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OGDEN'S LEMMA
FOR

NONTERMINAL BOUNDED LANGUAGES (*)

by R.BOONYAVATANA (x) and G.SLUTZKI (l)

Communicated by Robert CORI

Abstract. - We present an Ogden-type pumping lemma for nonterminal bounded languages.
It is shown that these Ogden-type conditions are stronger than the classical-type pumping
conditions for nonterminal bounded languages. However, we show that they are not sufficient.
In fact, we construct counterexamples at various levels of the Chomsky hierarchy, each of which
satisfies the conditions of our Ogden-type lemma.

Résumé. - Une grammaire est dite bornée pour les non terminaux si tout mot qui dérive de
Paxiome contient un nombre de non terminaux borné par un entier K. On démontre ici un lemme
d'itération du type de celui d'Ogden pour les langages engendrés par ces grammaires; ce lemme
améliore ceux déjà connus pour ces langages. Nous montrons toutefois qu'il ne constitue pas
une condition suffisante en construisant des exemples de langages satisfaisant ce lemme, et pris
dans chacune des classes de la hiérarchie de Chomsky.

1. INTRODUCTION

Like the pumping lemma for context-free languages, Ogden's lemma is
useful to prove that a given language is not context-free. It is known that
Ogden's lemma is more powerful than the pumping lemma for context-free
languages [7, 9]. The additional power of Ogden's lemma seems to stem
from the use of marked positions which helps to eut down the number of
factorizations considered in the pumping lemma. Boasson and Horvâth[3]
showed that there exist non-context-free languages satisfying Ogden's lemma
and hence, Ogden's conditions are not sufficient.

A pumping lemma for nonterminal bounded languages is proved in [4],
The pumping conditions as presented in [4] were shown not to be sufficient.

(*) Received March 1985, revised January 1986.
i1) Department of Computer Science, Iowa State University. Ames, IA 50010, U.S.A..
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4 5 8 R. BOONYAVATANA, G. SLUTZKI

In this paper, we prove Ogden-type lemma for nonterminal bounded lan-
guages which is a generalization of a similar lemma for linear context-free
languages, see section 2.

The paper consists of four sections. The second section gives preliminary
définitions and the proof of the linear Ogden's lemma. The third section
contains our main resuit, the Ogden's lemma for nonterminal bounded
languages together with examples of its application. In the fourth section
we pro vide counterexamples to show that although Ogden's lemma is an
improvement of the pumping lemma, it still does not provide sufficient
conditions.

2. PRELIMINARIES

In this section basic définitions are introduced. We mainly follow [1, 7, 8]
for our terminology and notation. We will discuss Ogden's lemma for linear
context-free grammars at the end of this section with an eye towards a
generalization to be discussed in subséquent sections.

A context-free grammar (cfg) is a construct G^(N, T, P, S). N and T are
two disjoint sets of nonterminals and terminais respectively; P is a finite set
of productions each of the form A -> ot with A in N and a in (N\J 7)*; the
start symbol S is in JV.

V is used to dénote N U T, the vocabulary of G. GA, where A is a
nonterminal of G, will be the grammar resulting from G by making A the
start symbol; thus G = GS. Let X be a subset of V and let w be in V*. %x(w)
is the number of occurrences of symbols of X in w and #K(w) is the length
of w. The language generated by G is denoted by L(G); language L is a
context-free language (cfï) if it is generated by some cfg.

For a word in a language L we may regard some positions of the word as
distinguished; we refer to them as marked positions. For z in T*, m (z) is the
number of marked positions of z.

Let t be a dérivation tree for some word in L = L(G). We define a node n
of t to be a branch node if n has at least 2 direct descendants both of which
have marked descendants. Let q be a leaf of a particular root-to-leaf path n
of t. Then a branch node n on n is a left branch node (relative to n) if a
direct descendant of n not on the path n has a marked descendant to the left
of q; otherwise, n is a right branch node. It should be noted that, contrary to
the usual définition (cf. Ogden's original proof [9]) the notions of left and

Informatique théorique et Applications/Theoretical Informaties and Applications



OGDEN'S LEMMA FOR NONTERMINAL BOUNDED LANGUAGES 4 5 9

right branch nodes are not symmetrical i. e. here, a branch node cannot be
simultaneously left and right.

A production A -> a, in a cfg G, is linear if #N(oc)g 1. A cfg is linear (Icfg)
if all its productions are linear. A cfl is linear (Icfl) if it is generated by some
Icfg.

We now define the rank functions. Let G = (N, T, P, S) be a cfg and let a

in F* be a sentential form. If the set { %N (p) | a => P} is finite then we let
G

rank(a) = max {JfN(P)|a => P} otherwise rank(a) is undefined. A cfg G for
G

which r&nk(A) is defined for every nonterminal A is called nonterminal
bounded (ntbg). The rank of G, rank (G), is max [rank (A)] where A is in AT. G
is k-nonterminal bounded (k-ntbg) if rank(G) = fc. L is k-nonterminal bounded
(fc-ntbl) if it is generated by some /c-ntbg. Note that rank(w) = 0 for vv in T*

k

and for ot = a1a2 . . . ak in F*, rank(a)= £ rank(a£); moreover, every ntbg
i = i

has nonterminals of rank 1.

We will use p to dénote the maximum number of occurrences of terminals
in the productions of a grammar, i. e. /? = max {#T(oc) [ A -> a is a production
in G}. £ will dénote the empty word. Unit productions are productions of
the form A^B where A, B are nonterminals and an e-production is a
production of the form A -> e.

Throughout this paper, capital letters will be used for families of languages.
Thus CFL and LIN are respectively the class of all cfl's and lcfl's; k-NTBL
is the class of all fc-ntbPs. In the rest of this section we will present Ogden's
lemma for linear languages. It will provide a good background for the
generalization which will be discussed in subséquent sections.

LEMMA 2.1 (Ogden's lemma for LIN): If L is a Icfl then there is a constant
n (depending only on L) such that if z is in L and m(z)^n then z can be
written as z = uvwxy such that:

(1) m (uvxy) ^n;

(2) either each of u, vy vv or each of w, x, y contains a marked position;

(3) for every z^O, utfwx^y is in L.

It is perhaps appropriate to point out here that Ogden's lemmas for CFL
and LIN differ precisely in condition (1) of the above lemma where in the
CFL-case the requirements is m (vwx) ̂  n rather than m (uvxy) g n. We should
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460 R. BOONYAVATANA, G. SLUTZKI

also mention that in the classical pumping lemma for linear languages condi-
tion (1) reduces to |uvxy \^n ([2], proposition 6. 6).

We will first prove a claim which relates the number of marked positions
of a word with its dérivation tree in a grammar.

CLAIM 2.2: Let G be a Icfg without e or unit productions. Let t be the

dérivation tree for the dérivation A=> z, z in T*, and C a root-to-leaf path in t
G

with maximum number of branch nodes. If C has Sb branch nodes, then

Proof of claim 2.2: By induction on b. For 5 = 0, it is clear by the définition
of branch node that m (yield(t))^ 1. Now let t be as described in the claim
(with b^ 1). Let B be the label of the first branch node on the path C. Since
G is a lef g, the first step in the dérivation from B is B=>a1Blfi1 where
ocl5 Pi are in T* and hence t looks like:

The part of the path C which is in ^ has Sb— 1 branch nodes and
(a) = m(P) = 0. By induction hypothesis, m (yield(t1))^(6— l)p+ 1 and so

We have proved the claim. •

Proof of lemma 2.1: Without loss of generality we may assume that e is
not in L and L — L(G) where G = (AT, T, P, S) has no e or unit productions.
Put k = \N\ (cardinality of JV), and n = 2(fc+l)/? + 2. Let z be in L with

Informatique théorique et Applications/Theoretical Informaties and Applications



OGDEN'S LEMMA FOR NONTERMINAL BOUNDED LANGUAGES 461

m(z)^n and let t be the dérivation tree for z in G; let C be the root-to-leaf
path in t with maximum number of branch nodes.

By claim 2.2, C has at least 2/c + 3 branch nodes. Let bl9 b2, . . ., b2k + 3

be the first 2 k -f 3 branch nodes in the path C. We may assume that at least
/c-f-2 of £>!, . . ., b2k+3 are left branch nodes. The other case can be treated
analogously. Let lu . . ., lk+2 be the first fc + 2 left branch nodes in the
séquence bu . . ., b2k+3. Since there are k nonterminals we can find two
nodes among l2, . . ., lk+2, say le and lf such that (1) le and /ƒ are labeled by
the same non terminal, say A9 and (2) le is an ancestor of lf. This situation is
shown in figure 1.

Since lf is an ancestor of b2k + 3, the path along C from the root of t
down to but excluding ls has at most 2(fc + l) branch nodes. By claim 2.2,
m{uvxy)^2(k + \)p+\<n. Since ll9 le and /ƒ are left branch nodes, each of
u, v and w has at least one marked position. Hence, condition (2) of lemma

2.1 is satisfied. Finally, we have S =>uAy, A=>vAx and A =>w. Therefore,
G G G

S =>ut/wx'j for ail i^O. The proof of the lemma is now complete.
G

D

3. NONTERMINAL BOUNDED LANGUAGES

Ogden's lemma for nonterminal bounded languages which is a generaliza-
tion of lemma 2.1 from previous section will be proved in this section. We
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462 R. BOONYAVATANA, G. SLUTZKI

will first prove an auxiliary claim analogous to claim 2.2 of section 2, then
present the proof of the main lemma.

CLAIM 3.1: Let G be a ntbg and t be the dérivation tree for a dérivation

A=>z, z in T*9 where rank(A) = r. IfC, a root-to-leaf path in t with maximum
G

number of branch nodes, has at most b branch nodes, then
m(z)^(rb~r+\)p + r.

Proof: By induction on r. For r = 1 we have the linear case which has been
treated in claim 2.2. Now let r ^ 2 and suppose the claim holds for nontermi-
nals of rank <r. Let A9 G, C, z, t and b be as stated. Starting from the root
of ty let nx (labeled by A±) be the first branch node on the path C. The first
step in the dérivation from A1\s

A± ^ &! B± ot2 B2 . . . ocR J

and we have the following situation:

n+1

where for all i, 0Lt is in T*,

n

rank (B() = rt , X rj = r a n ^ C^i) = r a n ^ C^)= r>

tt has at most b— 1 branch nodes and Z = OLOL1 y ie ld^) . . . yield(t„)an + 1 p.
Note that a and P have no marked positions. We want to show that
m(z)^(rb — r+l)p + r. There are-two cases to be considered.

Informatique théorique et Applications/Theorcîical Informaties and Applications



OGDEN'S LEMMA FOR NONTERMINAL BOUNDED LANGUAGES 463

Case 1: n > L We have rt<r ( i = l , . . . , n ) . By induction hypothesis
m (yield (td) Û (rt (6 - 1 ) - r, + l)/> + r£. Thus:

FI + 1 n « «

i = 1 i = 1 i = 1 i = 1

Case 2: w—1. We argue inductively on b. lf b=\, A1 is the only branch
node on C, m (yield(tj)g 1 and so m(z)g/7+l^(rft-r-|-l)/? + r. Now assume
that b^2 and the claim holds for C with less than b branch nodes. By
induction hypothesis,

m (yield(t1))^(r1 ( 6 - 1 ) - ^

Thus,

This complètes the proof of the claim. •

THEOREM 3.2 (Ogden's lemma for NTBL): lf L is an r — ntbl and generaled
by an r — ntbg G = (N, T, P, S) then there exists a constant n (depending onL)
such that if z is in L and m(z)^.n then z can be written as z = z1z2 . • . zs,
1 g s ^ r , where each zi can be written as z^u^^^^t such that:

s

(1) £ miUiViX^ûn;

(2) either each of ub vi9 w( or eaoh of w(i xti yt contains a marked position;

(3) for all natura! numbers a £ ^0( l^zgs) z^z^ . . . z(fs) is in L where

Proof: By induction on r. For r= 1, L is lcfl and we have proved the result
in lemma 2.1. Let L be r-ntbl and G = (AT, T, P, S) an r-ntbg such that

= L{G\ r£2,

where kt is the number of nonterminals of rank i in G. Put
n = (2r/c + r+l)/? + r + l . Consider a dérivation tree t for z in L(G) such that
m (z) ̂  H. Let C be root-to-leaf path in t with maximum number of branch
nodes. By claim 3.1, the path C has at least 2/c + 3 branch nodes on it. Let
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bu b2, . . -, b2k + 3 be the first (topmost) 2/c + 3 branch nodes on C. Among
these there are at least k + 2 left branch nodes or at least k -f- 2 right branch
nodes. Since there are /c nonterminals, there exist branch nodes bp bL and bp

1 ûf< i <j, each of which is to be as high as possible in C and such that:
(1) bp bt and bj are of the same type, i. e. either all are left or all are right

branch nodes (note that all branch nodes above bf must be of type different
from bf);

(2) b{ and bj are labeled by the same nonterminal, say A\
(3) there is at most one nonterminal B^A, for which there are four (or

three) proper ancestor branch nodes of bj labeled by B (two of each type),
and;

(4) for each nonterminal E distinct from A and the nonterminal B of (3),
there can be at most two ancestor branch nodes of bj labeled by E (one of
each type).

It is left to the reader to convince himself that such branch nodes can in
fact be found. We will consider two cases depending on the form of the
dérivation tree from the root to bj.

Case 1: The dérivation from S (the root) to A(bj) uses only linear produc-
tions. Since bj is an ancestor of b2k + 3, the path along C from S down to
A(bj) excluding bj contains at most2(fc+l) branch nodes. By lemma 2.1,
we can write z = uvwxy such that (1) m(uvxy)^2(k + l)p + 2^n, (2) either
each of u, v and w or each of w, x and y contains a marked position, and
(3) for every i^O, uv* wxly is in L. Thus, the theorem is obtained with s= 1.

Case 2: The nodes bi9 bj occur after a nonlinear production:

where rank(B) = r'<^r, rank(Bt) = ri9 a£ in T* and ri^

This is illustrated in figure 2. The case where B is at the root of the tree
(i. e., S = B) is easy and left to the reader; in what follows we assume S ^B.
From the way bt and bj are chosen it follows that the number of branch

r

nodes on the path from S to B is ^ 2 £ fc£ + 2.
i = r'

By linearity of the dérivation from S to S' each branch node on the path
from S to S' can contribute at most/? marked positions. Thus, we have

0+1 r

Informatique théorique et Applications/Theoretical Informaties and Applications
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S

a a+1

Figure 2.

Since r ^ 2 and Z k^l it is easy to check that

kjp-lrp + lp.
i — r' i—r'

We now consider m (yield (tj) for each subtree t£. Put

+ 1 for

CLAIM. 77icre exists 1 ̂ ?'^a sucft that m {yield(tj)^n;.

Proof of Claim: Suppose that m(yield(ti))<nI- for all l Then

fl+l a

m (yield (tj))

i - i

» = r

KTp-

jp + lp-

vol. 20, n° 4, 1986
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4 6 6 R. BOONYAVATANA, G. SLUTZKI

r r ' - l

^2 Y, ktrp + 2p + 2 Y ktrp + 2r

< 2 krp -\-p + rp + r 4- 1 = n.

This contradicts the assumption that m(z)^n. Hence, the claim is proved.
Let J={7'|m(yield(tJ))^^}; by the above claim, l:g| J | ^ r . By induction

hypothesis, for each j in J, we can write yield (tj) = zjlzj2 . . . zjs. where
1 ̂ Sj^Vj and each zjt can be written as Zj—u^w^x^y^ with

(1) Y m(u„u„x„;
£ = 1

(2) either each of M ,̂ UJ7 and w;i- or each of ŵ i9 xjt and ^ contains a
marked position for all 1 ̂  i ̂  ŝ -;

(3) z^z^-.-z^? is in L(GB.).
Now we will write z (/ïg. 2) in the form z = z1 z2 . . . zs, 1 ^sf^r where z(-'s

satisfy the conditions stated in the theorem. We will argue in three cases:

Case 1: The first zx is defined to be

ulv1wi xx yx where ut = yx ax yield ( t j . .

t>i=t>hi; w1 = wu; xx=xA1; J i - ^ i where /i =

Case 2: The last zs is defined to be usvswsxsys where us = ulsi; vs = vlsi;
ws = v%; xs = x t o l^ s=^ I S Ia / + 1 yield (tl + 1) . . . afl + 1 y2 where l = max J.

Case 3: For the interior zg, l<g<s, there are two possible cases. The first
is when zg = zjt for j in J and ^ ^ s ^ . For the second case, let h and q be
consécutive éléments of J, i. e. / i<4 and for h<i<q, i is not in J. We then
define

z9=u9v9w9xgy9
 w h e r e w

3
= w ^ ;

^ = Vf*,} wg = wtefc; xfl - xftSft; yg -^ftSft ah+1 yield (ffc+A). . . aq.

We have obtained z = ZiZ2 . . . z s ( s ^ l ) . Moreover,

j e J j e J 7 = 1

Informatique théorique et AppHcations/Theoretical Informaties and Applications
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Thus l ^ s ^ r . It remains to show that all the conditions of the theorem
hold. By induction hypothesis and the définition of J we have:

s a + 1 sj

£ m(uivixiyi) = m(y1y2) + £ m(a<) + £ m(yield(ty)) + X £ «(«ji^X/iJ'./f)
i = l i = l j$J jeJi=l

ö + l

<m(y1y2)+ £ w(a£) + E nj+ E wj
» = 1 J * J JeJ

a+t a

But this sum is < n by the proof of the claim shown bef ore. Thus, condition
(1) is satisfied. By construction of the z '̂s conditions (2) and (3) are obtained
immediately. Hence the proof of theorem 3.2 is complete. •

We will now give two examples in which theorem 3.2 is applied. In
particular we show that the Ogden's conditions (lemma 2.1 and theorem 3.2)
are stronger than pumping conditions. The pumping conditions are obtained
from the Ogden's conditions by replacing any mention of the mapping ra
(and marked positions) by the mapping | . | (and the concept of length).

Example 1: Let Z = {ax, bx, cx}. We will use lemma 2.1 to show that

L = bZ*U{anba\bk
1

+mc';cn\K m, n ^ l )

is not lcfl but L satisfies a pumping lemma for lcfl [2, 4]. We will first show
that L satisfies the linear pumping conditions with constant 1. Let z be in
L, | z ] ^ 7. Then either

z = al ba{ b{*k c\ à for some i, j , k §; 1

or z = bzx with zx in Z + . In the second case we may factor z = uvwxy where
u~b, v — the first symbol of zls w = the rest of z and x=y~e. In the first
case let u=y = s, y = the first a of z, x = the last c of z, w = the rest of z. In
both cases, it is easy to see that \uvxy\^l, | ux |^ l and uvlwxly is in L for
all t^O. We will now show that L is not lcfl. Suppose L is lcfl and let n be
the Ogden's lemma constant for L. Consider z = anba\b\n c\cn where all
positions of alb^cl are marked. Clearly, m(z)>n and thus, we can factor
z — uvwxy such that the three conditions of lemma 2.1 hold. It is obvious
that v and x can contain only one type of letter and, to satisfy condition (2),
at least one of these is within a"t>i"c". Furthermore, because of condition
(1), neither v nor x can contain occurrences of bx which implies immediately

vol. 20, n°4, 1986



4 6 8 R. BOONYAVATANA, G. SLUTZKI

that pumping of z will yield strings out of L. Thus condition (3) of lemma 2.1
fails, showing that L is notlcfl.

Example 2: Let £ = {a ls bl9 a2, b2y . . ., ar+v ^r+i}- We will use
theorem 3.2 to show that

is not r-ntbl but L satisfies the pumping lemma for r-ntbl, cf. [4]. Similarly to
example 1, we can prove that L satisfies the pumping lemma for LIN. Clearly,
any language that satisfies the linear pumping conditions also satisfies the
pumping conditions for NTBL at any rank. Now we will use theorem 3.2 to
show that L is not r-ntbl. Suppose L is r-ntbl and let n be the constant
corresponding to L in theorem 3.2. Consider
z — anba\ bn

xa
n
2b

n
2 . . . a"+ x b"+ x c

n where all positions of the subword
z' = a\b\a\b\ . . . a"+1b"+1 are marked, and thus m(z)>n. By theorem 3.2,
z may be written as z1z2 . . . zs with l ^ s ^ r , where zi = uiviwixiyi such that
the three conditions of that theorem hold. For each i, each of vt and xt can
contain only one type of letter and at least one of them is contained in z' to
satisfy condition (2). Now z' consists of 2r + 2 distinct letters whereas only at
most 2r pièces of v^s and x( 's get pumped. This implies that there exist at
least 2 letters that do not get pumped and they must come in pairs of ax and
bt to keep the correct balance. These pairs of a"fc" can be placed either (1)
within yjuj+1 for some l ^ / < s or (2) within Wj for some l^j^s. In the first
case we have m(yjUj+1)^2n which violâtes condition (1) of the theorem. In
the second case, a"è" is within z} and then Vj must consist of ae's or b/s for
some e<i while Xj must consist of a^'s or h^'s for some i<f. Clearly, this
violâtes condition (3) of the theorem because Vj and Xj are pumped together.
Thus L is not r-ntbl.

4. LANGUAGES SATISFYING THE OGDEIVS LEMMA

We have seen that lemma 2.1 and theorem 3.2 are necessary conditions
for linear and nonterminal bounded languages, respectively. In this section,
we will present counterexamples, inspired by [5, 3], to show that they are not
sufficient conditions.

Define

= {apbp<f<F\p9 r ^

< + d, q, r, s ^

Informatique théorique et Applications/Theoretical Informaties and Applications
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It is easy to see that LG is cfl and by [5, lemma 2], LG is not lcfl. Moreover,
as we will argue below, LG satisfies Ogden's condition of lemma 2.1 with
n = 8. Consider z in LG with at least 8 marked positions.
z = wlx1w2x2 . . . wfcxkwk +1 where the xt's are all the symbols at the marked
positions and w/s are in E*, /c^8. We only need to argue the case where z
is of form z = apbpcrdr where p, r ^ 1. There are 4 possibilities.

(1) x2 = a. If r>\ we choose u = w1xiw2, v = x2, x = last d, y~&9 and
w = the rest of string z. Clearly, m(uvxy)^3. By pumping down we will get a
word with the number of a' s less than the number of b' s. Pumping v and x
up wiil give a word with the number of a' s greater than the number of b' s
and their différence is bounded by the sum of the number of e's and d's.
On the other hand, if r= 1 then since m(z)^8, p^3 and so we can pump a
and b. Let v = x2 and x = last b. In this case m(uvxy)^5, By pumping we
will get a word of the same form.

(2) x2 = b. If p > 1 we choose u = vvx xx w2, v = x2, x =y = e, and w = the rest
of string z. Otherwise, p = 1 and thus r ^ 3 in which case we put v = x3, x = last
d, and u, w, and y are defined accordingly. By pumping v and x in both
cases, we still get a word in LG.

(3) x2 = c. This implies that 2r^m(crdr)^7 which gives r ^ 4 . Thus, we
can pump down c and d. We piek v = x2, x = last dt and w, w, and y are
defined accordingly. Pumping v and x will give a word of the same form
an<J thus in LG.

(4) x2 = d. In this case, we piek u = first c, x = xk_1, M, W, and ^ are defined
accordingly. Clearly, pumping will give a word of the same form and thus in

i-G-
Hence, LG satisfies all the three conditions of lemma 2.1 and gives an

example of a context-free language that is not linear but satisfies the linear
Ogden's conditions.

Let H be a subset of natural numbers, Z = {a, b, c, d} and define

AH = {anbncmdm\n, minH],

By [6, theorem 1 and corollary 1] for appropriate H, AH is properly cfl (i. e.,
cfl but not lcfl). Moreover, LH is properly context-sensitive (respectively:
recursive, recursively enumerable, not recursively enumerable) if AH is pro-
perly context-sensitive (respectively: recursive, recursively enumerable, not
recursively enumerable). We will now prove that LH satisfies Ogden's condi-
tions of lemma 2.1 with n = 4. This will show that there are (uncountably
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many) languages that satisfy linear Ogden's lemma at various levels of
Chomsky hierarchy. Consider z in LH with at least 4 marked positions.
z = Wj xx w2 x2 . . . wkxk wfc+1 where the xt's are all the symbols at the marked
positions and w/s are in £*, /c^4. If z is in AH, then we can choose
u = w1x1 w2, v — x2 and w = the rest of string of z, By pumping v9 we will get
a new word with either unequal number of a's and b's or e's and d's. Thus,
the three conditions of lemma 2.1 are satisfied.

Now suppose z is not in AH, i. e. z is of form z~apbqcrds where p^q.
The case for r^s can be handled similarly. There are two possible subcases;
the first one is when r^s. We choose u = w1x1 w2, v = x2 and w = the rest of
string z. If v is a or b, we will still have r^s in any new word obtained by
pumping v. On the other hand, if v — c or <2, pumping v will still give a word
with p ^ q. Hence, in this case, the three conditions of lemma 2.1 are satisfied.
In the second subcase, we have r = s. Without loss of generality, we assume
p>q. There are four possibilities to be considered in this subcase: (1) when
x2 and x3 are both a's (2) when x2=a and x3 = b (3) when x2 and x3 are
both b's and (4) when x2, x3 is c or d. We will present the argument for (1)
and leave it to the reader to convince himself of the other cases. Consider
when x2 and x3 are both a's (note x1 =a). If p — q> 1 then we put u = w1 xx w2,
v = x2 and w = the rest of string z. Obviously, a new word obtained by
pumping v will still h&ve py£q. However, if p — q— 1, we choose u = w1x1w2,
v = x2 W3X3 and w=^the rest of string z. By pumping v down, we have p<q
whereas if v is pumped up we have p>q. In both cases, p^q. We conclude
that LH satisfies all the three conditions of lemma 2.1.

It is obvious that any language that satisfies the linear Ogden's conditions
of lemma 2.1 also satisfies the Ogden's condition of theorem 3.2. Hence,
by changing H, we obtain counterexamples at various levels of the Chomsky
hierarchy, each of which satisfies the Ogden's conditions of theorem 3.2.
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