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SOME RESULTS
ON FINITE MAXIMAL CODES (*)

by Clelia D E FELICE (*) and Antonio RESTIVO (2)

Communicated by J.-E. PIN

Abstract — In the free monoid {a, b}*, we give a définition of maximality and completness of
a code with respect to the set Tk of all words containing at most k occurrences of b. We show that
the intersection of a finite maximal code with Tk is maximal with respect to Tk, for all k. We
dérive some recessary conditions for a finite code to have a finite completion end we prove for
these codes a "local" version o f a theorem of Schützenberger.

Resumé. — Nous donnons une notion de maximalité et de complétion d'un code dans Vensemble
Tk des mots sur {a, b}* ayant au plus k occurrences de la lettre b. Ces définitions permettent de
montrer que Vintersection de tout code maximal fini avec Tk est Tk-maximal pour tout k. De plus
nous obtenons une condition suffisante pour qu'un code fini n'ait pas une complétion finie. Nous
montrons également que, pour les codes ayant une complétion finie, on a une version locale a"un
théorème de Schützenberger.

INTRODUCTION

The theory of (variable length) codes, born in the framework of the theory
of information transmission with the early works of Shannon, has been
developed in an algebraic direction by M. P. Schützenberger and his school
since 1956 (see [10]) in connection with automata and language theory,
combinatorics on words and other related topics in computer science. A
complete treatment of the theory until very recent developments may be
found in [1],

An important rôle in this theory is played by the notion of maximal code.
A code is maximal if it is not a proper subset of any other code on the same
alphabet. A fundamental resuit of Schützenberger states the équivalence, in
particular for finite codes, of the algebraic notion of maximality and the
combinatorial notion of completness.

(*) Received June 1984, accepted July 1984.
The work of this author was supportée by C.N.R., Italy.
i1) L.I.T.P., Paris and Istituto Matematico dell' Universita' di Napoli, Napoli.
(2) Istituto Matematico dell' Universita' di Palermo, Palermo.
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3 8 4 C. DE FELICE, A. RESTIVO

In this paper we introducé the notions of maximality and completness of
a code with respect to some particular subsets Tk of the free monoid {a, b}*.
Tk is defined, for any positive integer k, as the set of words in which the
number of occurrences of b, is less thar or equal to k. Codes in Tk generalize
codes in the "triangle" considered in [2], [4], [7], [8], [9] and [11]: the latest
indeed corresponds to the case /c = L

Then we prove a "local" version of the Schützenberger's theorem (see [3])
which states that, for a finite code in Tfc, completness implies "locally"
maximality and that the converse is true only if the code is contained in a
finite maximal code, i. e. if it has a finite completion. This result gives some
useful informations on the structure of the words of a finite maximal code.
In particular we show that the intersection of a finite maximal code with Tk

is maximal with respect to Tk, for all k.
From another point of view, the previous result gives some necessary

conditions for a finite code to have a finite completion. From this, one can
dérives some useful ideas to approach the following open problem: find a
procedure to décide whether a finite code has a finite completion. In particular
it is not yet known whether the code, recently constructed by Peter Shor
(see [11]), as a counterexample to the "triangle conjecture", has a finite
completion: the relevance of this question is related to the validity of Schützen-
berger's conjecture on the commutative équivalence of a finite maximal code
to a prefix one (see [6]). This problem was the starting motivation of our
investigation.

In the last section the case k = \ of codes in the "triangle" is considered.
Some of the theorems of previous section are strengthened, new methods to
construct codes having no finite completion are investigated and some result
related to the "triangle conjecture" are proved. Finally some unanswered
questions are proposed.

Let A be a finite alphabet and /l* the free monoid generated by A. For
any word weA* dénote by \w\ the length of w and, for any letter a G A,
dénote by | w |a the number of occurrences of the letter a in w. A subset X of
A* is a code if X* is a free submonoid of A* of base X.

For any X^A* set:

R0={weA+ :XwnX

Vî£ 1, Rt={weA+ :Ri-1wr\X*0 or

Then X is a code if and only if for any i ̂  1 we have that XORt = 0 [1].

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME RESULTS ON FINITE MAXIMAL CODES 385

If T is a subset of A* and X^ T is a code, X is a T-maximal code if X is
not a proper subset of another code Y^T, If T=A*, X is called a maximal
code.

Let 7i be the uniform distribution on A*9 i. e. the application defined as
follows:

1

'• *M-AV'<-
One has that:

PROPOSITION 1.1 [1]: Let X be a recognizable code. X is a maximal code if
and only if:

n(X)= £ 7t(x)=l.
xeX

For any pair of subsets P, T of A* such that P^ T, P is dense in T if for
any word w of T one has that:

If T=A* we say that P is dense.

The following foundamental result of M. P. Schützenberger will be useful
in the sequel (see [3]):

THEOREM 1.1. (Schützenberger): Let B* be a free submonoid of A* and let
X<=B* be a recognizable code.

If X is a B*-maximal code then X* is dense in B*.
If B* is finitely generated and if X* is dense in 5* then X is a B*-maximal

code.

In the sequel the alphabet we consider is the binary alphabet A = {a, b}.
For any positive integer k, we introducé the following subset of A*:

Tk={weA*\ \w\b^k}

and consider codes X which are subsets of Tk. For fc = l we obtain the
"triangular" codes studied in [2], [4], [7], [8], [9] and [11].

PROPOSITION 1.2: Any code X<= Tk is contained in a Tk-maximal code.

Proof: It suffices to apply Zorn's lemma to the family !F\

&= {yçT k | ycodeand Y^X}. •

REMARK 1: However it is not generally true that any fin i te code X^Tk is
contained in a fxnite T -̂maximal code, as shown by the following example
(see prop. 2. 3.):

X= {a5, a2b, ba9 b, ba4b} ^T2.

vol. 19, n° 4, 1985



386 C. DE FELICE, A. RESTIVO

In the special case k = l, we shall prove (see cor. 2.2) that any finite code
I ç 7\ is contained in a finite ^-maximal code.

PROPOSITION 1.3: If X^ Tk is a finite code, then there exists a Tk-maximal
code Y such that:

Proof: First of all we prove that there is a finite code X' ̂  Tk such that:

X' => X, X'Da*^ 0 .

If Xn a* / 0 the result follows. Otherwise let:

d = max{|x| \xeX}.

We prove that I l j f f l 2 ' 1 " 1 } is a code. Suppose that this is not the case.
Then there is a word w of X\J {a2d~x} with two factorizations in terms

of éléments of X{J {a2**"1} and of minimal length:

Let xt = a2d~x be an occurrence of ald~l in the left side of above équation.
Since X O a* = 0 , by minimality of w and by définition of d there are

i 6 {2, . . ., h — 1}, z', z", w', w" e >4 + such that:

(1)

v/ 'x f + 2 . . .x f e-

(1) shows that either:

or:

[otherwise ƒ f, yi+l eXimplies \yiyi+l\iïL2d<\z/ a2d x z"\ against (1)].
Then yt = a2d~l (resp. J>i + 1 =a 2 d - 1 ) implies z'z//=<y£ + 1 (resp. z'z"=yt).
Since z\ z / /e J4

+ and by (1) we have that:

(resp. ̂ ^2. . J i ^ ^ H i - • -yh)

is a word with two factorizations in terms of éléments of X\Ja2d~l in
contradiction with the minimality of | w |.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME RESULTS ON FINITE MAXIMAL CODES 3 8 7

Then X[J o2*'1 is a code and the result follows by proposition 1.2. •
By proposition 1.3 one has the following corollary:

COROLLARY 1.1: If I ç T t is a finite Tk-maximal code then there exists a
positive integer n such that an e X.

Remark 2: Proposition 1. 3 is no more true for infinité codes, as shown by
the following example:

Since:

(et ba?) (aibaj) = (aibai) (ajbaj\

X is a T^maximal code but XC\a* = 0.
For fc = l a partial converse of this proposition holds:
if I e 7\ is a T^-maximal code and I H « V 0 then Xis a finite code.
For k > 1 this is not true. For example the code:

X={a5 , a2b, ba, b)

is contained in an infinité T2-maximal code Y (cf. prop. 1.2, prop. 2. 3) and
a5eY.

Let us introducé the following notation: for any pair u, v of words of A*,
if v is factor of u we write v^u.

For any pair of positive integers k, d consider the following subset of A*:

Let Mktd = adFk da
d \J {a}*. It is easy to see that Mkd is a submonoid of

A* and that the set of factors of Mkd coincides with Fkd.
For k, d positive integers introducé now the following subset of A*\

Ub(a<dby\ad,

LEMMA 1.1: Mkd is afree submonoid ofA* with base Bk d.

Proof: Since Bkd^Mkd we have that B^d^Mkd. Let us prove that
kd^Bfd. Any word w of Mkd can be uniquely factorized as follows:

vol. 19, n° 4, 1985



388 C. DE FELICE, A. RESTIVO

with:

nl9 nr+i ^d, n2, n 3 , . . .,nr^2d,

k-l

vte U b(a<db)\
i = o

In other words nt and nr+1 indicate the numbers of consécutive a's at the
beginning and at the end of w respectively; the éléments aM( (2 ̂  i ̂  r) indicate
the occurrences in w of factors belonging to a2da* between two consécutive
occurrences of the letter b.

By this factorization we easily obtain an unique factorization of w in
éléments of Bk d. •

Consider no w a finite code X a Tk and let d = max {| x \ \ x G X}.
Consider the intersection:

Y* is a free submonoid and Y is a recognizable code (indeed X* and Mk d

are recognizable subsets of >!*).

REMARK 3: We have that Y # 0 if and only if Xf) a* ^ 0 -
Indeed suppose that 7 ^ 0 . Since:

if wE 7 either wea* or w = adw'ad, WeFk d.
Since:

(1)

and by définition of d we have that Xf) a* ^ 0.
Vice versa, since a*^Mfc d, if I P I U * ^ 0 we have that

X+ OMkd=Y+ ^ 0 . Moreover, if Y ^ 0 , we have that:

Indeed if Y ̂  0 let n be the integer such that an E X.
Since aneMk d we have a"e Y+.
Then there is teN, t ^ n such that a' e Y.
By (1) we have that a 'eX+ .
Then:

R.AJ.R.O. Informatique théorique/Theoretical Informaties
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Suppose that an = X f\ a* = Y f\ a*. We have:

LEMMA 1.2: If Y is a Mfc d-maximal code, then X is a Tk-maximal code.

Proof: The proof is by contradiction. Suppose that X is not a T^-maximal
code. Then there exists a word x e Tk such that X\J {x} is a code.

Let:

and let Z be the base of Z*.
Since andxandeZ*\Y* one has that:

Y*<^Z* and 7*^Z* (1)

If we prove that:
YÇZ,

then by (1), it follow:
Y<=Z,

which is a contradiction.
Since 7* çZ*, if ƒ E Y then j ; e Z * \ 1. Then there are reN,

zl9 . . ., z r e Z \ l such that:

y=*i *,. (2)

By définition of Z* and Y* one has that:

„ ïe{ 1, . . ., r } .

Then there are xx, . . ., x „e l ; x\, . . ., x^, . . ., xr
ls . . ., xJf

such that:

V Ï G { 1 , . . . , r} xï

Then:

Since I U {w} is a code and in the left of (3) there is no occurrence of x
one has that:

f => Vie{ 1, . . ., r } ,

vol. 19, n° 4, 1985



390 C. DE FELICE, A. RESTIVO

Then by (2) we have that:

which implies r = l Le. j /eZ. •
Introducé the following définition. A code X c Tk is Tk-complete if

Y* = X*n Mkf d is dense in MK d, i. e. if:

By theorem 1.1 and lemma 1.2, we obtain the following theorem:

THEOREM 1.2: Let X a Tk be a finite code. If X is Tk-cornplete then X is
Tk-maximal.

REMARK 4: The converse of theorem 1.2 does not generally hold, as shown
by the following example:

X={a\ a2ba, a2b, ba,b),

X is a T1 -maximal code, but it is not 7\-complete (see prop. 2.2).
By remark 4 we see that the relationship between the notions of maximality

and completness, as stated by theorem 1.1 for finite (and recognizable) codes
in A*, does not hold "locally" in Tk. As we shall see this is a conséquence of
the fact that a finite code is not generally contained in a finite maximal code.

REMARK 5: Let X be a Tfc-complete finite code.
Then, by theorem 1. 2 and corollary 1.1, there is ne AT such that aneX.
Moreover for any w = aniba"2b banseMk d there are wu w2eMkd

such that:

Wi ww2eX*.

Since n^^^d, ns^d, by définition of d there are t^nl9 qf±ns such that:

a'ba^b bans

This équation implies a* wa* C\X* J^0.
Vice versa, since a*^Mkd, if this condition holds for any weMkd, we

have that X is a Tk-complete code.
Then:

Xis a Tk-complete code o VweMktd,

a* wa* nX*^0.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Consider now a finite maximal code C in A*. We prove the following
lemma:

LEMMA 1.3: Let C a A* be a finite maximal code, Then X= CC\Tk is Tk-
complete.

Proof: Let d be the maximal length of words in C and let w be a word of
Mk d. By remark 5 it suffices to prove that:

a* wa* O X* # 0 . (1)

Since XDa* = CDa*, if wea* then (1) is verified. Suppose that:

w = adw'ad, w'eFktd.

By theorem 1.1 there are uu u2eA* such that:

ul wu2eC*

and, by the définition of d, there are r, seN, r, s < d, such that:

By définition of d and of Fk d we have that:

aTw'rfeX*. (2)

Let t be an integer such that tn > d. By (2) we have:

atn ar w' as atn eX*Da* wa*. Q

As a conséquence of theorem 1.2 and lemma 1.3 we obtain the following
theorem:

THEOREM 1.3: IfC<=:A* is a finite maximal code, then C C\Tk is a Tk-
maximal code.

REMARK 6: The condition stated in theorem 1.3 does not hold in gênerai
if one consider, instead of Tk9 an arbitrary subset T of A*, This is shown by
the following elementary example. Let T be the set of words of A* of length
pair:

Let C = {aa, ab, b } . C is a finite maximal code, but C C\ T= { aa, ab } is not
a T-maximal code.

By theorem 1. 3 we may deduce some interesting conséquences.

vol 19, n° 4, 1985



3 9 2 C DE FELICE, A. RESTIVO

COROLLARY 1.2: If C and C' are two finite maximal codes on the alphabet A
which differ for only one word, then C and C' are commutatively equivalent.

Proof: Let u and u' be words of C and C' respectively such that
C' = (C\{M}) U {u'}. By well known arguments concerning the mesure of
a maximal code (see prop. 1.1) we have:

Let k = I u \b. By theorem 1. 3, C Pi Tfc_ x is a Tfc„ x-maximal code. Hence:

By changing a for b, the same argument gives | u' |fl ̂  | u \a. By these two

inequalities and by the condit ion \u\ = \u'\, we decuce that | w ' | a = \u\a and

| u' \b = \u \b, i. e. u and «' are commutatively equivalent. •

COROLLARY 1. 3: Let X a Tk be a code that is contained in a finite maximal
code in A*. Then X is Tk-maximal if and only if X is Tk-complete.

Proof: If C is a finite maximal code which contains X, one has X a C C\Tk.
If X is TVmaximal, then X= C H Tk. The proof is then obtained as a

conséquence of lemma 1.3. •

Corollary 1.3 gives a gênerai condition under which the relationship
between the notions of maximality and completness of a code, as stated in
theorem 1.1 holds "locally" in Tk.

Moreover it gives a necessary condition for a finite code to have finite
completion. Indeed it can be formulated in the following way:

COROLLARY 1. 3: Let X be a Tk-maximal code. If X is not Tk-complete then
it has no finite complétions.

This resuit allows us to construct in a simple way finite codes having no
finite complétions.

2. THE CASE T1

In this section we consider codes X cz Tx i. e. such that X a a*Ufl*ta*.
We prove some results which are not true for codes contained in Tk

[prop. 2.1, cor. 2.1, cor. 2.2] and we construct finite codes having no finite
complétions [prop. 2.2, prop. 2.5, cor. 2.3].

Finally proposition 2.6 and corollary 2.4 concern the triangle conjecture
formulated by Perrin and Schützenberger [7]:

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Triangle conjecture: Let I e ^ bea code having finite complétions. Set:

then card {X) ̂  d.

Some partial results on this conjecture can be found in [2], [4], [7], [8]
and [11].

PROPOSITION 2 .1: Let X a Tt be such that X[Jan is a code, Then card

Proof: For all re AT and xeXr:

x = allbahai2baJ2 ba^-^a^ba^

let us consider a map cpr defined as follows:

cpr : t (x) =((i ls 7J, . . ., (ir, jr)) -> (iu j t + i2, . . ., ir +7r-1> 7r) ( m o d »)•

One has that if X is a code then cpr is an injective map. Then one has that:

By the foregoing inequality the result follows. •

COROLLARY 2 .1: Let Y a T1 be a maximal code. Y has finite cardinality if
and only ifYC]a*^0.

Proof: Sufficiency of the statement follows by proposition 2 .1 , necessity
by corollary 1.1. •

COROLLARY 2. 2: Every finite code X<^T1 is contained in a finite Tx-maximal
code.

Proof: X is contained in a 7\ -maximal code Y such that Y Da* # 0 by
proposition 1.3. The results follows by corollary 2.1.

Let p be a number greater than 3 (H, K) a factorization of
{0, 1, . . . , / ? - 2 ) [i.e. for any element z of {0, 1, . . .,*p — 2} -here is an
unique pair (h, k) of HxK such that h + k=z] with H, K^ {0}. Let X be
the code:

aHZ>a*= {a
p} U {a^a*|(h, k)eHxK}.

If /> is a prime number then X belongs to the family of codes of Restivo [9].

REMARK 7 [5]: Since (H, K) is a factorization of {0, 1, . . . , / ? — 2} with
/?;>3 and H, K=t{0} then there is te{2, . . ., p-2} such that either:

H=>{0, l , . . . , t - l } ; { 0 , t } ^ K , (1)
or:

«2{0,l M } ; {0,t}^H (2)

vol. 19, n° 4, 1985



394 C. DE FELICE, A. RESTIVO

PROPOSITION 2.2: X is a finite Tx-maximal code which is not T^complete.
(Therefore X has not finite complétions.)

Proof: First of all X is not a 7\-complete code. Otherwise, by remark 5,
for any integer q such that q=p—l (mod. p) we have that:

Then there are i, j , tu t2eN such that i +j =p — 1 (mod. p) and
a^ba1, ajbat2eX, against the définition of X.

Let us prove that X is a maximal code.

For all, (i,j)eN2 let il9 i2 be the integers such that:

O^i'i, i2<P-

One has the following four cases:

(I) il9 i2<p-l;

(II) ï2 = i2 = p - l ;

(III) ii<p-l,i2=p-\;

(IV) i^p-hhKp-l

and, by remark 7, we have either:

H = > { 0 , . . . , r - l } ; {O,r}<=K, (1)

or:

(2)

We prove that in each case, if a' baj $ X then X U à baj is not a code.

Indeed there are hl9 h2eH, ku k2eKsuch that:

(Case (I) and (III)):

(Case (I) and (IV)):

and we have that:

(Case I):

b (al baj) b = (baki) (ap)m ahi bak* (ap)n (ah* b).

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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(Case 11 +case 1)):

(Case 11 +case 2)):

(Case III + case 1)):

(CaseIII + case2)):

(Case IV + case 1)):

ba' (ap~l baj) b = b (ap) (a*-1 bak2) (ah2 b).

(Case IV + case 2)):

ba (ap~1 baj) b = b (ap) (bak*) (ah* 6).

Then X{Jalbaj is not a code. •

Moreover we can prove that X is not contained in any finite T2-maximal
code. In order to prove this statement we need the following preliminar
lemma:

LEMMA 2.1: For all U h ^eN suc^ thatj^p—1 (mod. p), X\Jalbajbak is
not a code.

Proof: lï j#ƒ>— 1 (mod. p) then there are h2eH, k2eK t2eN such that:

and one of the foliowing conditions is verified:

(I) !*#ƒ>—! (mod. />), k #/?—1 (mod. /?);

(II) Vp— 1 (mod. p\ k=p~\ (mod. /?);

(III) i=p—l (mod. p), k^p—\ (mod. p);

(IV) i^p-l (mod. p\ k=p-l (mod. p).

Moreover, by remark 7, there is 2t e { 2, . . . , / ? — 2} such that either:

H 2 { 0 , 1 t—1 >, { 0 , - t J s X , (1)

or:

X 2 { 0 , l , . . . , t - l } , { 0 , r } ^ / / (2)

vol. 19, n° 4, 1985



3 9 6 C. DE FELICE, A. RESTIVO

and there are hu h3eH, ku k3eK> tl9 t3eN such that:
Case (I) and case (IV):

Case (I) and case (III):
k = h3 +

Then we have:
(Case (I)):

b {al b aj bak) b = baki (ap)^ ahi bak* (ap)'2 ah* bak* (ap)^ (a*3 b).

(Case 11 +case 1)):

(Case (III) + case 1)):

(Case IV + case 1)):

Then in case (1) J I J aibajbak is not a code.
In case (2) the result follows in a similar way. •

PROPOSITION 2. 3: X is not contained in any finite T2-maximal code.

Proof: The proof is by contradiction. Let Y be a subset of T2:

Y= {ali baJi bak\ . . ., é»baj»bak»},

such that I U Y is a T2-maximal code.
Set:

w = albajbak

f, j , keN; U j , k > {jl9 . . .Jn}; j< i9

i = i\ (mod. p),

j=p—\ (mod. p),

k = kx (mod. /?).

Since X\J Y {Jw is not a code there is a word ze(X{J Y{J w ) * \ l with two
factorizations in terms of the éléments of I U Y U w and of minimal length:

R.A.LR.O. Informatique théorique/Theoretical Informaties
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Let xt be an occurence of w in the left side of the above équation. We have
the following cases:

1. There is qe { 1, . . ., h} such that:

and, if(t, 4)^(1, 1):

if (t,

2. There is ie{ 1, . . ., h} such that y(e Y and bajb is a factor of yt.

3. There are qu q2eN such that:

4. There are ql9 q2i q3eN such that:

5. There are qu q2, q3, q4 in N such that:

a«i baq* d baj bak aq* baq* e a* Y2 a*.

6. There are ul9 u[e(X[J Y)+, vl9 w\e(X[J Y\Jw)* and an occurrence
of w in the right side of above équation such that:

(i)

We prove that, in each of these cases, we have a contradiction. Indeed the
first case contradicts minimality of z and the second case contradicts the
hypothesis j >{jh . . . , ; „ } .

Moreover we can not have case (3) since it implies that there are r, s, u in
N such that:

and:

r + s=ƒ =/> — 1 (mod. /?),

against the définition of X.
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We can not have case (4) and (5) because otherwise there are reN,
and q3 q3 such that:

with k > {ju . . . , ƒ „ } and this is a contradiction.

In case (6) we have that there are X, X', | i e A + , \X\ < | w\ such that:

u\ — u1X, X = al baj bas,

X[i = uX' — w,

vx~Xfv\.

Then one has that:

Since for any ge{ l n} we have that i, j>jq, there are h, m, r, eeN
such that:

m = s (mod. p\ h = i (mod. p\

r + e EEp — 1 (mod. p\

ahba% arbameX,

against the définition of X
Then the result follows. •
One can ask the question whether a finite code which is contained in a

finite Tfc-complete code, for all k, has a finite completion. We have not an
answer to this question, however for the code of next proposition, we have
not found a finite completion (which probably does not exist): it is then a
candidate for giving a négative answer to the question.

PROPOSITION 2.4: The code:

X - { a 4 , b9 ba\ a2b, a2ba3}

is T^complete and is contained in a finite Tk-complete code for ail keN. The
code:

y = a 4 + a(0'2)6(ab)*a(0'3)

is a completion of X.

Proof: It is straightforward to prove that X is a 7\-somplete code. Let Rt

be l'ensemble of the ï-residues of Y and n the uniform distribution on A*.
We have:

= R3(Y)={a\(ab)\ (ab)+a3}>

i. e. 7 is a recognizable maximal code (see prop. 1.1).
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Moreover for all reN and for all h, keH xK=(0,2) x(0,3), sl9 . . ., sreN
one has that:

w = ahbd°ib basrbakeY* (1)

The proof is by induction. Suppose r = l . If si~l then w = ahbabakeY.
Otherwise, there are (hl9 kx)eH xK, qeN such that:

sl=h1+k1+4q.

Then:

Let us suppose that (1) is true for all intergers r' < r. If s t = . . . =s r = 1 then

Otherwise, set:

there are ht, kteH xK and qeN such that:

We have:

by the hypothesis of induction. Then we 7*.
Set, for all meN:

7m is a Tm-complete code which contains X. In facts, let nl9 . . ., nseN such
that:

and there are at most m consécutive n[s such that nt <2d.
Let w be the word:

By remark 5 we have to prove that:

a*y»a*nY*±0. (2)

vol. 19, n° 4, 1985



4 0 0 C DE FELICE, A. RESTIVO

By (1) we have that:

that implies (2). •
Next propositions give other methods to construct codes having no finite

complétions.

PROPOSITION 2.5: Let X be a code such that an e X, and let
T=a*b{J ba* U a*9 Z = XC\T. IfZ satisfies the following conditions:

1. beZ;
2. Z is a T-maximal code;
3. V/c>0, 3r^/c such that barb$Z*.

Then X has not finite complétions.

REMARK: Set T = b* a* U a* fe* U a*9 by 1 and 2 it follows that Z is a T-
maximal code.

Proof: The proof is by contradiction. Let Y be a finite completion of X
and let X be the maximal length of the words of Y.

By (3) there is r ̂  k = X + 1 such that:

barb$Z*. (I)

Moreover, since the word:

bxarbx

is factor of some word of Y*, there are t, s, k, h ̂  0 such that:

bk a\ asbheY, t + s = r (mod. n)

and, by (I), one has that:

{bka\ asbh}$Z.

(Otherwise, since Z^T, we have that k = h=\ and bat+sbeZ2).
Since Z is a T'-maximal code the result follows. •

COROLLARY 2.3: Let X be a finite code such that aneX and let
T=a* U ba* U a*b, Z = Xf\T. If the following conditions are verified:

1. There exists teN, 0 < t ^ n— 1 such that:

{r + s\ba\ asbeX} = {0,h- • ., n - l } \ t .

2. Z is neither a prefix code nor a suffix code then X has not finite
complétions.
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Proof: For all k > 0 let q be an integer such that:

By hypothesis one has that:

beZ, b

If we prove that X is a T-maximal code, then the result follows by
proposition 2. 5.

For all ï, qeN, q<n such that:

baq + in£Z,

one has two cases:

q = t.

In the first case there are r, seN such that:

ba\ asbeX; r + s = q.

Then:

{baq + in) b = (bar) (aj (as b). (I)

In the second case we remark that:

Vz;eiV\0, avb$Z =>

Then by 2 there is v e N, v ̂  0 such that avbeZ.
By 1, since ZçX, we have that 0 < v < n and:

Then there are r, seN such that:

ba\ asbeX

and either:

or:
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By these equalities one has either:

(baq + in) avb = (bar) (aj (as b), (II)

or:

(baq + in) avb = (bef) (any +1 (as ft). (IF)

By (I), (II), (IF) one has that Z U baq + in is not a code. Similarly if aq + inb$Z
then Z U aq + inb is not a code. •

We come now to the triangle conjecture. By proposition 2.1 one has that:

PROPOSITION 2.6: Let X c= Tt be a code such that ad e X. Then X vérifies
the triangle conjecture.

PROPOSITION 2.7: Let I c ^ be a code T^complete such that X{Jan is a
code. Then d^n.

Proof: By contradiction let d < n. Let t e N be such that:

r = n — 1 -f tn > d.

Set w = (bar)n+1, since Xis a code 7\-complete, by remark 5 there are e, seN
such that:

aewasGX*.

Then there are (il9 j j , . . ., {in, jn) such that:

a'iba'ieX, q= 1, . . ., n - 1 . J v ;

Moreover by the hypothesis:

i , + ; , < n - l . (2)

By (1) and (2) it follows:

By this inequality, since i2 ^ 1, it follows:

against the hypothesis d < n. D

By proposition 2.1 and 2. 7 one has that:

COROLLARY 2.4: Let X^T^be a code T^complete. Then
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We conclude with some open problems. A first question is the one posed
bef ore proposition 2.4, i. e. whether a finite code, which for all k is contained
in a finite Tfc-complete code, has a finite completion. In order to answer
negatively to this question one has to prove that the code in proposition 2.4
has no finite complétions.

This answer should give also a négative solution to the problem whether
the necessary condition of corollary 1.2 is also a sufficient one. If this were
the case, one should have two different « types » of finitely uncompletable
codes: codes finitely T^-completable for any k and codes having no finite Tk-
completions for some k.

Another open problem is whether there exist codes X a Tu with
XC\a* = 0, which are not contained in a finite maximal code. The examples
reported in this paper are such that X(~\ a* # 0 - Moreover in these examples
if «"el , one can always find n' ̂ n such that (X\an) U {an'} has a finite
completion.
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