i+ f (i)z!/©Ix
is a Sy-function.

Proof: Let us define Y=X {z}. Then

F=g(N)=(*—X*z2)UT*—f(N,)z* UV, (X*

x| - ]52%).

In this union the first term is regular. The second term is dominated by S,
since fis a S,-function. And the last one is dominated by S.. This proves
that Y*—g(N,)<S,. O

For f=/f 0 X=X, X'={ a} and z=d this lemma yields, that
gl: i'_).f;xp(i)di_l

is a S,-function.
Lemma 18 yields for f=g,, X={a,b,d } and X’={ a,b }, that

12 i Fexp (2ia fexp (l)dt-l)

is a S, -function.

Indeed g,(/) is defined for every ieN, and [g,())|,=i—1 and
|g2(0)|=2%—1. So that lim |g,(i)|/i=co and g, is a structure function.

i—> o
According to theorem 6, L, is a context-free language, and for large enough
n we have

png(n)=5Lg2(n)_=n—1+n§2(n)=n—1+nLln21n2n_| ~ nln,Inn.

3. Third example: a structure function leading to a context-free language whose

rational index is @ (n */Inn)

Let k be an integer greater than 1. For f=f, and X=X =X, lemma 18
yields, that the function g5:i F,,, (%, £, (i) is a S.-function. Indeed it is a
structure function such that x,=x, and |g;()|= 2*—1. According to
theorem 6, ng 1s a context-free language, and for large enough »n we have

PLgs(")=l_3L93(n)="_1+”§3(n)=”_1+”|_ “In,n | ~n *In,n.
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4. Fourth example: a structure function leading to a context-free language
whose rational index is ® (nﬁ) '

We define g, to be the partial function such that g, (n) is defined only if n
is a power of 2, and then

8aQ)=F oy (i+),d* " fuy (0) £o, () of, (j) @22 77 pU+ 1?22

where j= L\/fzj

Remark: j is the only positive integer such that 2 <22 <(j+1)2

LemMA 20: g, is a structure function verifying |g, (25)|=2""0*YD1—1 and
x,,=d.

Proof: In order to prove that g, is a structure function, we define
gy i d T [, () fo () oy (@ U P2,

Let X=X, Ui {a,b,c,d}. We have g4, (N,) = X* and we are going to prove
that X*— g/ (N,) is equal to the union B of the following eight languages:

B =X*—d*{a,b}*X5cXia*b"
B,=V.@%|.|.&|. |[.{ab}) XtcXsa*b*
By=a*V, ({ab}*] |oe| . | XD c X a*b*
By=d*({a,b}*~fuy (N, ) X c X a*b*
By=d* {a,b}* (X1, (N.)) c Xy a* b*
Be=d*{a,b}* X} c(X5—f,(N,)a*b*
B,=d*{a,b}*V . (X5c,2]. |x,*]| |o&]. |, X5a®)b"
By=d*{a,b}* X3V, (cX35,3]. . +2] . |, e] . |.a*b™).

e For any integer i, g, (i) does not belong to this union because
gi(ed* {a,b}* X5 c X% a*b*
|1 =2 1=| £y O
| Jow D ]=i= 1= £, ],
Jexo (D€ fexp (N
f2De f2(Ny)
£0)efa(NY)
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2lfz(i)C|X2+|fZ(i)c|c=2lf2(i)l+1:2(i2_1)+1
=22-1=(P-D+Q =) =| ,()a** 7|
3l (D ]+2]efa (D, =3+2G—1)
=2j+1=Q— )+ ((+1)?—2i%)=|a? ~# pi+ -2 |
This proves that g, (N,) and B are disjoint, i. e.
g (N,) c X*—B.
e Conversely let w be a word in X* — B. w belongs to X*— B, i. e.

wed*{a,b}* X5 cX5a*b*.
Since w belongs neither to B, nor to B, nor to Bg, we have

wed* f o, (N> (N ef, (N )a*b?,

w=ad"f . (") f () cf, () aV,

for some 7, i, j, re N, and p, geN.
Since w does not belong to B,, we have p=2""""
Since w does not belong to B3’ we have i' —1=i—1ie. i =i.
Since w does not belong to B,, we have 2i2—1=(j2—1)+qie. qg=2i>—j2.
Since w does not belong Bz, we have 2j+1=qg+r i.e.
r=Qj+1)-Q*—-2)=G+1)2-24
g=0and r>0 hence <22 <(j+1)? i.e. j= [_\/?_] We have proved
that w=g}, (). Hence
84(N,)>X*—B.
We have proved that g, (N,)=X*—Bi.e.
X*—gs(N,)=B.

B; is a regular language, and B, ... Bg are languages dominated by S..
This proves that g is a S_-function.

Since | g5 (1) | x,,.;=i+j— 1, lemma 18 yields that g, is a S,-function too.

S O|=2 =D+ -D)+@-D+1+(*—-1)
+Q2=H((+1)?*=2%)~2  eo (2MH).
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Hence g, (29 =F,,, (i+], g4 (7)) is defined when i is large enough.
We have

|ga (2], =2"—1
and
|g4 (29 I =2i+ti =2l +V2_
so that

lim |g,(29/2'= co.

i—>

Thus g, is a structure function and x,,=d. 0

Let n be an integer large enough for g,(n) to exist. Then g, () is the
largest integer p such that

‘ 84(p) l <n—1.
Hence p is the largest power of 2, say 2, such that
|g4(2i)|§n— 1.
This inequality is equivalent to the following ones:
2i+|J§i]_l§n_ 1,
Li+ﬁi] <log,n,
Li+ /2] < |logyn],
i+\/27<l+ | logyn ],
i<(\/§——l) | 1+1log, 7.
This upper bound on i cannot be an integer, so that the largest i is

L(\/ﬁ—l)ti+log2n_] Je(\/§—1)10g2n+0(l)

and the largest p is

§4 (n)= oLl +logy nj (V2 - Dig nﬁ— 120 =@ (n‘/i_ 1)‘
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Theorem 6 yields that L, is a context-free language, such that for large
enough n we have

Pr,, (MN=py, (M=n—1+ng, (A=n—1+n200 e I-Dic@ (n'?).

This kind of construction may be generalized:

5. Fifth example: structure functions leading to a context-free language whose
rational index is © (n*) for an algebraic number A > 1

The main example of structure functions was the family of f,’s. For any
integer k greater than 1, we have 7, (1) € ® (n'/*). We extend this notation for
other non integral numbers:

LemMA 21: Let A be an irrational algebraic real number greater than 1. Then
we can find a structure function f, such f, (n)e® (n'/*).

Proof: Let P be a minimal polynomial of A, i.e. a polynomial of minimal
degree with integral coefficients such that P(A)=0. Let m be the degree of
P. Let us assume

P(H)=agto,t+...+a,t"™
Since P is irreducible, A is a simple root of P, i.e.
P(AM)=0

and P’ (M) #0, where P’ is the derivative of P. If P'(A)<0, then we replace P
by — P in order to ensure that
P'(\)>0.

P’ is a continuous function. Hence we can find two rational numbers p,/q,
and p,/q, such that

1<p1 x pz

Vte[p’ ] P (1)>0.
91

Hence

Vte[p—, x[, P(1)<0,
1

Vze]x, 5’—2], P()>0.
92
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The integers p,, q,, p, and ¢, are now fixed, and we shall use them to

define f;.
n, =[l/min {12 -\, A— &}]
9 q:

Let
Let i be a positive integer. An integer j verifies the conditions

q1J—p1i20

P2i—q,(j+1)=20 (12)
— ™ P(jli)>0

" P((+1)/i)>0

if and only if it verifies

it _p
l 92

b

|
A
~ 1~
A
>
A

and then
j= Lixj. 13)

Furthermore, if i=n, then (13) and (12) are equivalent, i.e. Likj is the only
integer j verifying (12). If i<n, then (12) may have no solution or it may
have the unique solution | i} |.

We define the two alphabets

D={d,, ..., ds}

X={x_{  a.p@®becc}

The structure function f, will be defined on the alphabet

Q=DU X
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For every positive integer i for which (12) has a solution j we define

fi)=dyc? " dy () dy T dy a2 TR0 D gt I, (i)

m 2
d7fm(f)dsb-‘"'"“”>d9<x_1(n (axf;“)"'"‘*)axm) ds

k=0

m

2
G Vs (x-( TL @2 Y e, ) b oo,

and

fk(z) xp(]’f;.(l))

The letters of D are used as separators.

The factor d, ¢’*~* ensures that a letter occurs 2'— 1 times in £} (i) and
thus in f, (2% too.

The factor d,f ., (i) gives a relation between i and 2'.

The factor dy ¢~ ensures that a letters occurs j— 1 times in f7} (i) so that
we can define F,, (j, f; (i)).

The factors d, aP2! 92UV g, gui=rii| g p="P UM and dg p™F G+ 1 corre-
spond to (12).

The factor dgf,, (i) gives a relation between i and * for every k[0, m).

The factor d,f,,(j) gives a relation between j and j* for every ke[0, m).

m
The factor x_1<ﬂ (ax{;")""'_")ax,,,+1 is used to construct the number
k=0

(j/i)ki™, which is the number of occurrences of x,, from the numbers j* and
™k for every k in [0, m]. The factor (axj’y" * is preceded by x,_, and
followed by ax,,, for every k in [0, m]. This explains what x_; and ax,,,,
are for. /™ P(j/i) is the linear combination of these numbers i"~** whose
coefficients are those of P. These coefficients may not have all the same sign,
but in the equality

k=0 k=0

—i P( >+ Y. max (0, o) i™ ¥ = Z max (0, —o) ™ **+0
i

both sides are sums of non-negative numbers. This is why this factor appears
twice.

In the same way the number i” P((j+ 1)/i) is built in the third line of the
expression of f; (i).
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Let K=(DX*)*. The language Q*—f; (N ) is the union of the following
languages G, . ..,Gq,.

G1=Q*—<d1 c*dy{a, b}*dyc*d,a* dsa* dg X%,

m

2
d; X dg b™ dy (x—l (H a(bxl:)+>axm+1) dg

k=0

jid 2
d7X,",‘,d8d9<x_1<H a(bx:)+)axm+l) d8b+>

k=0
G,=Kd,({a,b}*—f,(N)K
Gy=K{dg, d; } (X%—fmn(N K
G,=V.Wd,c*|.|,¢]|.|,d{a b}HK
Gs=KV,(dyc*dya*, q,|. I(d3,c,d4)+] Nos K P2 - g, 2y d6 Xm) K
Ge=KV_.(dsc* q,|. |, K |- ot P1] - ag xyy 950" ds X) K
Gr=KV, (dy{a b} | |0 K | . | de XD K
Go=KV,(dyc*, | | K, | . | dy X2)dyb* K
Go=KV.(dyc* | .| K. | |nndy X2) dy K

Gio=K U V. (ds X7, Inxki,Kd9X*xk—1, |- Ia, (ax$)Max,,, Q*K
k=0

G =K U V,(d; X% |1y, ids b do X*a, | . |, x;)aQ* K

k=0

G,,=KV, <d8b* do X* Xy g, | o+ Y max(0, a)| . |4 &
k=0

m

| .o+ Z max(0, —oy)] . |x x_lX*dSb*>K,
k=0

12
These twelve languages are dominated by S.. Hence Q*—f/ (N, )= U G, is

i=1
dominated by S. too. So f'; is a S.-function.
Since |f; (i)|.=/—1, lemma 18 yields that f, is a S -function.

If2@)|~2"eo(?)
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and f;(i) is defined when i=>n,. Hence f, (2" is defined when i is large
enough.

We have
lf;. 29 LI =2t—1
and
I/, @) |=2/—1=21"—1
so that

lim | £, (2%)|/2'= co.

i— o

Thus f) is a structure function and x,, =¢".
Like in the fourth example we get

7y (9 =252 21 @ ()

and

Pry, MEO @'+, O

THEOREM 14: Let A be an algebraic number greater than 1. Then there exists
a context-free language L such that p, (n)=p, (n)€© (n*).

Proof: A may be expressed as A=1+1/A,+ ... +1/A,, where every A, is
an irrational algebraic number greater than 1. Then lemma 21 and theorem 9
can be applied to copies of f; , .. .,f;, on disjoint alphabets. This completes
the proof. O

THEOREM 15: Let A and n be two algebraic numbers such that 1<A<p.
Then there exist two context-free languages L, and L, such that:

P, (M) =py, (MO (@),
pr, (=P, (MO (",
L,<L,
Proof: We may have p=A+1/A,,;+...+1/A, for some irrational alge-

braic numbers A, ... A, greater than 1. We define L, and L, like in the
previous proof. Theorem 13 yields, that L, <L,.
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We can also build structure functions f, such that f, (n) € ® (n'/*) for some
transcendental numbers A, €. g. w/ \/3:

6. Sixth example: a structure function leading to a context-free language whose
rational index is © (n!*V6/®),

The construction of this structure function is based upon the equality

e 21
STEP
First we define the function
a: N, ->N,

i
=) L—ZJ
j=1LJ

We define then g¢ to be the partial function such that g¢ (n) is defined only
if n is a power of 2, and then

g6(2)= exI,(L\/&m_l’x[smj_l
fZ(l_\/mJ)Cad(i)_lmjz b([\/a_(—i_)1+1)2_1_u(i)

XL (02 () TT (s f» ()27 i moa 2 =1 -@ mml)))'

i=1

We can prove easily that gg, like g,, is a structure function, that x, =x,,
and that |g¢ (29)|=2Y*®'—1. We have

0 - 1 Tc2
a@)ei? Yy —+0(@)=—+0()
j=1] 6
and thus
| /oc(i)Je%H—O(l)
so that

g5 (M) €O (n/%)
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and

Pr,, (1) €© (n' VoI,

7. Other examples and generalization

o Let %, be the set of context-free languages, whose extended rational
index is in O (n*) for any real number greater than 1. It is a rational cone,
i.e. it is closed for rational transductions. If 1 <A <p then you can find a
rational number p/q between A and p. There exists a context-free language
whose rational index is in ® (7). This language belongs to %,—%,. This
proves that %, is a proper sub-cone of %,. Hence the family (%), cq1, oo 1S @
strictly increasing family of cones with the same cardinality as R.

e The structure functions g, and g, of second and fourth examples, and

theorem 9 yield for instance that there exists a context-free language whose
rational indexes for large enough n are:

n—=1+g,(n) (n+g,(m) (n+nfsm)
=n—1+ |In;In,n |(n+2'""2 A2 Dl (4 p L\S/ZJ )

€® (n’'2* 5 1n, In, n).

o We could, with this technique, build a context-free language, whose
rational indexes are in ® (n").

e The technique used in this paper can be sophisticated: We can replace
the language S,, omnipresent in this paper, by a generator of the rational
cone of linear languages, like the only language solution of the equation
L=aLa\UbLb\J{e}, whose rational index is in ® (n*). Then the structure
functions could involve decimal numbers and arithmetical computations on
these numbers. In this way we can obtain a context-free language L such
that p; (n)=p, (n) and | p, () —n"|<1 for large enough n.

e Let A be the set of all the numbers Ae]l, co[ such that there exists a
context-free language whose rational index is ® (#*). Since the non-isomorphic
context-free languages form a denumerable set, A is denumerable too.
However it holds all the algebraic numbers greater than I, and seemingly

any computable number greater than 1 like &, e, e+, 2+cos \3/e+2+ln2

or 2+In J /8 + cosx dx, for which there exists an efficient algorithm to
0
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322 L. PIERRE AND J.-M. FARINONE

compute as many of its digits as you wish. So here is an open problem: can
we find an explicit number in ]1, co[~A ?
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