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SPACE CLASSES, INTERSECTION OF LANGUAGES
AND BOUNDED ERASING HOMOMORPHSSMS (*)

by Andréas BRANDSTÂDT (*)

Communicated by R. V. BOOK

Abstract. — We characterize space complexity classes in terms of bounded erasing
homomorphisms applied to threefoid intersections of one-counter languages, and also we characterize
the classes which are given by bounded erasing homomorphisms applied to mixed intersections of
one-counter languages and context-free languages or one-counter languages and checking stack
languages. A generalization to erasing bounded transducers is made.

Résumé. -On caractérise les classes de complexité spatiale en termes d'homomorphismes à
effacement borné appliqués à des intersections de trois langages à un compteur. On caractérise
également les classes obtenues en appliquant des homomorphismes à effacement borné à des
intersections de langages à un compteur avec des langages algébriques {context-free) ou à des
intersections de langages à un compteur avec des langages vérifiables (checking stack). On donne
aussi une généralisation aux transducteurs à effacement borné.

1. INTRODUCTION

There are a lot of results concerning the représentation of complexity classes
by means of bounded erasing homomorphisms applied to simple families of
languages. Consider e. g. the class NTIME(n) of quasi-realtime languages
which is the closure of the intersection of three context-free languages under
length-preserving homomorphisms (see Book and Greibach [6] and a
refinement in Book/Nivat/Paterson [8]) and the correspondence between the
amount of erasing of homomorphisms and time bounds
(Book/Greibach/Wegbreit [7]).

More recent results provide a représentation of time and space complexity
classes by means of bounded erasing homomorphisms applied to equality sets
and equality sets with bounded balance (cf. [5, 10]).

The aims of this paper are twofold.
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122 A. BRANDSTÀDT

First we characterize space complexity classes l-NSPACE(s) of on-line
Turing machines by means of bounded erasing homomorphisms and
intersections of one-counter languages and characterize the resuit of applying
bounded erasing homomorphisms to mixed intersections of one-counter
languages and context-free languages or one-counter languages and checking
stack languages, and then we show that the amount of erasing of pushdown
and counter machine transductions correspond to the amount of erasing of
homomorphisms which are used together with the characterizing languages of
transductions.

2. NOTATIONS AND BASIC RESULTS

We assume familiarity with basic concepts from AFL theory and from
complexity theory.

Let N dénote the set of positive integers.
Let id dénote the function id(n) = n for ail neN.
S* dénotes the set of ail fini te strings over an alphabet E. A homomorphism

h : E* -> A* is /-bounded erasing on a language L<=E* iff there is a constant
0 such that f or ail w e L ƒ ( | h (w) | ) ̂  c. | w | where | w | dénotes the length of w.
For a class of functions 3F a homomorphism h is called ^-erasing on L iff
there is a function- ƒ e !F such that h is /-bounded erasing on L.

Important classes ^ are the polynomials POL= {nk : keM} and the
exponential functions EXP= { 2 C n : C>0 an arbitrary constant}.

In the same way the classes:
P O L / = {f(nf : /ce N} and
E X P / = {2 c / ( n ) : c>0 an arbitrary constant},

are defined for a function ƒ
For a family if of languages let Hf{£?) dénote the closure of if under ƒ-

bounded erasing homomorphisms and let H& {S?) dénote the closure of S£
under J^-erasing bounded homomorphisms, i. e.:

Hf {££) = { h (L) : L e J£f and h is a homomorphism which

is /-bounded erasing on L },
and:

ƒ e SF

A homomorphism h : £* -• A* is length-preserving iff:

\h(w)\ = \w\ for ail weE*.

R.A.LR.O. Informatique théorique/Theoretical Informaties



SPACE CLASSES, INTERSECTION OF LANGUAGES 123

Let H (if) = {h (L) : L e JSf and h is a length-preserving homomorphism }
dénote the closure of a class if under length-preserving homomorphisms. Let
H dénote the closure under arbitrary homomorphisms. Let LIN, 1-C, CF,
CSA, RE dénote the families of linear, one-counter, context-free, (one-way)
checking stack, contextsensitive and recursively enumerable languages
respectively.

Let A dénote the wedge operator from AFL theory, i. e., for families of
languages j£f x and if 2:

Furthermore we define time and space complexity classes for several types of
machines (cf [7]). A machine M of a given type opérâtes within time (space)
ƒ iff for each input string w and each accepting computation of M on w the
machine M opérâtes within ƒ ( | w | )-bounded time (space).

Some particular complexity classes used in this paper are the:

— space complexity classes of on-line deterministic (nondeterministic)
Turing machines:

1-T-XSPACE(/) where /(n)^Iogn, and Xe{D, N};
— space complexity classes of Turing machines with one tape (and without

a one-way input tape):
XSPACE(/) where f(n)^ny and Xe{D, N},
(Obviously for f^id 1-T-XSPACE(/)=XSPACE(/));
— time complexity classes of on-line fe-tape nondeterministic Turing

machines:
feT-NTIME(/) for ƒ (n)^n,

00

NTIME(/) = U kT-NTIME(f)
df fc = l

— time complexity classes of (non) deterministic k-counter machines with
a one-way input tape:

l-fcC-XTIME(/) for f(n)^n and
00

l-multiC-XTIME(/)= U l-kC-XTlME(f), Xe{D, N};
jt=i

— time-space complexity classes of on-line Turing machines with an
additional unbounded pushdown tape (the tape is in fact only bounded by the
time-bound):

l-auxPD-T-NSPACE-TIME(/, g) (cf. [17]);
— time-space complexity classes of on-line Turing machines with an

voL 17, n°2, 1983



124 A. BRANDSTÀDT

additional unbounded checking stack tape:
l-auxCSA-T-NSPACE-TIMEC/, g) (cf. [16]).

We recall some theorems from [6, 8 and 7],

PROPOSITION:

(n) = H(CFACFACF) [6]
= H ( C F A LIN A LIN) [8].

r(NTIME(n)) for f^id,
) = Hr(NSPACE(n)) for / ^ i d ,

and DSPACE(/) = Hr(DSPACE(n)) for f^id. [7].

3. THE REPRESENTATION OF NONDETERMINISTIC SPACE COMPLEXITY CLASSES

Our représentation is based on three lemmas.

LEMMA 1 [11]:

l-T-XSPACE(logO=l-3C-XTIME(POLt), Xe{D, N}, t(n)^n.

LEMMA 2 [7]:

l-ic-NTIME(Polt)=FifpoIt(l-fcC-NTIME(n)), t(n)^n.
The corresponding assertion in [7] is formulated for Turing machines but

the padding method used for the proof in [7] can be applied easily to time-
bounded counter machines and to many other types of multitape machines.

LEMMA 3:

l-fcC-NTIME(n) = H(l-CA . . . A 1-C).
k times

Lemma 3 is a conséquence of the corresponding représentation of quasi-
realtime multi-tape AFA (see [12]) and the fact that 1-C equals the class of
languages acceptable in real-time by nondeterministic one-counter machi-
nes [13]. It is easy to see that 1-C can be replaced by the deterministic class
1-DC thus having l-/cC-NTIME(n) = tf (1-DC A . . . A 1-DC).

k times

This is possible also for Q and other classes, e. g.:

Q = H (DCF A DCF A DCF).

From lemma 1, 2 and 3 we obtain our first représentation theorem.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SP ACE CLASSES, INTERSECTION OF LANGUAGES 125

THEOREM 1:

1-T-NSPACE(S) = H E X P S ( 1 - D C A 1-DC A 1-DC) for s^log.
(This means NSPACE(s)=HEXPs(l-DC A 1-DC A 1-DC) for s^id.)
Since NTIME (n) = H (DCF A D C F A D C F ) [6] and
NTIME (0 = Ht (NTIME (n)) [7] it follows that
NTIME (t) = Ht (DCF A DCF A DCF).
This représentation can be improved if a class !F of bounding functions is

closed under squaring, i. e. if ƒ G ̂  then (f(n))2e^ (e. g. the classes POL or
EXP).

THEOREM 2: Let $F be a class of functions which is closed under squaring.

Then NTIME ( <F) = H^ (DCF A DCF).
The proof bases on a représentation of Turing machine computations given

by Hartmanis in [14], where H{CF A C F ) = R E is shown. This relation can be
extended to complexity restrictions. In [2] the représentation of [14] is refined
to R E = H ( L I N A LIN). We can extend this représentation to complexity
bounds obtaining

COROLLARY 1: Assume that !F is closed under squaring.

Then l-fcT-NTIMECJ^H^LIN A LIN) holds for classes of bounding
functions & with f(n)^n and (ƒ (n))2 G ̂  for all ƒ e J*\

Theorem 2 shows that it is sufficient to have one intersection if the class of
bounding functions is closed under squaring.

Is this true also for space complexity classes?
We only know

THEOREM 3: For every bounding function s with s(n)^logn.
l-T-NSPACE(s)gifEXPEXps(l-DC A 1-DC) holds.

Proof: Lemma 1 bases on an encoding of a tape bounded by 5 by three
counters whose length is bounded by EXPs. The contents i, j , k of these three
counters can be encoded as T V 5fc using two counters. Obviously the length
of the two counters is then bounded by EXP EXP s and also the time necessary
fqr these simulations is bounded by EXP EXP5.

Now lemma 2 and 3 are applicable and theorem 3 is proved. It is an open
question whether this amount of erasing is necessary.

The time-space problem.
NSPACE(s)i? NTIME (EXPs) can be reformulated as

#EXps(l-DC A 1-DC A 1-DC) 4?HEXPs(DCF A DCF A DCF)

( = H E X P S ( D C F A D C F ) ) .

vol. 17, n°2f 1983



126 A. BRANDSTÂDT

This leads to the main results of this paper:
1. We investigate which class is obtained if we substitute one of the

components 1-DC by DCF, i.e., what is HEXPs(l-DC A 1-DC A D C F ) .

2. We give a simple class of languages (namely real-time checking stack
languages) which can be substituted for one component 1-DC to get
H E X P S ( D C F A D C F ) .

THEOREM 4:

l-auxPD-r-NSPACE-TIMECs, EXPS) = H E X PS(DCF A 1-DC A 1-DC).
Proof: The proof bases on the padding argument described in [7] which was

used in lemma 2.
1. " ^ " : Assume that LeHBXPs(DCF A 1-DC A 1-DC).
Then there is a constant c, languages Lie DCF, L2, L3el-DC and a

homomorphism h which is 2e •s (n)-bounded erasing on LtnL2nL3 such that
L = h(L1 nL2n L3), i. e., weL iff there is a w'eLi nL2nL3 with h(w')~w.
Since h is 2e's (n)-bounded erasing there is a constant c' such that c'. | w |
<; 2e •s ( ' w ' \ Now a Turing machine M with one-way input tape, a Turing tape
and a pushdown tape accepting L works as follows:

M guesses an input w' symbol by symbol and tests simultaneously
w'eLi by its pushdown tape, w'eL2 n L3 by its Turing tape in space s and
tests h (w') = w. It is straightf orward that this can be done in time bounded by
2e" •s for an appropriate constant c".

2. " g " : Let L l-auxPD-T-NSPACE-TIMECs, EXPs). There is a machine
M with a s-bounded Turing tape and an auxiliary pushdown tape which
accepts L operating in time EXPs. We want to simulate the work of M by a
machine M' with two counters and a pushdown tape operating in time EXPs.
Because the Turing tape of M is s-bounded it can be simulated by three
counters in time EXPs (cf. lemma 1). After simulating one step of the
pushdown store of M by the pushdown store of M' the machine M' sets a
marker on its pushdown store and uses the pushdown as an additional counter
thus having three counters for the simulation of one step of the Turing tape
of M. Because after some transformations the encoded content of the Turing
tape of M is stored only in two counters the pushdown store of M' is free
again to simulate one step of the pushdown of M and so on. Obviously the
whole simulation can be done in time EXPs. Now a slight generalization of
lemma 2 and 3 to the case of time-bounded machines with one pushdown
store and two counters gives the assertion of theorem 4.

Of course theorem 4 gives no answer to the question HEXps(l-DCA 1-
-DC A DCF) = HEXp S (DCF A DCF) but if we use a checking stack tape instead
of a pushdown tape we have equality:

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SPACE CLASSES, INTERSECTION OF LANGUAGES 127

THEOREM 5:

N T I M E ( E X P S ) = H E X P S ( D C F A D C F ) = HEXps(l-DC A D C S A ) .
(i)

Proof: The inclusion " =>" in (1) is obvious. For the other inclusion " g " we
remark that the checking stack which works within time EXPs guesses the
accepting computation séquence of configurations of the corresponding Turing
machine which works in time EXPs and then by 1 counter it is tested whether
this séquence describes an accepting computation of a Turing machine.
Obviously all this can be done in time EXPs.

Theorem 5 is closely related to a resuit on space complexity classes with and
without an auxiliary checking stack tape shown by Ibarra [16].

4. BOUNDED ERASING TRANSDUCTIONS

In the previous section bounded erasing homomorphisms have been applied
to certain classes of languages. Pushdown (and other) transductions are a
well-known concept of formai language theory (cf. [1]). They are characterized
by so-called "characterizing languages" (in the case of pushdown transductions
these are context-free languages) and pairs of homomorphisms applied to the
characterizing languages.

We investigate here the result of applying pairs of bounded erasing
homomorphisms in the représentation of transductions. This is the content of
sections 4 and 5. Hereby it turns out that the padding method known from [7]
is also applicable in these cases. We describe the notions used here only
informally. A pushdown transducer is a pushdown automaton with an (one-
way) output tape (see [1]).

The transduction x (P) computed by a pushdown transducer P is the set of
pairs (x, y), for which there is a computation of P where P starting on the
input word x in the initial state and with empty pushdown and output tape
comes to a final state when the input x is read, and the output tape contains y.
This is the notion used in [1].

In the case where the pushdown store has only one symbol the pushdown
transducer is a counter transducer.

A pushdown transducer P is /-bounded erasing on L iff there is a constant
c such that for all (w, i?)ex(P) with ueL, c.f(\v\)^ \u\ holds.

Correspondingly /-bounded erasing transductions are defined. Furthermore
we use the notion of characterizing languages from [1]: Let e dénote the empty
string.

vol. 17,n°2, 1983



128 A. BRANDSTÂDT

(a) A language L g ( I u À ) * characterizes the transduction T , X S S * X À * iff
there are homomorphisms hu h2 such that x = {(/ii(w), h2(w)) : weL}.

Let A' = { b' : b e A } and suppose that A n A' = Ç).
Df

(b) A language L c ( E u A ) * strongly characterizes the transduction x,
xcS*xA* iff:

2) x = {(fci(w), fe2(w)) : w e L } , where:

(ce) hx (a) = a for ail aeE, hx (b) = e for ail be A';
((3) /i2(fl) = e for ail aeE, fc2 (*>') = *> for ail ft'eA'.
The following property can be found in [1],

PROPOSITION: X is a pushdown transduction iff x is strongly characterizable by
a context-free language.

This property was generalized by Ibarra [15] to the case of A FA and AFT
and corresponding characterization languages given by the underlying A FA.

Now we generalize this proposition to the case of bounded erasing.

THEOREM 6: The following properties are equivalent:
1) The pushdown (one-counter) transduction x is f-bounded erasing on L.
2) There is a context-free {one-counter) language which characterizes x and

for the corresponding homomorphisms hu h2, c. ƒ (\h2(w)\)^ \hi(w)\ holds
for an appropriate constant c.

3) There is a context-free (one-counter) language L which strongly
characterizes x and for the corresponding homomorphisms hXy h2 there is an
appropriate constant c such that c. f(\h2(w)|)^ \w\ holds for ail
weLn hî^L).

The proof of this theorem is a straigthforward application of the padding
method described in [7].

5. TIME-BOUNDED TRANSDUCTÏONS

In this section we investigate Turing machine transducers, which have a
one-way input tape, a Turing tape as storage tape and a one-way output tape.
The concept is the same as in section 4 with Turing machines instead of
pushdown automata.

DÉFINITION: Let x be a Turing machine transduction and M be a Turing
machine transducer (with one working tape) which computes x. x is
nondeterministically computable within time bounded by t iff for ail (M, v)ex

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SPACE CLASSES, INTERSECTION OF LANGUAGES 129

there is a computation path of M where M starting on u processes the output

v and enters a final state (an accepting path) and every accepting path has a

length of no more than t ( | u | ) steps.

THEOREM 7: The following properties are equivalent:

1) x is a Turing machine transduction which is time-bounded by t.

2) There is a characterizing language LeNTIME(n) and homomorphisms

huh2 such that:

x= {(hi (w), h2(w)) : weL and hi is f-bounded erasing on L } .

3) There is a language LeNTIME(/) and homomorphisms hu h2 such that

T is strongly characterized by L and hu hi-

The proof of theorem 7 is also a straightforward application of the padding

method from [7].
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