RAIRO. INFORMATIQUE THÉORIQUE

Robert Knast

Some theorems on graph congruences

RAIRO. Informatique théorique, tome 17, no 4 (1983), p. 331-342
http://www.numdam.org/item?id=ITA_1983__17_4_331_0
© AFCET, 1983, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SOME THEOREMS ON GRAPH CONGRUENCES (*)

by Robert Knast (${ }^{1}$)

Communicated by J. F. Perrot

Abstract

We prove a theorem on graph congruences. This theorem is the key step for the characterization of syntactic semigroups of languages of dot-depth at most one.

Résumé. - On démontre un théorème sur les congruences de graphe. Ce théorème est utilisé de façon cruciale dans la caractérisation des langages de hauteur 1 dans la hiérarchie de Brzozowski.

1. INTRODUCTION

In proving the correspondence between certain varieties of languages and semigroups, one of the key steps is a theorem on directed graphs, more precisely on graph congruences. The first theorem of this kind, appeared originally in [1] in the proof of the correspondence between locally testable languages and locally idempotent and commutative semigroups, though it was not formulated as a separate result on graphs. The treatment of this result as a theorem on graph congruence is due to Eilenberg [2, pp. 222-228].

Let m be an integer, $m \geqq 1$ and let ${ }_{m} \sim$ relate any coterminal paths which traverse the same set of m-tuples of edges. In [4] Simon has proved that the family of all \mathscr{J}-trivial congruences of finite index corresponds to the family of congruences covered by ${ }_{m} \sim$ for some m, when the underlying graph consists of one vertex (Simon's result was not formulated as a theorem on graphs). In the paper, we show that this is not true, when the underlying graph has more vertices than one. We prove (Theorem 2) that the family of graph congruences covered

[^0]by ${ }_{m} \sim$ for some m, corresponds to the family of all $\operatorname{dot}(\mathscr{J})$-trivial graph congruences of finite index, where $\operatorname{dot}(\mathscr{F})$ is the concatenation closure of the Green relation \mathscr{F}, or equivalently, it is the smallest congruence covered by \mathscr{J}. This result is used in [3] for the characterization of syntactic semigroups of languages with dot-depth at most one.

2. PRELIMINARIES

Let A be a non-empty, finite set, called alphabet. The cardinality of A will be denoted by $|A| . A^{+}$(respectively, A^{*}) is the free semigroup (respectively, free monoid) generated by A. Elements of A^{*} are called words. The empty word in A^{*} is denoted by λ (identity of A^{*}). The concatenation of two words $x, y \in A^{*}$ is denoted by $x y$. The length of a word x is denoted by $|x|$.

Let \sim be an equivalence relation on A^{*}. For $x \in A^{*}[x]_{\sim}$ means the equivalence class of \sim containing x. An equivalence relation on A^{*} is a congruence iff for $x, y \in A^{*}, x \sim y$ implies $u x v \sim u y v$ for all $u, v \in A^{*}$.

For terminology related to graphs we follow Eilenberg's monograph [2].
A directed graph G consists of two sets, an alphabet A and the set of vertices V along with two functions: $\alpha, \omega: A \rightarrow V$. Elements of A are also called edges in this case.

Two letters (or edges) $a, b \in A$ are called consecutive if $a \omega=b \alpha$. Let $D \subset A^{2}$ be the set of all words $a b$ such that a and b are non-consecutive. Then the set of all paths of G is:

$$
P=A^{+}-A^{*} D A^{*}
$$

Functions α, ω can be extended to $\alpha, \omega: P \rightarrow V$ in the following way: if $x=a_{1} a_{2} \ldots a_{n} \in P$, then $x \alpha=a_{1} \alpha, x \omega=a_{n} \omega$, where $a_{1}, a_{2}, \ldots, a_{n} \in A, n \geqq 1$. For each vertex $v \in V$ we adjoint to P a trivial path $1_{v} ; 1_{v} \alpha=1_{v} \omega=v$.

A path x is called a loop, if $x \alpha=x \omega$. We say that two paths x and y are consecutive if $x \omega=y \alpha$. In this case the concatenation $x y$ is again a path. Two paths x and y are coterminal, if $x \alpha=y \alpha$ and $x \omega=y \omega$.

For any two binary relations \sim_{1} and \sim_{2} on P we say that \sim_{1} is greater than \sim_{2} (or \sim_{1} is covered by \sim_{2}), we write $\sim_{1} \supseteqq \sim_{2}$, if for any $x, y \in \mathrm{P} x \sim_{2} y$ implies $x \sim{ }_{1} y$.

An equivalence relation \sim on P is called a graph congruence if it satisfies the following conditions:
(i) if $x \sim y$, then x and y are coterminal;
(ii) if $x \sim y$ and $w \sim z$, and x, w are consecutive, then $x w \sim y z$.

In this paper we shall deal only with graph congruences of finite index. Now we define three basic families of graph congruences which we investigate:
(i) Let $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in A \times A \times \ldots \times A$ (m-times), $m \geqq 1$. We shall write $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in x$ and say that $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ appears in $x, x \in A^{*}$, if $x=x_{0} a_{1} x_{1} a_{2} x_{2} \ldots a_{m} x_{m}$ for some $x_{0}, x_{1}, \ldots, x_{m} \in A^{*}$.

For each integer $m, m \geqq 1$ and for each $x \in A^{*}$ define:

$$
x \tau_{m}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid m \geqq n \geqq 1,\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in x\right\} .
$$

Instead of τ_{1} we simply write τ. Now, we can define a graph congruence ${ }_{m} \sim$ on P as follows: for $x, y \in P$.
$x_{m} \sim y$ iff x and y are coterminal and $x \tau_{m}=y \tau_{m}$. By convention we set $1_{v} \tau_{m}=\emptyset$ for any vertex $v, v \in V$. It is easily verified that ${ }_{m} \sim$ is a graph congruence of finite index on P.
(ii) For any $n, n \geqq 1$, let us define a binary relation ${ }_{n}-$ on P, in the following way: for $x, y \in P$:

$$
x_{n}-y \text { iff } x=x^{\prime} x_{1} x_{2} \ldots x_{n} x^{\prime \prime} \quad \text { and } \quad y=x^{\prime} y_{1} y_{2} \ldots y_{n} x^{\prime \prime}
$$

for some $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ such that $x_{i} \tau=y_{j} \tau, i, j=1,2, \ldots, n$, and $x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}$ are coterminal paths.

Define $_{n}=$ to be the reflexive and transitive closure of ${ }_{n}-$.
Equivalently, ${ }_{n}=$ is the smallest graph congruence on P satisfying the condition: $x_{1} x_{2} \ldots x_{n n}=y_{1} y_{2} \ldots y_{n}$ whenever $x_{i} \tau=y_{j} \tau, i, j=1,2, \ldots, n$.
(iii) For any $n, n \geqq 1$, let us define a binary relation ${ }_{n} \approx$ on P as follows: for $x, y \in P, x_{n} \approx y$ iff:

$$
\begin{aligned}
& x=x^{\prime} x_{1} x_{2} \ldots x_{n} u_{1} u_{2} \ldots u_{n} x^{\prime \prime}, \\
& y=x^{\prime} y_{1} y_{2} \ldots y_{n} w_{1} w_{2} \ldots w_{n} x^{\prime \prime}
\end{aligned}
$$

for some:

$$
x_{1}, x_{2}, \ldots, x_{n}, u_{1}, u_{2}, \ldots, u_{n}, y_{1}, y_{2}, \ldots, y_{n}, w_{1}, w_{2}, \ldots, w_{n}
$$

such that:

$$
x_{i} \tau=y_{j} \tau, \quad u_{i} \tau=w_{j} \tau \quad \text { for } \quad i, j=1,2, \ldots, n
$$

and:

$$
x_{1} x_{2} \ldots x_{n} u_{1} u_{2} \ldots u_{n} \quad \text { and } \quad y_{1} y_{2} \ldots y_{n} w_{1} w_{2} \ldots w_{n}
$$

are coterminal paths.
vol. $17, n^{\circ} 4,1983$

Define ${ }_{n} \simeq$ to be the reflexive and transitive closure of ${ }_{n} \approx$.
Equivalently, ${ }_{n} \simeq$ is the smallest graph congruence on P satisfying the condition: $x_{1} x_{2} \ldots x_{n} u_{1} u_{2} \ldots u_{n}{ }_{n} \simeq y_{1} y_{2} \ldots y_{n} w_{1} w_{2} \ldots w_{n}$, whenever $x_{i} \tau=y_{j} \tau$ and $u_{i} \tau=w_{j} \tau$ for $i, j=1,2, \ldots, n$.

Notation: Let $A_{1}, A_{2}, \ldots, A_{h} \subseteq A, h \geqq 1$. Then $\left(A_{1}, A_{2}, \ldots, A_{h}\right)$ will denote the set of k-tuples:

$$
\left(a_{1}^{1}, a_{1}^{2}, \ldots, a_{1}^{k_{1}}, a_{2}^{1}, a_{2}^{2}, \ldots, a_{2}^{k_{2}}, \ldots, a_{h}^{1}, a_{h}^{2}, \ldots, d_{h}^{k_{n}}\right)
$$

such that:

$$
\begin{gathered}
\left\{a_{i}^{1}, a_{i}^{2}, \ldots, d_{i}^{k_{i}}\right\}=A_{i}, \quad\left|A_{i}\right|=k_{i} \\
k=\sum_{i=1}^{h}\left|A_{i}\right|, \quad i=1,2, \ldots, h
\end{gathered}
$$

If $A_{1}=A_{2}=\ldots=A_{h}$ we denote this set by $\left(A_{1}^{h}\right)$. By $\left(A_{1}, A_{2}, \ldots, A_{h}\right) \in x$ for $x \in A^{*}$, we mean that there is at least one k-tuple from the $\operatorname{set}\left(A_{1}, A_{2}, \ldots, A_{h}\right)$ which appears in x.

Let \sim be any graph congruence on P. We adapt here Green relation \mathscr{J} for graph congruences. For $x, y \in P$:
$x \mathscr{J} y$ iff there are paths z_{1}, z_{2}, z_{3} and z_{4} such that $z_{1} x z_{2} \sim y$ and $z_{3} y z_{4} \sim x$.
However, we will also need the concatenation closure of \mathscr{J}, denoted by $\operatorname{dot}(\mathscr{F})$, and defined as follows: for $x, y \in P$:
$x \operatorname{dot}(\mathscr{J}) y$ iff for some $n, n \geqq 1, x=x_{1} x_{2} \ldots x_{n}, y=y_{1} y_{2} \ldots y_{n}$ and $x_{i} \mathscr{J} y_{i}$ for $i=1,2, \ldots, n$.

We will say that a graph congruence \sim on P is $\mathscr{J}(\operatorname{or} \operatorname{dot}(\mathscr{F}))$-trivial if for any coterminal paths $x \mathscr{J} y$ (or $x \operatorname{dot}(\mathscr{F}) y$, respectively) implies $x \sim y$.

3. RESULTS

The aim of this paper is to show that the family of \mathscr{J}-trivial graph congruence does not correspond to the family of graph congruences covered by the graph congruence ${ }_{m} \sim$ for some $m \geqq 1$, when the number of vertices of the underlying graph is greater than 1. In opposite, Simon [4] has proved that this is the case, if the underlying graph has exactly one vertex. The following example is suggested by our results. Let $V=\{1,2\}, A=\{a, b, c, d\}$ and $a \alpha=c \alpha=b \omega=d \omega=1$, $a \omega=c \omega=b \alpha=d \alpha=2$. Define the congruence \sim by its congruence classes:

$$
\begin{gathered}
\left\{1_{1}\right\},\left\{1_{2}\right\}, a(b a)^{*},(a b)^{+},(a b)^{+} c(d c)^{*},(a b)^{+}(c d)^{+}, b(a b)^{*} \\
(b a)^{+}, b c(d c)^{*}, b(c d)^{+}, c(d c)^{*},(c d)^{+}, d(c d)^{*},(d c)^{+}
\end{gathered}
$$

and four classes containing all other paths, according to the coterminality.
This congruence is \mathscr{J}-trivial, but $(a b)^{+}(c d)^{+} \nprec(a b)^{+} a d(c d)^{+}$. Thus for any m we have $\sim{K_{m}}^{\sim}$. Of course, if we consider that vertices 1 and 2 represent the same vertex, then our congruence comes to be not \mathscr{J}-trivial. In fact, we have $a(b a)^{*} \mathscr{J}(a b)^{+}$, however, in the case of two vertices 1 and 2 , these classes are not coterminal.

Theorem 1: For any graph congruence of finite index on P the following are equivalent:
(a) \sim is \mathscr{J}-trivial;
(b) there exists an integer $n, n \geqq 1$, such that for all loops u, v about the same vertex:

$$
u(v u)^{n} \sim(v u)^{n} \sim(v u)^{n} v ;
$$

(c) there exists an integer $m, m \geqq 1$, such that $\sim<_{m}=$.

Theorem 2: For any graph congruence of finite index on P the following are equivalent:
(a) \sim is $\operatorname{dot}(\mathscr{F})$-trivial;
(b) there exists an integer $n, n \geqq 1$, such that for all loops $u_{1} u_{2}$ and $v_{1} v_{2}$ about the same vertex, where paths u_{1} and v_{1} are coterminal:

$$
\left(u_{1} u_{2}\right)^{n} u_{1} v_{2}\left(v_{1} v_{2}\right)^{n} \sim\left(u_{1} u_{2}\right)^{n}\left(v_{1} v_{2}\right)^{n} ;
$$

(c) there exists an integer $n, n \geqq 1$, such that $\sim<_{n} \simeq$;
(d) there exists an integer $m, m \geqq 1$, such that $\sim<_{m} \sim$.

4. PROOF OF THEOREM 1

$(a) \Rightarrow(c):$ Let \sim be a \mathscr{J}-trivial congruence of finite index on P. From the definition of congruence ${ }_{m}=$ it follows that it is sufficient to show that $x_{1} x_{2} \ldots x_{m} \sim y_{1} y_{2} \ldots y_{m}$ whenever $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{m}$ are coterminal, and $x_{i} \tau=y_{j} \tau(i, j=1,2, \ldots, m)$ for some m. Since \sim is \mathscr{J}-trivial, it is sufficient to show that $x_{1} x_{2} \ldots x_{m} \mathscr{\mathscr { J }} y_{1} y_{2} \ldots y_{m}$ whenever $x_{i} \tau=y_{j} \tau$ for some m. We prove this by the following:

Lemma 3: Let \sim be a \mathscr{J}-trivial congruence of finite index on P. Then for $m \geqq 2$ (index $\sim+1$):

$$
x_{1} x_{2} \ldots x_{m} \mathscr{J} y_{1} y_{2} \ldots y_{m}
$$

whenever $x_{i} \tau=y_{j} \tau$ for $i, j=1,2, \ldots, m$.

Proof: We may assume that $m=2$ (index $\sim+1$). Since $x_{i} \tau=y_{j} \tau$ for any i and j, then for any $k, \mathrm{k}=1,2, \ldots, \mathrm{~m} / 2$ we may write $x_{2 k}=x_{2 k}^{\prime} x_{2 k}^{\prime \prime}$ for $x_{2 k}^{\prime}$ such that all paths $x_{1} x_{2} \ldots x_{2 k-1} x_{2 k}^{\prime}(k=1,2, \ldots, m / 2)$ are coterminal. By the choice of m, there exist k_{1} and $k_{2}, 1 \leqq k_{1}<k_{2} \leqq m / 2$ such that:

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} \sim x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} . \tag{0}
\end{equation*}
$$

We claim that for any path z such that $z \alpha=\left(x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime}\right) \omega$ and $z \tau \cong x_{i} \tau$ we have:

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} \mathscr{J} x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} z \tag{1}
\end{equation*}
$$

We apply the induction on the length of z. If $|z|=0$, (1) follows by (0). Let $z=w r$, $|w| \geqq 0$ and $r \in x_{i} \tau$. Now, $k_{2}>k_{1}$ implies that:

$$
x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} w r=x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} u r v w r
$$

for some $u, v \in P$ such that $x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime}=x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} u r v$. Evidently, paths $x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} w$ and $x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} u$ are coterminal. By the induction assumption:

$$
x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} w \mathscr{J} x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} .
$$

Hence:

$$
x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} w \mathscr{J} x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} u
$$

Since \sim is a \mathscr{J}-trivial graph congruence, we have:

$$
x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} w r \sim x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} u r .
$$

Consequently, by (0):

$$
x_{1} x_{2} \ldots x_{2 k_{2}-1} x_{2 k_{2}}^{\prime} w r \mathscr{I} x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime}
$$

Thus the claim holds.
By this claim $x_{1} x_{2} \ldots x_{2 k_{1}-1} x_{2 k_{1}}^{\prime} \mathscr{J} x_{1} x_{2} \ldots x_{m}$. Since $x_{i} \tau=y_{j} \tau$, we can find $u, v \in P$ such that $x_{m}=u v$ and $u \omega=y_{1} \alpha$. Hence by the claim, $x_{1} x_{2} \ldots x_{m-1}$ u $y_{1} y_{2} \ldots y_{m} \mathscr{J} x_{1} x_{2} \ldots x_{m}$. By symmetry, $y_{1} y_{2} \ldots y_{m-1} u_{1} x_{1} x_{2} \ldots x_{m} \mathscr{J} y_{1} y_{2} \ldots y_{m}$ for some u_{1} such that $y_{m}=u_{1} v_{1}$ and $u_{1} \omega=x_{1} \alpha$. Thus $x_{1} x_{2} \ldots x_{m} \mathscr{J} y_{1} y_{2} \ldots y_{m}$.
$(c) \Rightarrow(e)$: Congruence ${ }_{m}=$ satisfies (b) for $n=m$. Hence, also \sim satisfies (b).
$(b) \Rightarrow(a)$: Let $x \mathscr{J} y$ and let x, y be coterminal paths. By the definition $x \sim z_{1} y z_{2}$ and $y \sim z_{3} x z_{4}$ for some loops z_{1}, z_{3} about the same vertex and for some
loops z_{2}, z_{4} about the same vertex. Since \sim is a graph congruence, then $x \sim\left(z_{1} z_{3}\right)^{n} x\left(z_{4} z_{2}\right)^{n}$. Consequently, (b) implies $x \sim z_{3} x z_{4} \sim y$.

5. PROOF OF THEOREM 2

(a) $\Rightarrow(c)$: Let \sim be $\operatorname{dot}(\mathscr{J})$-trivial congruence of finite index on P. From the definition of congruence ${ }_{n} \simeq$ it follows that it is sufficient to show that there is $n, n \geqq 1$ such that:

$$
x_{1} x_{2} \ldots x_{n} u_{1} u_{2} \ldots u_{n} \sim y_{1} y_{2} \ldots y_{n} w_{1} w_{2} \ldots w_{n}
$$

whenever $x_{1} x_{2} \ldots x_{n} u_{1} u_{2} \ldots u_{n}$ and $y_{1} y_{2} \ldots y_{n} w_{1} w_{2} \ldots w_{n}$ are coterminal paths and $x_{i} \tau=y_{j} \tau, u_{i} \tau=w_{j} \tau(i, j=1,2, \ldots, n)$. Since \sim is $\operatorname{dot}(\mathscr{F})$-trivial, it follows that \sim is also \mathscr{J}-trivial. By Lemma 1 for $n \geqq 2$ (index $\sim+1$) $x_{1} x_{2} \ldots x_{n} \mathscr{J} y_{1} y_{2} \ldots y_{n}$ and $u_{1} u_{2} \ldots u_{n} \mathscr{J} w_{1} w_{2} \ldots w_{n}$. Hence, by the definition of $\operatorname{dot}(\mathscr{J})$-triviality:

$$
x_{1} x_{2} \ldots x_{n} u_{1} u_{2} \ldots u_{n} \sim y_{1} y_{2} \ldots y_{n} w_{1} w_{2} \ldots w_{n}
$$

$(c) \Rightarrow(d)$: We will prove that for each n there exists an integer $m, m \geqq 1$, such that ${ }_{n} \simeq<_{m} \sim$. We claim that it is sufficient to set:

$$
m=m(n, k)=n^{2} \sum_{j=1}^{k} \sum_{i=1}^{j} i=\frac{n^{2}}{6} k(k+1)(k+2)
$$

where $k=|A|$. The proof is by induction on k.
$k=1$
Then for $m=m(n, 1)=n^{2}, x_{m} \sim y$ implies $|x|,|y| \geqq n^{2}$ or $x=y$. Consequently, $x_{n} \simeq y$.

General induction assumption

If $|A|=k \geqq 1,{ }_{n} \simeq<_{m} \sim$ for $m=m(n, k)$.
Now, let $|A|=k+1, k \geqq 1$, and let $x_{m} \sim y$ for $m=m(n, k+1)$. For x we define a unique factorization of x as follows: $x=x_{1} x_{2} \ldots x_{p} x_{p+1}$, where for $i=1,2, \ldots, p, p \geqq 0, x_{i}$ is the shortest prefix of $x_{i} x_{i+1} \ldots x_{p} x_{p+1}$ such that $x_{i} \tau=A$, and $x_{p+1} \tau \nsubseteq A$. If $p \geqq n$, then $m=m(n, k+1)>n(k+1)$ implies that the similar factorization of y, namely $y_{1} y_{2} \ldots y_{r} y_{r+1}$, must be such that $r \geqq n$. Hence, by the definition, $x_{n} \simeq y$.

Assume $p<n$. Then $m=m(n, k+1)>n(k+1)$ implies that $r=p$. Let us define $m(n, k+1, p)=m(n, k)+p . n . \sum_{i=1}^{k+1} i$. Evidently, $m(n, k+1)=m(n, k+1, n)$. We vol. $17, n^{\circ} 4,1983$
prove that if the above factorizations of x and y are $x_{1} x_{2} \ldots x_{p} x_{p+1}$ and $y_{1} y_{2} \ldots y_{p} y_{p+1}$ respectively, $0 \leqq p<n$, then for $m=m(n, k+1, p) x_{m} \sim y$ implies $x_{n} \simeq y$. We apply the induction on p.
$p=0$
It follows that $x \tau=y \tau \nsubseteq A$. Since $m=m(n, k+1,0)=m(n, k)$, then by the general induction assumption $x_{m} \sim y$ implies $x_{n} \simeq y$.

Induction assumption for p

If $x=x_{1} x_{2} \ldots x_{p} x_{p+1}$ and $y=y_{1} y_{2} \ldots y_{p} y_{p+1}$ are factorizations as above for some $p, 0 \leqq p<n-1$ then for $m=m(n, k+1, p) x_{m} \sim y$ implies $x_{n} \simeq y$.

Let $r=p+1$ and let $x=x_{1} x_{2} \ldots x_{r} x_{r+1}$ and $y=y_{1} y_{2} \ldots y_{r} y_{r+1}$ be the factorization as above. Assume $x_{m} \sim y$ for $m=m(n, k+1, r)$.

Consider $x_{r} x_{r+1}$. Let a be the last letter of x_{r}. One can write $x_{r} x_{r+1}=x^{\prime \prime} x^{\prime}$, where x^{\prime} is the shortest suffix of $x_{r} x_{r+1}$ such that $x^{\prime} \tau=A$. Let b be the first letter of x^{\prime}. There are two cases which we investigate separately:
(1) $\left|x_{r}\right|=\left|x^{\prime \prime}\right|+1$ i.e. $a=b$. Then $x_{r} x_{r+1}=z a t$ for some $z, t \in A^{*}$ and $a \notin z \tau \cup t \tau ;$
(2) if $\left|x_{r}\right|>\left|x^{\prime \prime}\right|+1$, then $x_{r} x_{r+1}=z b w a t$ for some $z, w, t \in A^{*}, a \neq b$ and $a \notin(z b w) \tau, b \notin(w a t) \tau$.
(1) In this case, $m=m(n, k+1, r)>(r-1)(k+1)+2$ and $x_{m} \sim y$ imply that $y_{r} y_{r+1}=u a v$ for some $u, v \in A^{*}$ such that $a \notin u \tau \cup v \tau$. Also, by the same argument $u \tau=z \tau \nsubseteq A$ and $t \tau=v \tau \nsubseteq A$.

Hence, $x=x_{1} x_{2} \ldots x_{r-1} z a t$ and $y=y_{1} y_{2} \ldots y_{r-1} u a v$. Since $a \notin z \tau \cup t \tau$, then for $q=m(n, k+1, r)-(r-1)(k+1)-1,\left(A^{r-1}, a, a_{1}, a_{2}, \ldots, a_{q}\right) \in x(\in y)$ iff $\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in t\left(\in v\right.$, respectively). Hence $x_{m} \sim y$ implies $t_{q} \sim v$. Since $q>m(n, k)$, the by the general induction assumption $t_{n} \simeq v$.

Similarly, $\left(a_{1}, a_{2}, \ldots, a_{q}, a\right) \in x(\in y)$ iff $\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in x_{1} x_{2} \ldots x_{r-1} z$ ($\in y_{1} y_{2} \ldots y_{r-1} u$, respectively). Hence, $x_{m} \sim y$ implies $x_{1} x_{2} \ldots x_{r-1} z$ ${ }_{q} \sim y_{1} y_{2} \ldots y_{r-1} u$ for $q=m(n, k+1, r)-1$. Consequently, by the induction assumption for $p=r-1$, we obtain $x_{1} x_{2} \ldots x_{r-1} z_{n} \simeq y_{1} y_{2} \ldots y_{r-1} u$.

Altogether, since ${ }_{n} \simeq$ is a graph congruence, we have $x_{n} \simeq y$.
(2) As in (1), $m=m(n, k+1, r)>(r-1)(k+1)+2$ and $x_{m} \sim y$ imply that $y_{r} y_{r+1}=u b s a v$ for some $u, s, v \in A^{*}$ such that $a \notin(u b s) \tau$ and $b \notin(s a v) \tau$.

In this part of the proof we shall use certain special factorizations defined as follows: for $z \in A^{+}$let $z=z_{1} z_{2} \ldots z_{l}(l \geqq 1)$ be a factorization of z such that for
$i=1,2, \ldots, l z_{i}$ is the shortest prefix of $z_{i} z_{i+1} \ldots z_{l}$ such that $z_{i} \tau=\left(z_{i} z_{i+1} \ldots z_{l}\right) \tau \neq \emptyset$. Of course, $z_{i} \tau \supseteqq z_{i+1} \tau$. Such factorization always exists and it is unique. For $z=\lambda$ we assume that $l=0$. Now, for $z \in A^{+}$and for an integer $n, n \geqq 1$, we define the left n-factorization of z as follows:
(i) If for some $j, z_{j} \tau=z_{j+n} \tau$, where $j, j+n \in\{1,2, \ldots, l\}$, then for the smallest j with this property we define the left n-factorization as $z_{1} z_{2} \ldots z_{j-1} z^{1} z^{2} \ldots z^{n+1}, \quad$ where $\quad z^{i}=z_{j+i-1}, \quad z^{n+1}=z_{j+n} \ldots z_{l}$, $i=1,2, \ldots, n$.
(ii) Otherwise, if such j does not exist, we define the left n-factorization as $z_{1} z_{2} \ldots z_{l} z^{1} z^{2} \ldots z^{n+1}$, where $z^{i}=\lambda$ i. e. $z^{i} \tau=\emptyset$ for $i=1,2, \ldots, n+1$.

By the left-right duality we also define the right n-factorization of z in the form $z^{n+1} z^{n} \ldots z^{1} z_{g} z_{g-1} \ldots z_{1}$ for $g \geqq 0$.

The following observation follows directly from the definitions:
Lemma 4: Let $z, u \in A^{*}$ and $|z \tau|=k$. Then $z_{q} \sim u\left(\right.$ or $\left.z \tau_{q}=u \tau_{q}\right)$ for $q \geqq(n+1) \sum_{i=1}^{k} i$ implies that left n-factorizations of z and u are the same in the sense that $z=z_{1} z_{2} \ldots z_{h} z^{1} z^{2} \ldots z^{n+1}, \quad u=u_{1} u_{2} \ldots u_{h} u^{1} u^{2} \ldots u^{n+1}$ and $z_{i} \tau=u_{i} \tau,(i=1,2, \ldots, h), z^{1} \tau=u^{1} \tau$.

The similar observation is true for the right factorizations.
So far, in case (2), we have that $x=x_{1} x_{2} \ldots x_{r-1} z b w a t$ and $y=y_{1} y_{2} \ldots y_{r-1} u b s a v$, and $x_{m} \sim y$ for $m=m(n, k+1, r)$. Now, let us observe that $\left(A^{r-1}, a_{1}, a_{2}, \ldots, a_{q}, b\right) \in x(\in y)$ iff $\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in z(\in u$, respectively). Hence, $x_{m} \sim y$ implies that $(z b) \tau_{q}=(u b) \tau_{q}$ for $q=m(n, k+1, r)-(r-1)$ $(k+1)-1$. Since $q>(n+1) \sum_{i=1}^{k} i$, by Lemma 4 the left n-factorizations of $z b$ and $u b$ are respectively, $z_{1} z_{2} \ldots z_{h} z^{1} z^{2} \ldots z^{n+1}$ and $u_{1} u_{2} \ldots u_{h} u^{1} u^{2} \ldots u^{n+1}$, where $u_{i} \tau=z_{i} \tau(i=1,2, \ldots, h), h \geqq 0$, and $z^{1} \tau=u^{1} \tau$.

Similarly, $\left(A^{r-1}, a, a_{1}, a_{2}, \ldots, a_{q}\right) \underline{\in} x(\in y)$ iff $\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in t(\in v$, respectively) for $q \geqq 1$. Hénce, $x_{m} \sim y$ implies that at ${ }_{q} \sim a v$ for $q=m(n, k+1, r)-(r-1)(k+1)-1$. Again, since $q>(n+1) \sum_{i=1}^{k} i$, by the rightleft duality and Lemma 2, the right n-factorizations of $a t$ and $a v$ are respectively:

$$
t^{n+1} t^{n} \ldots t^{1} t_{g} t_{g-1} \ldots t_{1} \quad \text { and } \quad v^{n+1} v^{n} \ldots v^{1} v_{g} v_{g-1} \ldots v_{1}
$$

where $t^{1} \tau=v^{1} \tau$ and $t_{j} \tau=v_{j} \tau(j=1,2, \ldots, g), g \geqq 0$.
Our proving way now will depend on the letter content of w :
2(A) if $w=w_{1} w_{2}$ for some $w_{1}, w_{2} \in A^{*}$ such that $w_{1} \tau \subseteq z^{1} \tau$ and $w_{2} \tau \subseteq t^{1} \tau$;

2(B) if $w=w_{1} \gamma w_{2} \beta w_{3}$ for $w_{1}, w_{2}, w_{3} \in A^{*}, \gamma, \beta \in A$ such that $w_{1} \tau \subseteq z^{1} \tau$, $w_{3} \tau \cong t^{1} \tau$ and $\gamma \notin z^{1} \tau, \beta \notin t^{1} \tau$.

2(C) if $w=w_{1} \gamma w_{3}$ for $\gamma \notin z^{1} \tau \cup t^{1} \tau, w_{1} \tau \cong z^{1} \tau$ and $w_{3} \tau \cong t^{1} \tau$.
Now, if w is of type 2(B), then $x_{m} \sim y$ implies that $\left(A^{r-1}, z_{1} \tau, z_{2} \tau, \ldots, z_{h} \tau, \gamma\right.$, $\left.\beta, t_{g} \tau, t_{g-1} \tau, \ldots, t_{1} \tau\right) \in x$ iff $\left(A^{r-1}, z_{1} \tau, z_{2} \tau, \ldots, z_{h} \tau, \gamma, \beta, t_{g} \tau, t_{g-1} \tau, \ldots\right.$, $\left.t_{1} \tau\right) \in y$, because:

$$
\begin{aligned}
m=m(n, k+1, r)>(r-1)(k+1)+2 n & \sum_{i=1}^{k} i+2 \\
& \geqq(r-1)(k+1)+\sum_{i=1}^{h}\left|z_{j} \tau\right|+\sum_{j=1}^{g}\left|t_{j} \tau\right|+2,
\end{aligned}
$$

and $z_{i} \tau=u_{i} \tau, t_{j} \tau=v_{j} \tau(i=1,2, \ldots, h, j=1,2, \ldots, g)$. Hence, the conditions $\gamma \notin z^{1} \tau=u^{1} \tau$ and $\beta \notin t^{1} \tau=v^{1} \tau$ imply that $s=s_{1} \gamma s_{2} \beta s_{3}$ for some $s_{1}, s_{2}, s_{3} \in \Sigma^{*}$ such that $\gamma \notin s_{1} \tau$ and $\beta \notin s_{3} \tau$, but not necessarily $s_{1} \tau \subseteq z^{1} \tau, s_{3} \tau \cong t^{1} \tau$. If $w=w_{1} \gamma w_{3}$, then similarly $s=s_{1} \gamma s_{3}$. By this, if w is of type 2(A), then $s=s_{1} s_{2}$ for $s_{1} \tau \subseteq z^{1} \tau$ and $s_{2} \tau \subseteq t^{1} \tau$.

2 (A) We have:
$x=x_{1} x_{2} \ldots x_{r-1} z_{1} z_{2} \ldots z_{h} z^{1} z^{2} \ldots z^{n+1} w_{1} w_{2} t^{n+1} t^{n} \ldots t^{1} t_{g} t_{g-1} \ldots t_{1}$ and:
$y=y_{1} y_{2} \ldots y_{r-1} u_{1} u_{2} \ldots u_{h} u^{1} u^{2} \ldots u^{n+1} s_{1} s_{2} v^{n+1} v^{n} \ldots v^{1} v_{g} v_{g-1} \ldots v_{1}$.
Since $z^{1} \tau=u^{1} \tau$, there are factorizations $z^{1}=z_{1}^{1} z_{2}^{1}$ and $u^{1}=u_{1}^{1} u_{2}^{1}$ such that $z_{1}^{1} \omega=u_{1}^{1} \omega=z_{2}^{1} \propto=u_{2}^{1} \propto$ for some $z_{1}^{1}, z_{2}^{1}, u_{1}^{1}, u_{2}^{1} \in A^{*}$. Similarly, $t^{1} \tau=v^{1} \tau$ implies that $t^{1}=t_{1}^{1} t_{2}^{1}, v^{1}=v_{1}^{1} v_{2}^{1}$ such that $v_{1}^{1} \omega=v_{2}^{1} \propto=t_{1}^{1} \omega=t_{2}^{1} \propto$. Hence by the definition of \widetilde{n}, since $s_{1} \tau \cup w_{1} \tau \subseteq z^{1} \tau$ and $s_{2} \tau \cup w_{2} \tau \subseteq t^{1} \tau$ we have:

$$
z_{2}^{1} z^{2} \ldots z^{n+1} w_{1} w_{2} t^{n+1} t^{n} \ldots t^{2} t_{1 n}^{1} \simeq u_{2}^{1} u^{2} \ldots u^{n+1} s_{1} s_{2} v^{n+1} v^{n} \ldots v^{2} v_{1}^{1}
$$

Also, by the definition of ${ }_{n} \simeq, z_{2}^{1} z^{2} \ldots z^{n+1}{ }_{n} \simeq u_{2}^{1} u^{2} \ldots u^{n+1}$ and $t^{n+1} t^{n} \ldots t^{2} t_{1}^{1} \simeq v^{n+1} \ldots v^{2} v_{1}^{1}$.

On the other hand, from the choosing of letter b it follows that $x_{1} x_{2} \ldots x_{r-1} z b_{q_{1}} \sim y_{1} y_{2} \ldots y_{r-1} u b$ for $q_{1}=m(n, k+1, r)-1$ and from the choosing of letter a, it follows that $a t_{q_{2}} \sim a v$ for $q_{2}=m(n, k+1, r)-(r-1)$ $(k+1)-1$. Consequently, since $(z b) \tau=(u b) \tau \subseteq A,(a t) \tau=(a r) \leftrightarrow \tau \subseteq A$ and $q_{1}>m(n, k+1, r-1), \quad q_{2}>m(n, k)$, then by the induction assumption for $p=r-1$:

$$
x_{1} x_{2} \ldots x_{r-1} z_{1} z_{2} \ldots z_{h} z^{1} z^{2} \ldots z^{n+1}
$$

${ }_{n} \simeq y_{1} y_{2} \ldots y_{r-1} u_{1} u_{2} \ldots u_{h} u^{1} u^{2} \ldots u^{n+1}$ and by the general induction assumption:

$$
t^{n+1} t^{n} \ldots t^{1} t_{g} t_{g-1} \ldots t_{1 n} \simeq v^{n+1} v^{n} \ldots v^{1} v_{g} v_{g-1} \ldots v_{1}
$$

Thus, since ${ }_{n} \simeq$ is a graph congruence, $x_{n} \simeq y$.
2(B) In this subcase, we have:

$$
\begin{aligned}
& x=x_{1} x_{2} \ldots x_{r-1} z_{1} z_{2} \ldots z_{h} z^{1} z^{2} \ldots z^{n+1} \\
& w_{1} \gamma w_{2} \beta w_{3} t^{n+1} t^{n} \ldots t^{1} t_{g} t_{g-1} \ldots t_{1}, \\
& y=y_{1} y_{2} \ldots y_{\underline{r}-1} u_{1} u_{2} \ldots u_{h} u^{1} u^{2} \ldots u^{n+1} \\
& s_{1} \gamma s_{2} \beta s_{3} v^{n+1} v^{n} \ldots v^{1} v_{g} v_{g-1} \ldots v_{1}^{1},
\end{aligned}
$$

where $\gamma \notin z^{1} \tau=u^{1} \tau, \beta \notin t^{1} \tau=v^{1} \tau, \gamma \notin s_{1} \tau, \beta \notin s_{3} \tau$ and $w_{1} \tau \subseteq z^{1} \tau, w_{3} \tau \subseteq t^{1} \tau$.
Now, $\quad\left(a_{1}, \quad a_{2}, \ldots, a_{q}, \quad \beta, \quad t_{g} \tau, \quad t_{q-1} \tau, \ldots, t_{1} \tau\right) \in x(\underline{\in} y) \quad$ iff $\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in x_{1} x_{2} \ldots x_{r-1} z b w_{1} \quad \gamma w_{2}\left(: y_{1} y_{2} \ldots y_{r-1} u b s_{1} \gamma s_{2}\right.$, respectively), for $q \geqq 0$. Hence, $x_{m} \sim y$ implies that:

$$
x_{1} x_{2} \ldots x_{r-1} z b w_{1} \gamma w_{2 q} \sim y_{1} y_{2} \ldots y_{r-1} u b s_{1} \gamma s_{2}
$$

for:

$$
q=m(n, k+1, r)-\sum_{j=1}^{g}\left|t_{j} \tau\right|-1 \geqq m(n, k+1, r)-n \sum_{i=1}^{k} i-1 .
$$

Thus, $\left(z b w_{1} \gamma w_{2}\right) \tau \subseteq A$ and $q>m(n, k+1, r-1)$ imply by the induction assumption for $p=r-1$ that:

$$
x_{1} x_{2} \ldots x_{r-1} z b w_{1} \gamma w_{2 n} \simeq y_{1} y_{2} \ldots y_{r-1} u b s_{1} \gamma s_{2}
$$

Similarly, $\left(A^{r-1}, z_{1} \tau, z_{2} \tau, \ldots, z_{h} \tau, \gamma, a_{1}, a_{2}, \ldots, a_{q}\right) \in x(\in y)$ iff $\left(a_{1}\right.$, $\left.a_{2}, \ldots, a_{q}\right) \in w_{2} \beta w_{3}$ at ($\in s_{2} \beta s_{3}$ av, respectively) for $q \geqq 0$. Hence, $x_{m} \sim y$ implies that $w_{2} \beta w_{3} a t_{q} \sim s_{2} \beta s_{3} a v$ for:

$$
\begin{aligned}
q=m(n, k+1, r)-(r-1)(k+1)- & \sum_{i=1}^{h}\left|z_{i} \tau\right|-1 \\
& \geqq m(n, k+1, r)-(r-1)(k+1)-n \sum_{i=1}^{k} i-1 .
\end{aligned}
$$

Since $q>m(n, k)$ and $\left(w_{2} \beta w_{3} a t\right) \tau=\left(s_{2} \beta s_{3} a v\right) \tau \nsubseteq A$, by the general induction assumption we have:

$$
w_{2} \beta w_{3} a t_{n} \simeq s_{2} \beta s_{3} a v
$$

vol. $17, \mathrm{n}^{\circ} 4,1983$

Finally, $\left(A^{r-1}, z_{1} \tau, z_{2} \tau, \ldots, z_{h} \tau, \gamma, a_{1}, a_{2}, \ldots, a_{q}, \beta, t_{g} \tau, t_{g-1} \tau, \ldots, t_{1} \tau\right) \in$. $(\underline{\in} y) \operatorname{iff}\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in w_{2}\left(\in s_{2}\right.$, respectively); $q \geqq 0$. Hence, $x_{m} \sim y$ implies that $w_{2} \sim s_{2}$ for:

$$
\begin{aligned}
q=m(n, k+1, r)-(r-1) & (k+1)-\sum_{i=1}^{h}\left|z_{i} \tau\right| \\
& -\sum_{j=1}^{g}\left|t_{g} \tau\right|-2 \geqq m(n, k+1, r)-(k+1)-2 n \sum_{i=1}^{k} i-2 .
\end{aligned}
$$

Since $q>m(n, k)$ and $w_{2} \tau=s_{2} \tau \nsubseteq A$, then by the general induction assumpuon:

$$
w_{2 n} \simeq s_{2}
$$

Thus, since ${ }_{n} \simeq$ is a graph congruence, $x_{n} \simeq y$.
2(C) The proof follows as in 2(B), it is sufficient to regard γ and β as the same letter and $w_{2}=s_{2}=\lambda$. \square
$(d) \Rightarrow(b)$: Congruence ${ }_{m} \sim$ satisfies (b) for $n=m$, consequently, also \sim satisfies (b).
$(b) \Rightarrow(a):$ Let $x=x_{1} x_{2} \ldots x_{h}$ and $y=y_{1} y_{2} \ldots y_{h}$ be coterminal paths such that $x_{i} \mathscr{J} y_{i}$ for $i=1,2, \ldots, h$ and $h \geqq 1$. Then, by the definition of relation \mathscr{J}, $x_{i} \sim z_{1}^{i} y_{i} z_{2}^{i}$ and $y_{i} \sim z_{3}^{i} x_{i} z_{4}^{i}$ for some paths $z_{1}^{i}, z_{2}^{i}, z_{3}^{i}, z_{4}^{i}$. Consequently:
and:

$$
x_{i} \sim\left(z_{1}^{i} z_{3}^{i}\right)^{n} x_{i}\left(z_{4}^{i} z_{2}^{i}\right)^{n}
$$

$$
x_{1} x_{2} \ldots x_{h} \sim\left(z_{1}^{1} z_{3}^{1}\right)^{n} x_{1}\left(z_{4}^{1} z_{2}^{1}\right)^{n}\left(z_{1}^{2} z_{3}^{2}\right)^{n} x_{2}\left(z_{4}^{2} z_{2}^{2}\right)^{n} \ldots\left(z_{1}^{h} z_{3}^{h}\right)^{n} x_{h}\left(z_{4}^{h} z_{2}^{h}\right)^{n},
$$

for $n \geqq 0$. Since x and y are coterminal, then z_{1}^{1} and z_{3}^{1} are loops about the same vertex. Similarly, z_{4}^{h} and z_{2}^{h} are loops about the same vertex. By (b) for sufficiently large n and since \sim is a graph congruence:

$$
\begin{gathered}
x_{1} x_{2} \ldots x_{h} \sim z_{3}^{1}\left(z_{1}^{1} z_{3}^{1}\right)^{n} x_{1}\left(z_{4}^{1} z_{2}^{1}\right)^{n} z_{4}^{1} z_{3}^{2}\left(z_{1}^{2} z_{3}^{2}\right) x_{2}\left(z_{4}^{2} z_{2}^{2}\right)^{n} z_{4}^{2} \ldots \\
\ldots z_{3}^{h}\left(z_{1}^{h} z_{3}^{h}\right)^{n} x_{n}\left(z_{4}^{h} z_{2}^{h}\right)^{n} z_{4}^{h} .
\end{gathered}
$$

Note that for $i=1,2, \ldots, h-1 z_{4}^{i}$ and z_{1}^{i+1} are coterminal. Next, since:

$$
y_{i} \sim z_{3}^{i}\left(z_{1}^{i} z_{3}^{i}\right)^{n} x_{i}\left(z_{4}^{i} z_{2}^{i}\right) z_{4}^{i},
$$

we obtain $x \sim y$. Thus \sim is $\operatorname{dot}(\mathscr{J})$-trivial.

REFERENCES

1. J. A. Brzozowski and I. Simon, Characterization of Locally Testable Events, Discrete Math., Vol. 4, 1973, pp. 243-271.
2. S. Eilenberg, Automata, Languages and Machines, Vol. B, 1976, Academic Press.
3. R. Knast, A Semigroup Characterization of Dot-Depth One Languages R.A.I.R.O., Informatique théorique, Vol. 17, No. 4, 1983, pp. 321-330.
4. I. Simon, Piecewise Testable Events (2nd GI-Professional Conference on Automata Theory and Formal Languages, L.N. in Computer Science, Vol. 33, 1975, Springer Verlag, pp. 214-222).

[^0]: (*) Received February 1981, revised May 1983.
 $\left.{ }^{(}\right)$Institute of Mathematics, Polish Academy of Sciences, 61-725 Poznan, Poland.

