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A LIMITING DISTRIBUTION FOR QUICKSORT (*)

by Mireille RÉGNIER (X)

Communicated by P. FLAJOLET

Abstract. - We establish the existence of a limiting distribution for the number of comparisons
performed by quicksort, ot, equivalently, for the external path length of a binary search tree. We
assume a uniform distribution of the data and prove a convergence in distribution and in Lp, p^l.
The proofis based on a martingale argument.

Résumé. - Nous prouvons Vexistence d'une distribution limite pour le nombre de comparaisons
effectuées par quicksort, ou, de manière équivalente, pour la longueur de cheminement externe d'un
arbre binaire de recherche. Sous rhypothèse £une distribution uniforme des données, nous prouvons
la convergence en distribution et dans Lp, p^l. La preuve se fonde sur un argument de martingale.

I. INTRODUCTION

In this note, we establish the existence of limiting distributions for Quick-
sort and Binary Search Trees. Quicksort, discovered by Hoare [HO62], is a
widely used algorithm for internai sorting [KN73], [SE77], [SE83]. Notably,
it is the standard sort on Unix Systems. Binary search trees are a basic data
structure for sorting and searching. By a standard équivalence principle
(recalled in section II), evaluating the comparison cost of Quicksort reduces
to the study of the external path length of a binary search tree. The first two
moments, mean and variance, have been known for a long time [KN73],
[SE77], More recently, a study of the moments of any order has been done.
In [HE87], these moments are obtained by successive differentiation of a
multivariate generating function C(z, q). This function satisfies a simple

(*) Received June 1987.
(*) I.N.R.I.A., 78153 Le Chesnay, France.
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bivariate non-linear difference-differential équation:

— C (z, q) = C2 (qz, q) (1)
dz

Though moments of an arbitrary fixed order can be computed, it appears
impossible so far to dérive a gênerai formula (a conjecture can be made, see
[HE87] and our conclusion). Thus, one cannot deduce the existence of a
limiting distribution from the asymptotics of the moments. In our approach,
we make use of martingale theory [FE57], [NE72] to prove the existence o f a
limiting distribution in law and in Lp. As pointed out in [HE87], this distribu-
tion is not gaussian since its third moment is not zero.

The plan of this note is the following. In section II, we recall briefly the
Quicksort algorithm and state the relationship with Binary Search Trees. In
section III, we first present some elementary notions on martingales. Then,
we associate a martingale to Quicksort and prove our convergence results.
Finally, in our conclusion, we discuss the problems that remain open.

D. QUICKSORT ALGORITHM

We first present the algorithm, and then the parameters to be analysed,
and our probabilistic hypotheses.

Quicksort is a fast sorting algorithm, widely used for internai sort. The
basic idea is the choice of a partitioning element K [SE83]. For example, let
us consider the integer séquence:

45 677 98 43 42 41 60 130 32 67

and choose K=61 as the partitioning element. Scanning the left sublist from
left to right, one exchanges any key greater than K with a key of the right
sublist, scanned from right to left. This builds a list where K has its final
position, all the keys at its left (resp. at its right) being smaller then K The
intermediate stages are:

45
45
45
45

32
32
32
32

60
60
60

43
43

42
42

41
41

98
98
67

130
130
130

677
677
677
677

67
67
67
98

T h e n , the p r o c e s s c a n b e app l i e d recursively t o b o t h subl is ts ( 4 5 . . . 41) a n d
( 1 3 0 . . . 98 ) .

Informatique théorique et Applications/Theoretical Informaties and Applications
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These successive stages can be represented by a binary search tree. Each
key is used as a partioning element in a recursive call and the level of this
call is also the depth of the node containing that key.

Now, to evaluate the cost running Quicksort on a data set, we count the
number of comparisons to be performed. Each key in a node is compared
once to all the keys occuring in the path from the root to that node. Thus,
our cost is equal to the External Path Length of the binary search tree built.
As the opérations of the algorithm only depend on the relative order of the
keys, this data set can also be considered as a permutation in an. We make
the standard assumption of a uniform distribution of data [KN73], [SE77],
[HE87].

PROBABILISTIC MODEL: For data sets of size n, the n ! relative orders are

equally likely

Under this model, the analysis of Quicksort can be reduced and performed
on binary search trees built by successive insertions. This standard algorithm
for binary search trees is fully described in [KN73], Vol. 3,6.2.2. We only
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give hère an example: the binary search tree built by successive insertions of
the data listed above.

Each order of the keys is associated, for both algorithms, to a binary
search tree. Althrough these trees are different, we have the Equivalence
Principle:

EQUIVALENCE PRINCIPLE: [KN73], Vol 3, p. 428 and [SE77]: The distribution
of the binary search trees associated to Quicksort when data are uniformly
distributed is the same as the distribution of the binary search trees built by
successive insertions ofn rondom keys.

This allows us to consider only the évaluation of the External Path Length
of a binary search tree built by successive insertions. We will chose the latter
approach in the following. In this case, the définition of a martingale, as
well as the proof of the main properties, is more intuitive, hence easier. We
shall prove:

THEOREM 1: There exists a random variable Z such that the internai path
length (and the external path length) of a random binary search tree, once
centered and normalized, converges, in law and in L2, to Z.

Hl. THE LIMITEVG DISTRIBUTION

III. 1. Elementary notions on martingales

Here, we recall very briefly some notions of probability measure —the
cr-fields and the measurability — and the définition and elementary properties
of martingales. One can refer to [FE57], Vol. 2, IV.3 and IV.4 for more
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details on probability measure and to [FE57], Vol 2, VIL9 or [NE75] for
martingale theory.

In probability theory, one deals with special subsets of the sample space,
as defined below:

DÉFINITION A: A o-field se is a System of subsets of a set Q closed under
completion and the formation ofcountable unions and intersections.

Random variables are real functions on Q, but one only uses functions for
which a distribution function can be defined.

DÉFINITION B: Given a o-field se on a set Q, a real-valued function u on Q
is called sé-measurable if for each t the set of ail points x where u(t)St belongs
to se.

The gênerai définitions of martingales involve an increasing séquence of
a-fields (Bn) and a séquence (Z„) of Bn mesurable random variables. A
particular case, that we consider hère, occurs when (Bn) are the a-fields
generated by a séquence of r. v. (Xn), i. e. generated by the subsets X~l (7),
I c M. The r. v. Zn are^„-mesurable or even simply defined as:

where fn are Rn-mesurable. Thus, we shall use the définition:

DÉFINITION C: Let (Xn) be a séquence of random variables and (Zn) a
séquence of &n-measurable random variables. The conditional expectation
E{ZjX1 . . . Xn^1) is the Xn-measurable random variable satisfying, for every
Xn-measurable random variable Y:

E(Z.Y) = E(E(Z/X1...Xn_1).Y).

Two important properties follow from this définition.
(a) Z and E(Z/Xt . . . X„_1) have the same expectation.
(b) If Y is ̂ „-measurable, then:

E(YX/Xt . . . Xn_1)=Y.E(Z/X1 . . . Xn.,\

Hint for (a): Use the définition with Y= 1.

DÉFINITION D: Let (Xn) be a séquence of random variables and (Zn) a
séquence of Xn-measurable random variables. (Zn) is a martingale if it satisfîes
the property:
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From our remark above, such variables have a constant expectation;
moreover, simple properties on the variances are sufficient to establish the
existence of a limit, as stated in Theorem 2 [FE57]:

THEOREM 2: Let (Z„) be an infinité martingale with E(Z*)<C< +oo for ail
n. There exists a random variable Z such that Zn-*Z in law and in L2.
Furthermore E(Zn) = E(Z) for ail n.

Moreover, if (Zn) satisfies: E(\Zn\
p)<Cp for somep>2, then Zn^Z in LP.

lu . 2. A martingale associated to Quicksort

We prove here the existence of a limiting distribution for the path length
of a binary search tree. As pointed out in Section II, this is also the number
of comparisons performed when running Quicksort.

We first state our notations. The depth of insertion of a record is the depth
of the node where this record is inserted, where we take the depth of the
root to be 0. We note Xn the random variable counting the depth of insertion
of a random record in a random binary search tree of size n—1. (We have
Xx =0 and X2 = 1.) The internai path length is then:

n

IPLn= £ X,
1 = 1

For a reason of convenience, we also define:

the random variable representing the external path length of a binary search
tree built on n records. Noting that the path lengths are simple ^„-mesurable
functions, we are now ready to define a martingale. This is the purpose of
the following Proposition 3. Then, applying Theorem 2 to this result, will
yield directly our main result, Theorem 1 above.

PROPOSITION 3: The random variables

1-l) _IPLa-2(n+l)H

n+1 n+1

form a martingale with a null expectation. Their variances satisfy:
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Proof of Proposition 3: The proof is based on the foUowing two lemmas.

LEMMA A: The conditional expectation of the random variables Xn and Yn

satisfy:

LEMMA B: The expectation of the internai and external path length satisfy:

Proof of Lemma A: From the définition, nE{XJXx . . . Xn_x) is the sum
of the possible values for Xn, in a tree built by successive insertions at depths
Xl9 . . ., -XB_1. The insertion of the n-l-st key, K„^u at depth Xn_l3 modified
the binary search tree built on the keys Kl9 . . ., Kn_2 in the foUowing way.
A leaf at depth Xn^1 was changed to a node, where Kn^1 was inserted, while
two more leaves at depth Xn^1-\-l were created, where the n-th key K„ may
now be inserted. Thus:

nE(XJXt. . . Xu-l) = <fl-\)E(Xu-tIXl . .. Xn

Unwinding this récurrence, with £(X1) = 0, yields:

nE(Xn, Xx... XB_1)= £ (Jf l+2)=y._1.

Now:

E{YJX1 . • . Xn.x) = E{Yn_^Xn + 2iXx . . . Xn_x)= r„_1 + -

n

Proof of Lemma B: It follows directly from Lemma A that:

) 2 " 1

+ 2 L + 1

+ 7 2L
n+1 n n+1 £=2 i
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As an immédiate conséquence, one finds the martingale property for Zn

EÇZJX, . . . Xn_1)

n n+l n+l

Now, to dérive the expression of the variances, we rewfite:

n Xn

n + l

and get:

(n+l)2 " " (n+l)2 (n+l)2

Using E([Xn-E(X„)]/X1 . . . X„_1) = Z„_1 and noting 7i„= ——, we get:
n+l

£(Zn
2) = £(Z2_1) |

The moments of the depth of insertion X„ are well known [KN73], [LO87]
(the limiting distribution being gaussian). In particular:

n) = 2(H n - l ) -4(H n
2 »- l ) ,

n

with H^}= Y, l/*2- Summing these expressions yields:

This complètes the proof of Proposition 3 (and hence also Theorem 1).

IV. CONCLUSION

We have been able in this note to prove the existence of a limiting
distribution for the path length of a binary search tree or, equivalently, the
number of comparisons performed by Quicksort. The proof uses a martingale
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argument and enables us to rederive, in passing, the first two moments of
the distribution.

It is worth pointing out hère that in [HE87], the dérivation of the équation
(1) gave a surprisingly simple formula for the cumulants (kp)peN of the
distribution, namely:

00 1
where £>(p)= £ —> anc* it is conjectured that such a formula, verified for

n=inp

7?^ 20, holds true for any/?, with a uniform approximation. Solving this open
problem and finding the Cp would enable us to explicity characterize the
limiting distribution for which we have given hère a "non constructive"
existence proof.
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